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Abstract: This paper is devoted to the problem of energy dissipation and it concerns unsteady
friction modeling of the liquid flow in hydraulic lines. One dimensional (1D) quasi-steady model
of energy dissipation is in common use. It means that the loss of energy is estimated by the
Darcy-Weisbach formulae. Such an approximation is close to reality only for slow changes of
the velocity field in the pipe cross-section. In case of fast changes, like fast transients, e.g.
water hammer, it fails. In this work the wall shear stress τ (defined as an effect of unsteady
fluid friction) is presented as a sum of quasi-steady and unsteady components. The unsteady
component of the wall shear stress is modeled as an convolution of the local fluid acceleration and
a weighting function w(t). The weighting function, in general, makes an allowance for a relation
of the historic velocity changes and the unsteady component of the wall shear stress. Primitive
weighting functions have usually very complicated structures, and what is more, they make it
impossible to perform an efficient simulation of dynamical runs. In this paper, a new weighting
function is presented as a sum of exponential components in order to enable efficient calculation
of the unsteady component wall shear stress. A few examples of the new effective method of
unsteady wall shear stress simulations, in case of the water hammer, are presented. The results
of the calculations are compared with experiments known in literature and satisfying results are
obtained.

Keywords: unsteady pipe flow, unsteady friction, weighting function

1. Introduction

The contemporary coverage of the unsteady flow in the research of pressur-
ized hydraulic conduits is very extensive and includes without being limited to
such issues as the mechanical energy dissipation of fluid, fluid structure interaction
or column separation due to cavitation.
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This paper is devoted to the first problem and it concerns the modeling
of unsteady friction losses for predicting the pressure pulsation in pipes through
numerical simulations. The commonly used quasi-steady, one-dimensional model
of friction losses based on the Darcy-Weisbach formula can be used in the case of
slow changes in a fluid velocity field in a pipe cross-section. However, it fails
in the case of a fast-changing flow simulation e.g. in the case of the water
hammer simulation the received results significantly differ from the results of
experimental studies.

The models of unsteady friction losses can be divided into two groups.
The first group consists of models based on the instantaneous values of velocity
and acceleration. The forerunner in this group was Daily et al. [1]. He presented
a model in which the term associated with the unsteady shear stress at pipe wall
is proportional to the acceleration of liquid. This model was later developed by:
Cartens and Roller [2], Safwat and Polder [3], Shuy and Apelt [4]. The model
of Brunone et al. [5] in which the wall shear stress is proportional not only
to the local derivative of the flow velocity but also to its convective derivative
falls into this group as well. This model then underwent further modifications
(Vitkovsky et al. [6], Bughazem and Anderson [7], Bergant et al. [8]), mainly by
adjusting the coefficients of the local and convective derivatives. On the basis of
the dynamic boundary layer thickness Hino et al. [9] presented a semi-empirical
dependence on the instantaneous coefficient of friction losses for the oscillatory
turbulent flow case.

The second group consists of models based on the flow history. The term for
the unsteady wall shear stress (and hence the instantaneous coefficient of friction
losses) depends on the frequency of changes in the flow and on the pressure. These
models reflect relatively well not only the degree of attenuation of the pressure
waves but also their shape (in terms of the time course). The forerunner in this
group of models was Zielke [10], who presented the instantaneous coefficient of
friction losses in the form of an integral convolution of the mean local acceleration
of liquid and the weighting function w(t):

λn=
32ν
D v2

t∫

0

∂v

∂t
(u) w(t−u) du (1)

where

ν – kinematic viscosity;
D – inner diameter of pipe;
v – instantaneous mean flow velocity;
t – time;
u – time, used in the convolution integral;

w(t) – weighting function.

This dependence is correct for any changes in the average flow velocity in
the pipe cross-section. This model has high time-consuming numerical calculations
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due to continuous referring to the flow velocity history. Therefore, it has been
simplified by the introduction of the so-called effective weighting functions. It was
Trikha [11] who first presented an effective expression of Zielke’s weighting model,
but this relationship has a limited range of applications. Then, new computing
models, based on the approximation of Zielke’s weighting function were created
by Kagawa et al. [12], Suzuki et al. [13] and Schohl [14].

However, the presented effective weighting functions still do not cover the
whole domain of the dimensionless time of practical engineering applications
(especially in the case of a very fast transient flow of a low viscosity liquid in large
diameter pipes). Accordingly, a new effective weighting function for the laminar
flow is presented in this work. The function has significantly extended the scope of
practical applications (the range of dimensionless time is: 10−9≤ t̂≤∞). The most
strict model (Zielke [10]) has been used as a base for the process of approximation.

Using the method of characteristics (MOC) for a solution of the equations
of motion and continuity there are a few examples of the application of the new
weighting function for the waterhammer phenomenon. The results of numerical
calculations are compared with the results of experimental studies using the
classical experiment data by Holmboe and Rouleau [15] and the experimental
data presented by Adamkowski and Lewandowski [16] achieving good agreement.

2. Fundamental equations

The unsteady flow in liquid pipes is often represented by two 1D hyperbolic
partial differential equations. The momentum and continuity linearized equations
are [17–19]:

ρ
∂v

∂t
+
∂p

∂x
+
2
R
τ =0 (2)

∂p

∂t
+ρc2

∂v

∂x
=0 (3)

where

t – time;
x – the distance along the pipe axis;

v= v(x,t) – the average value of velocity in the cross-section of a pipe;
p= p(x,t) – the average value of pressure in the cross-section of a pipe;

τ – the shear stress at the pipe wall;
ρ – the density of liquid (constant);
R – the inside radius of a pipe;
c – the pressure wave speed.

In the unsteady flow in a pipe, the instantaneous wall shear stress τ may
be regarded as the sum of two components [10, 18, 19]:

τ =
ρ ·v · |v|

8
λ

︸ ︷︷ ︸

τq

+
2µ
R

t∫

0

w(t−u)
∂v

∂t
(u) du

︸ ︷︷ ︸

τu

(4)
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where

λ – the Darcy-Weisbach friction factor;
w(t) – the weighting function;
µ – the dynamic viscosity;
u – the time, used in a convolution integral.

The first component in Equation (4) τq presents the quasi-steady state of the
wall shear stress, the second τu is the additional contribution due to unsteadiness.
Equation (4) relates the wall shear stress to the instantaneous average velocity
and to the weighted past velocity changes.

Among the methods which enable to resolve the system of the above
equations, particular attention should be paid to the method of characteristics
(MOC), which perfectly interprets the essence of the natural phenomena of
a transient flow, and at the same time is characterized by fast convergence,
easiness to take into account various boundary conditions and the high accuracy of
calculation results. With its help one can easily solve a system of partial differential
equations of a quasi-linear hyperbolic type (2)–(3) [8, 12, 14, 20, 21].

3. Weighting function models

Zielke presented the weighting functions for a laminar flow [10]:

w( t̂)=
6∑

i=1

mit̂
(i−2)/2, for t̂≤ 0.02 (5a)

w( t̂)=
5∑

i=1

e−ni ·̂t, for t̂ > 0.02 (5b)

where t̂= ν · t/R2 – the dimensionless time, and:
m1=0.282095; m2=−1.25; m3=1.057855;
m4=0.9375; m5=0.396696; m6=−0.351563;
n1=26.3744; n2=70.8493; n3=135.0198;
n4=218.9216; n5=322.5544.

Numerical calculations of the time-dependent component of the wall shear
stress τu (the second component in Equation(4)) can be conducted using the
first-order differential approximation [10, 20]:

τu=
2µ
R

k−1∑

j=1

(vi,j+1−vi,j) ·w
(

(k−j)∆t−
∆t
2

)

=

=
2µ
R

k−1∑

j=1

(vi,k−j+1−vi,k−j) ·w
(

j∆t−
∆t
2

)
(6)

where

j – the number of the computational time step changing from 1 to k for k≥ 2;
∆t – the time step in MOC.
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It is very time consuming to determine the wall shear stress using the
above formula (6). Trikha was the first to develop an effective method of solving
the integral convolution [11]:

τu≈
2µ
R

n∑

i=1

yi(t+∆t) (7)

yi(t+∆t)= yi(t) ·e
−ni

ν

R2
∆t+mi [v(t+∆t)−v(t)] (8)

where ni and mi are constants of the effective weighting function.
Next, Kagawa et al. [12], Suzuki et al. [13] and Schohl [14] have improved

this method:

• the equation of Kagawa et al.:

yi(t+∆t)= yi(t) ·e
−ni

ν

R2
∆t+mi ·e

−ni
ν

R2
·
∆t

2 · [v(t+∆t)−v(t)] (9)

• Schohl’s equation:

yi(t+∆t)= yi(t) ·e
−ni

ν

R2
∆t+
mi

(

1−e−ni
ν

R2
∆t
)

R2

niν∆t
· [v(t+∆t)−v(t)] (10)

The new effective method (7) however, requires that the weighting function
has to be written as a finite sum of exponential expressions:

w( t̂)=
k∑

i=1

mie
−ni ·̂t (11)

The number of exponential terms that make up the final form of the effective
weighting function affects the range of its applicability as well as its degree of
fit to the classical function (according to Zielke). Over the past 35 years many
authors have presented their effective weighting functions for the laminar flow
case. Table A1 (in Appendix) presents the ranges of applicability of the effective
weighting functions for a laminar flow, while their coefficients estimated are in
Table A2 (in Appendix).

The courses of laminar weighting functions are shown in Figure 1.

4. Improved weighting function

In a view of the need to extend the applicability of the effective weighting
function, which has been noted by, inter alia, Vardy and Brown [22], a new model
which is the sum of exponential expressions is presented in the next section of
this paper.

The new model is consistent with the classical function by Zielke in the
following range of applicability: 10−9≤ t̂ <∞. The final form of the new function
consists of 26 exponential expressions. Since the value of Zielke’s weighting
function model for the dimensionless time t̂ > 0.02 is determined from the following
formula:

w( t̂)=
5∑

i=1

e−ni t̂ (12)

where n1=26.3744; n2=70.8493; n3=135.0198; n4=218.9216; n5=322.5544;

tq314a-e/179 13I2011 BOP s.c., http://www.bop.com.pl



180 K. Urbanowicz et al.

(a)

(b)

Figure 1. Comparison of laminar function runs: (a) log-linear scale, (b) log-log scale
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the first five exponential expressions were to be kept unchanged in this work (so
that a perfect fit of a new weighting function in this interval of dimensionless time
was received). It was decided to add extra similar components for the mapping
of interval 10−9 ≤ t̂ < 0.02. It was assumed that a very good accuracy would
be received by describing each dimensionless time interval 10n−1 ≤ t̂ < 10n with
three exponential expressions (the exception was the range 10−3 ≤ t̂ < 0.02, also
describing the three formulas – hence, the worst match of the new weighting
function was expected there). In each of those intervals the matching was carried
out to uniformly distribute 1000 points, which were the results obtained from
using the classic weighting function of Zielke (5).

The effective weighting function coefficients were determined by using the
LSQNONLIN function which is a module of MATLAB. The Levenberg-Marquardt
algorithm, considered as a one of the most effective minimization algorithms is
implemented in this function. It combines the linear approximation away from the
minimum and square approximation near the minimum, so that it is specialized
to the problems of the method of least squares.

Following the above outlined procedure, all the coefficients of the new
effective weighting function for a laminar flow were determined:

wapr( t̂)=
26∑

i=1

mie
−ni t̂ (13)

where

m1=1; m2=1; m3=1;

m4=1; m5=1; m6=2.141;

m7=4.544; m8=7.566; m9=11.299;

m10=16.531; m11=24.794; m12=36.229;

m13=52.576; m14=78.150; m15=113.873;

m16=165.353; m17=247.915; m18=369.561;

m19=546.456; m20=818.871; m21=1209.771;

m22=1770.756; m23=2651.257; m24=3968.686;

m25=5789.566; m26=8949.468;

n1=26.3744; n2=70.8493; n3=135.0198;

n4=218.9216; n5=322.5544; n6=499.148;

n7=1072.543; n8=2663.013; n9=6566.001;

n10=15410.459; n11=35414.779; n12=80188.189;

n13=177078.960; n14=388697.936; n15=850530.325;

n16=1835847.582; n17=3977177.832; n18=8721494.927;

n19=19120835.527; n20=42098544.558; n21=92940512.285;

n22=203458923.000; n23=445270063.893; n24=985067938.878;

n25=2166385706.058; n26=4766167206.672.
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Figure 2. Comparison of weighting functions for laminar flow – relative error percentage

In Figure 2, a comparison of the new weighting function (13) with its
inefficient counterpart (Zielke model) is presented in the form of a relative
percentage error determined from the following relationship:

Rerror=
wapr−w

w
·100% (14)

In this figure the best known effective functions from the literature are also
presented (Kagawa et al. [12], Vitkovsky et al. [21]) in order to demonstrate the
degree of matching.

A similar weighting function for a turbulent flow with an extended range
of applicability will be presented in the next paper.

5. Computation example

In order to compare the accuracy of unsteady (with the use of Zielke’s and
new weighting function) and quasi-steady models of friction in relation to the
experimental data, simulations of a simple waterhammer case (tank – long liquid
line and cut-off valve) were conducted.

The computed results were compared with the experimental data reported
by Holmboe and Rouleau [15] and Adamkowski and Lewandowski [16].
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5.1. Holmboe and Rouleau experiment [15]

Holmboe with Rouleau ran their tests on a copper tube with a radius
of 0.0127m and a length of 36.09m connected upstream to a tank which was
maintained at a constant pressure by compressed air. The liquid used in the
experiment was oil with a viscosity of 39.67 ·10−6m2/s. The measured pressure
wave speed was 1324.36m/s and the initial flow velocity was 0.128m/s (Re=82).
The downstream valve was rapidly closed in the pipe line during the flow. The
pressure fluctuation was measured at the line endpoint (near the valve). It follows
from the above parameters that it is a case of a laminar flow. The two models of
unsteady hydraulic losses in numerical calculations were used: the Zielke model
Equations (5)–(6) and a new effective model, Equations (9) and (13). In addition,
a calculation with the use of a quasi-steady model was conducted. The results of
the simulations and experimental data are shown in Figure 3.

Figure 3. Fluctuations of pressure at line endpoint (Re=82), Holmboe and Rouleau
experiment

It is clearly seen that the calculation using unsteady friction models is much
closer to the experimental data. Therefore, in further calculations the unsteady
friction models are used instead of the quasi-steady formulae.

5.2. Adamkowski and Lewandowski experiment [16]

Adamkowski’s and Lewandowski’s experiments were conducted at a test rig
specially designed in order to investigate unsteady pipe flows. Its main component
was the 98.11m long copper pipe with the internal diameter of 0.016m and wall
thickness of 0.001m. The pipe was rigidly mounted to the ground using bearings
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in order to minimize its vibrations. A quick-closing, spring driven ball valve
was installed at one end of the pipe. The initial conditions were defined by the
upstream reservoir pressure head and initial flow velocity in the pipeline. During
the tests the water temperature was 22.6◦C and the kinematic viscosity coefficient
for these conditions was 9.493 ·10−7m2/s. One run was selected for the purpose of
verifying the new unsteady friction model. The initial flow velocity was 0.066m/s
(Re = 1100). The results of the simulations and experimental data are shown in
Figure 4.

Figure 4. Fluctuations of pressure at line endpoint (Re=1100), Adamkowski and
Lewandowski experiment

It is clear from the above graph that the use of the new efficient weighting
function presented in this study (13) ensures the compatibility of results with
those obtained from the use of the classical model presented by Zielke.

6. Summary

The main drawback of the classical model presented by Zielke describing the
unsteady hydraulic resistance is its inefficiency. In each successive time step more
resources are required to the computer’s memory (this is due to augmentations in
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the quantities of components that make up the sum of the solution of the integral
convolutions (6), as well as to the expansion of the matrix which stores information
about past velocity changes v(t)). Often, after the time when the entire memory
of the computer is used, it comes to a forced interruption of the performance
simulation. Hence, the classic weighting functions that make the obtained results
coincide with the results of the experimental studies, and even today, with the
tremendous development of the computer technology, fit only to simulate very
short transients.

The known efficient solution of the integral convolution [12, 14] allowed,
in case of using a weighting function as a finite sum of the exponential terms
(mie−ni t̂), a significant reduction in the computation time and reducing the
demand for the operational memory. What is important in increasing the number
of time steps calculation, computation time increases linearly, as is shown in
Figure 5 (calculations were carried out on a laptop computer – Compaq Presario
2100 mobile AMD AthlonTM XP2200+, 192 MB RAM). It was also the impact of
the number of the weighting function terms on the time of calculation that was
investigated. The two cases are presented in Figure 5: 10 terms and 26 terms

Figure 5. Time of numerical calculations, depending on the number of time steps used
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function. The increase in the time consumption for these cases is very small in
relation to the classical model.

Numerous numerical tests, carried out by the authors have revealed that
the simulation results using models with small ranges of applicability (e.g. by
Trikha) often deviate from the experimental results (as a result of going beyond
the scope of applicability of the used weighting function). Professional software,
which may in future be based on the weighting function presented in this work
must prevent crossing outside the range of its applicability – by informing the
user about the need to change the numerical parameters (e.g. the number of the
simultaneously observed pipe cross sections).

The presented new weighting function characterized by an extended range
of applicability in the domain of dimensionless time are suitable for the efficient
modeling of transient laminar flows. The studies show that the results of the
numerical simulations, in which a new weighting function was used, overlap with
those that use the classic Zielke model.

In the next stage of research the usefulness of the new weighting function
presented in this paper to simulate transients with cavitation should be also
explored.
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