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Abstract: This paper presents a system of equations for an axisymmetric laminar flow, after

averaging, through the width of the interdisk slit of a Tesla turbine. Coefficients improving the

efficiency of a 1D model were introduced as a result of averaging. The minimal number of such

coefficients was determined. The 1D model makes it possible to attain analytical solutions to

an accuracy limited by these coefficients. The calibration of a 1D model depends on finding the

numerical values of coefficients that yield a sufficient accuracy compared with 3D calculations.

A definition of the efficiency coefficient for the Tesla turbine is also given. This definition relies

on the 1D model results. Example values of this coefficient are described after the 1D model

calibration.
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1. Introduction

The literature on Tesla’s patent [1] concerning bladeless conversion of fluid

energy is relatively wide [2]. It is related to both pumps and turbines. The

attractiveness of such a design relies on its simplicity. This is due to the lack

of blades. From a practical point of view, the lack of a widespread use of such

turbines can be explained by the low efficiency. This design takes advantage only

of a friction mechanism for energy conversion and eliminates a mechanism of the

lift force which is characteristic for blade machines. Much attention was paid

to the Tesla turbine from the viewpoint of fluid mechanics. It seemed that the

structural simplicity of this solution could allow a simple solution of the basic

equations of fluid mechanics, i.e. the Navier-Stokes (N-S) equations. As it turned

out, the conversion of partial differential equations (N-S) to ordinary differential

equations, by changing the variables which would allow obtaining the so called

self-similar solution [3], was not possible. Such attempts were undertaken in the

70s of the last century. Recently, numerical solutions have been used. From the
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Figure 1. Tesla turbine flow system

technical point of view they are sufficient to evaluate the change of the parameters

in a Tesla turbine flow system (shown in Figure 1).

Analytical solutions of the equation system for the interdisk slit are possible

for the 1D model after averaging through the slit height, h. A comparison of

the 1D and 3D calculations for a stage of Tesla turbine makes it possible to fit

coefficients arriving in the 1D model. A variant of the 1D model that differs from

that of Rice [4] was proposed. The differences are due to the derivation of an

equation system of the model as well as frictional force modelling. The coordinate

system was adopted as in Figure 1. The power supply of the slit h between the

discs is carried out on the outer radius of R by means of the jet with speed U

having a circumferential and radial component.

2. Simplification of N-S equation

Let us introduce some simplifications to a closed system of N-S equations

rewritten in cylindrical coordinates. Radial velocity components, tangential and

axial are indicated by Ur, Uϕ, Uz, respectively.

The system contains the mass conservation equation and three equations of

motion, and is closed. The unknown functions are: velocity components Ur, Uϕ,

Uz and pressure p. Assuming ρ=const.,
∂
∂t
, ∂
∂ϕ
the system of equations is [5]:
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Let us introduce the dimensionless parameters on the basis of two linear scales

h≪ R and two velocity scales W ≪ U in the following form r = Rr̄, z = hz̄,

Ur =UŪr, Uϕ=UŪϕ, Uz =WŪz, p= ρU
2p̄. Neglecting the overbars and assuming

the following estimates h= ǫrR, ǫr≪ 1, W = ǫuU , ǫu≪ 1 the system of equations

takes the form:
∂Ur

∂r
+
Ur

r
+
ǫu

ǫr

∂Uz

∂z
=0 (2a)
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The Reynolds number is defined here as Re= ρURµ−1.

3. Averaging through the z coordinate

Assuming that ǫu≈ ǫr allows us to simplify the system:

1

r

∂

∂r
(rUr)+

∂Uz

∂z
=0 (3a)
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∂p

∂z
≈ 0 (3d)

Pressure p depends only on the r coordinate. This is true, however, within the

accuracy of terms ǫ2. Instead of second derivatives we use the first derivative

of tangential stresses τr = µ
∂Ur
∂z
, τϕ = µ

∂Uϕ
∂z
. The mass conservation equation is

averaged through z from 0 to h:

1

r

∂

∂r

(
r

h

∫ h
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Urdz

)
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1

h

∫ h

0

∂Uz
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dz=0 (4)

Using the condition Uz =0 for z=0 and z=h we obtain the average component

of velocity Ũr =
1

h

∫ h
0
Urdz which is now a function only of component r:

Ũr =−
1

r
UqR=−

Q

2πrh
(5)

where Q represents the volumetric flow rate and is prescribed by means of the

radial velocity component at inlet Uq.

tq314e-e/239 13I2011 BOP s.c., http://www.bop.com.pl



240 R. Puzyrewski and K. Tesch

The averaged Uz component disappears in conservation equations. This is

due to the asymmetry of Uz:

1

h

∫ h
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Introducing the average Ũϕ=
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dŨ2
r

dr
=Crr

1

2

dŨ2
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In the above relations the coefficients, Crr, Cϕϕ, Crϕ, Cϕr are introduced. They

are also called Coriolis coefficients and they allow us to improve the following

estimates:

Ũ2r ≈ Ũ
2

r , Ũ
2
ϕ≈ Ũ

2

ϕ, Ûr ≈ Ũr,
ˆ̃
Ur ≈ Ũr (8)

Without simplifications it is possible to introduce averaged wall stresses:
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The system of equations for the 1D model can now be written as:
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Ũ2ϕ
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2τr
h
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(
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The signs of stresses τr oraz τϕ are included in the above system, see Figure 2. This

is not true for the velocity component. As can be seen in Figure 2 we have Ur < 0

and Uϕ > 0. The velocity vector fields of velocity components in the transverse

cross section of the disc slit are shown in Figure 3.

To estimate stress τ components we take advantage of the following

proportions τr ∼ Ũrh
−1, τϕ ∼ (Ũϕ − ωr)h

−1. Introducing the velocity profile

coefficients kr and kϕ the stress components can be written as τr =µ
∂Ur
∂z
|z=0,h=

µkrh
−1Ũr(r), τϕ = µ

∂
∂z
(Uϕ−ωr)|z=0,h = µkϕh

−1(Ũϕ−ωr) = µkϕh
−1Us(r). For
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Figure 3. Velocity field in transverse cross section

the circumferential velocity component we have Uϕ=ωr+Us(r) as can be seen in

Figure 3b. It can be easily checked that for the parabolic velocity profile the

velocity profile coefficient kr,ϕ = 6. This is true for laminar flows in straight

channels.

In the equation system (11) we have 6 coefficients. Four of them are of the

C- and two of the k-type. It is impossible to calculate these coefficients without

knowing the velocity profiles a priori. The equations of motions limit the number

of coefficients in Equation (11b). Multiplying this equation by 2πr2h we have

2πrhρŨr(CrϕrdŨϕ+CϕrŨϕ) = −4πr
2τϕdr. This further leads to a momentum

conservation equation under the condition that Cϕr =Crϕ=C. Then:

mC

∫ R

rw

d
(
rŨϕ

)
=4π

∫ R

rw

r2τϕdr (12)

where m= ρQ stands for the mass flow rate. Assuming that kϕ is constant, the

integral form of the angular momentum conservation equation is:

m
((
RŨϕ

)
0

−
(
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)
w

)
=
4Kϕπµ

h

∫ R

rw

r2Us(r)dr (13)
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where Kϕ = kϕC
−1. The change of the angular momentum between inlet (sub-

script 0) and outlet (subsript w) equals the momentum captured by means of

shear stresses on discs. This condition allows us to reduce the number of coeffi-

cients in the momentum conservation equation towards ϕ direction. We have now

one coefficient Kϕ.

Equation (11b) in the following form:

ρ

(
RUq

r

(
ω+
dUs(r)

dr

))
+
RUq (ωr+Us(r))

r2
=
2KϕµUs(r)

h2
(14)

is integrable and gives an analytical solution for Us(r):

Ũϕ=ωr+
R

r
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2−R2)

ρh2RUq
+
Rρωh2Uq

rµKϕ

(
1−exp

µKϕ(r
2−R2)

ρh2RUq

)
(15)

with an initial condition Us(R) =Us0. We have two special cases here for Ũϕ. If

µKϕ→ 0, which corresponds to an inviscid flow, then Ũϕ→ (Us0+ωR)Rr
−1. The

second case is when µKϕ→∞ which corresponds to a creeping flow. Then, we

have Ũϕ→ωr which describes a motion analogical to the motion of a solid.

Equation (11a) contains three coefficients Crr, Cϕϕ, kr. Further reduction is

possible Crr =Cϕϕ=Cr but it reduces the degree of freedom in terms of matching

1D and 3D results. We can rewrite Equation (11a):

Crρ

(
Ũr
dŨr
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−
Ũ2ϕ

r

)
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dp
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+
2µkrŨr
h2

(16)

This equation allows integrating p analytically together with the boundary

condition, p= p0. Without prejudice to generality it can be assumed that p0=0.

It is possible to introduce τr and τϕ for the average trajectory. This is true

under the condition that the directions of τr oraz τϕ are taken into consideration:

τr = τ

∣∣∣Ũr
∣∣∣
U
= τ

∣∣∣Ũr
∣∣∣

√
Ũ2r + Ũ

2
ϕ

, τϕ= τ
Ũϕ

U
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Ũ2r + Ũ

2
ϕ

(17)

The location of stresses inside the channel is shown in Figure 3 with respect to

the coordinate system r and ϕ. Further we have:

ρ

(
CrrŨr

dŨr
dr
−Cϕϕ

Ũ2ϕ

r

)
=−
dp

dr
+
2τ
∣∣∣Ũr
∣∣∣
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√
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2
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(18a)

ρ
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ŨϕŨr

r
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2τŨϕ

h

√
Ũ2r + Ũ

2
ϕ
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Eliminating Ũϕ=
√
U2− Ũ2r from the above system one can see that:

dp

dr
=
ρŨ2r
r
+
2τ
∣∣∣Ũr
∣∣∣

hU
(19a)
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d

dr
ln(Ur)=−

2τ

ρhUŨr

(
1−
Ũ2r
U2

)
(19b)

Alternatively, the second equation can be also written as:

dU

dr
+
U

r
=−

2τ

ρhŨr

(
1−
Ũ2r
U2

)
(19b′)

The shear stress τ =
√
τ2r +τ

2
ϕ may be expressed as:

τ =
µ

h

√
k2r Ũ

2
r +k

2
ϕ(Ũϕ−ωr)

2 (20)

4. 3D calculations

Example 3D calculations were performed within a stage of the Tesla turbine.

The geometry of a disk was taken into consideration. The outlet radius R=0.06m,

inlet radius rw =0.0075m, disk slit height h=0.001m, angular velocity ω=10s
−1.

The density of water ρ=1000kgm−3 and molecular velocity µ=0.001kgm−1s−1.

It was only 1
10

th of the original geometry that was considered. This is due

to the periodicity of the geometry and the boundary condition. The steady state

equation system (N-S) was solved by means of the Finite Volumes Method by

commercial code CFX. The flow was laminar because of a small Reynolds number

(Re=500 at the inlet).

4.1. Boundary conditions

The boundary conditions were the following:

• Inlet: The velocity components in steady state coordinates were: Uz = 0,

Ur =−0.5ms
−1, Uϕ=1ms

−1 (Us=0.4ms
−1).

• Outlet: Constant pressure distribution was prescribed in rotating coordi-

nates. The pressure was set equal to the atmospheric pressure.

• Periodicity: The surfaces which were created by sectoring of the full cylinder

were identified as periodic surfaces. Periodicity is understood here as

rotation of 36◦.

• Walls: The upper and lower surfaces (disks) were treated as impenetrable,

non-slip walls in rotating coordinates.

4.2. Discretisation

The geometry was discretised by means of tetrahedral and prismatic

elements. The mesh was unstructured and composed of ∼ 0.7 million elements.

Prismatic elements are placed near the wall where high velocity gradients are

expected, see Figure 4. Mesh statistics are presented in Table 1.

Table 1. Mesh statistics

Element type Number

Tetrahedral 281540

Prismatic 420900

Total 702440
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Figure 4. Mesh

Figure 5 presents the velocity component Ur distribution along the slit

height for different radii. The average value of this component increases due to

a decrease in the cross section according to Equation (5). Characteristic local

maximal values may be observed near the walls starting from r ≈ 0.02m. They

come about because the mass flow rate is shifted from the channel centre towards

the walls. This is confirmed by a pressure difference in the transverse cross-section

which is higher in the channel centre and lower near the walls.

The axial velocity follows this tendency of pressure difference, see Figure 6.

The visible asymmetry of Uz distribution is due to mass transport from the

channel centre towards the walls. This explains local maximal values of Ur. The

asymmetry of Uz also justifies the results of averaging of Equations (6).

Figure 5. Ur distribution

5. 1D model calibration

By calibration of a 1D model by a 3D model we mean such a choice of

coefficients Cr, kr, Kϕ which allows for an accuracy good enough to match

between these two models. We consider here the velocity components and pressure

difference ∆p as a function of radius. By good enough accuracy one understands

the accuracy in the sense of engineering intuition such as it is shown in figures
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Figure 6. Uz distribution

Figure 7. Uϕ distribution

showing a comparison of results between 1D and 3D models. The radial component

Ur comes in both the 1D and 3D models from the mass conservation equation.

This gives very good agreement of the average value of this component.

Figures 8 and 9 show a comparison of the averaged Uϕ component and

pressure difference ∆p. The assumed values of the 1D model coefficients were:

kr =6.0, kϕ=4.476402, Crϕ=Cϕr =1.0, Kϕ=4.476402, Cr =Crr =Cϕϕ=1.165.

It should be borne in mind that the pressure difference cannot exceed certain

values related to the phenomenon of cavitation. For the 3D calculation the

parabolic velocity profile was prescribed on the outer radius.

6. Efficiency

In order to define the efficiency of power collection from the flow we need

to bring the system of Equations (11) to the form of energy equation. To do this

we multiply Equation (11a) by Ur and Equation (11b) by Uϕ. After summation

we have:

ρUr
d

dr

(
U2

2
+
p

ρ

)
=
2

h
(τrUr−τϕUϕ)< 0 (21)
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Figure 8. Uϕ distribution

Figure 9. ∆p distribution

It can be seen that for Ur < 0, dr < 0 and negative left hand side of the above

equation we have a decrease in total energy. For the effect of power extraction

(turbine effect) we must have:

d

(
U2

2
+
p

ρ

)
< 0 (22)

By means of mass conservation equation 2πrhρUr = const. it is possible to find

the power difference between inlet radius R and outlet radius rw:

∆N =2πRhρ|Ur|

(
U2

2
+
p

ρ

)∣∣∣∣
R

−2πrwhρ|Ur|

(
U2

2
+
p

ρ

)∣∣∣∣
rw

=

=−4π

∫ R

rw

r(τrUr−τϕUϕ) dr > 0

(23)
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This difference is due to viscosity which is responsible for wall stress generation on

disk walls. It is only a portion of this power difference that is used in an effective

form (extracted by disks). This part can be expressed by an angular momentum

for two disk surfaces:

M =2

∫
2π

0

∫ R

rw

r2τϕdϕdr (24)

which gives the effective power

∆Ne=Mω=
4πµkϕω

h

∫ R

rw

r2
(√
U2−U2r −ωr

)
dr (25)

The rest of the power due to the total energy difference is the dissipation power

∆Nd because of viscosity ∆Nd=∆N−∆Ne. Efficiency can now be defined as the

following ratio:

ηe=
∆Ne
∆N

(26)

It should be stressed that the referential power is not the power of an ideal

(inviscid) process as it is in blade turbines. This is simply because for an ideal

process one cannon obtain power from Tesla turbine. The distribution of efficiency

for three different disk slit thickness values is shown in Figure 10. The flatness of

this distribution as a function of ω is visible. However, the level of the horizontal

asymptote depends strongly on disk slit thickness, h.

Figure 10. Efficiency

The influence of angular velocity ω on the maximal value is small. It can

only by observed on further significant decimal places. Within the range of the

graph in Figure 10 maximal values are not visible.

7. Conclusions

• It is possible to calibrate the 1D model on the basis of 3D calculations.

When the 1D model is calibrated it allows calculating the efficiency of

energy extraction from the flow to disks in a very simple way.
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• Efficiency strongly depends on the disk slit thickness. Relatively high values

of efficiency can be obtained for a very low thickness. Unfortunately, this

leads to low power of a stage which is proportional to the mass flow rate.
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