
TASK QUARTERLY 14 No 4, 397–404

LOOP OPTIMIZATION IN MANAGED CODE

ENVIRONMENTS WITH EXPRESSIONS

EVALUATED ONLY ONCE

ADAM PIÓRKOWSKI AND MAREK ŻUPNIK

Department of Geoinfomatics and Applied Computer Science,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Cracow, Poland

pioro@agh.edu.pl

(Received 3 December 2010; revised manuscript received 16 December 2010)

Abstract: This paper is concerned with optimizing code execution in virtual machine envi-
ronments. Code motion is one of the many optimization techniques. We considered a special
case of optimization – a loop containing expressions that can be effectively evaluated once.
A solution for this case is discussed and two algorithms are proposed. Experimental results for
Java VM, MS .NET and Mono are shown here in order to assess the performance of the proposed
algorithms.

Keywords: loop optimization, component platforms, compile-time optimization, compilers

1. Introduction

Component technologies have become a modern method of software devel-
opment. These technologies have gained popularity due to their numerous ad-
vantages. One of these is code reuse, i.e. the ability to use the same code on
various platforms. Such portability enables, among other things, the construction
of heterogeneous distributed environments for domains that require substantial
computing power.

Certain component software solutions require high computing power to
simulate for example important geoseismic phenomena [1, 2]. The simulation
process can take up to several weeks. Other solutions require high computing
power to calculate the response as quickly as possible [3]. In all such applications,
it is vital to optimize the execution time.

2. Optimization techniques

Leading component environments, such as Java Virtual Machine, the .NET
Framework and Mono, use dynamic translation called Just-in-Time [4, 5]. The

tq414n-e/397 24III2011 BOP s.c., http://www.bop.com.pl



398 A. Piórkowski and M. Żupnik

code is compiled into bytecode (in the case of Java, and into the Common Interme-
diate language (CIL) in the case of .NET and Mono) and subsequently translated
on the fly into processor instructions by the virtual machine. Unlike compilers,
which employ Ahead-of-Time optimization, virtual machines optimize the code
during runtime. There are numerous optimization algorithms [6, 7]. Commercial
environments do not reveal the principles of their operation, the Mono environ-
ment, however, is an open-source project, where individual algorithms can be
switched on or off [8]. Users can select a set of algorithms to be used – peephole
postpass, branch optimizations, inline method calls, constant folding, constant
propagation, copy propagation, dead code elimination, linear scan global register
allocation, conditional moves, emitting per-domain code, instruction scheduling,
intrinsic method implementations, tail recursion and tail calls, loop-related op-
timizations, leaf-procedure optimizations, SSA-based partial redundancy elimina-
tion and the removal of array-bound checks [9]. There are certain hardware-specific
optimizations that use, for instance, SSE2 instructions and other processor fea-
tures.

One of the loop related optimizations is code motion [10]. This technique
consists in moving the loop-invariant computations in front of the loop [11–13].
The moved code yields the same result regardless of how many times the loop is
executed. An example of this case is presented in Table 1.

Table 1. An example of code motion

CM1 – Original code CM2 – Optimized code

t = 10;

for(i=0;i<N;i++)

{

a = t * 10;

b = 20 * i;

y+= a * b;

}

t = 10;

a = t * 10;

for(i=0;i<N;i++)

{

b = 20 * i;

y+= a * b;

}

The original code (CM1) contains three lines in the loop. The first line
calculates the value of one of the variables. This expression can change the value
of the variable ‘a’ only once, at the start of loop execution, and therefore it can
be evaluated once, before the loop is executed (cf. CM2).

3. The idea of moving expressions evaluated only once

out of the loop

A specific case of a loop code is presented in Table 2, example A1. One of
the variables (‘a’) is changed only once during the first iteration. This variable
cannot be moved by a code motion algorithm, because it is used by the previous
expression in the loop, when its value has not been changed yet. For all subsequent

tq414n-e/398 24III2011 BOP s.c., http://www.bop.com.pl



Loop Optimization in Managed Code Environments. . . 399

iterations, this variable is independent of all other variables and its value remains
the same. The equivalent code (Table 2, example B) contains a similar expression,
which is related to the loop counter, and hence cannot be optimized.

Table 2. Source code for optimization and equivalent unoptimizable code

A1 – original code B – equivalent code

t = 10;

for(i=0;i<N;i++)

{

b = 20 * i;

y+= a * b;

a = t * 10;

}

t = 10;

for(i=0;i<N;i++)

{

b = 20 * i;

y+= a * b;

a = i * 10;

}

The presented code (A1) can be optimized using two different methods
(cf. Table 3). The first method (A2) consists in adding a flag that allows to
execute the considered line only once (this requires a conditional instruction). The
second method (A3) consists in rearranging the loop into two blocks – the first
one, containing the line in question, is executed only once, whereas the second
block is a loop that takes care of the subsequent iterations, where the line in
question is absent. In addition, owing to its structure, the second method (A3)
enables multithreading (if possible), because it does not contain any thread-critical
sections.

The proposed algorithms can be manually applied to the source code.

Table 3. Proposed optimizations

A2 – optimization A3 – optimization
A1 – original code with a flag by the rearrangement

of the loop

t = 10;

for(i=0;i<N;i++)

{

b = 20 * i;

y+= a * b;

a = t * 10;

}

t = 10;

int flag = 0;

for(i=0;i<N;i++)

{

b = 20 * i;

y+= a * b;

if (flag == 0)

{

a = t * 10;

flag++;

}

}

t = 10;

i=0;

{

b = 20 * i;

y+= a * b;

a = t * 10;

}

for(i=1;i<N;i++)

{

b = 20 * i;

y+= a * b;

}

tq414n-e/399 24III2011 BOP s.c., http://www.bop.com.pl



400 A. Piórkowski and M. Żupnik

4. Performance results of the proposed algorithms

To assess the performance of the proposed algorithms, several tests were
carried out in two testing environments – E1 and E2.

The first environment (E1) was a personal computer:
• CPU: Intel Pentium M 1.5GHz,
• RAM: 1024MB DDR PC2100 (133MHz).

The second environment (E2) was a workstation:
• CPU: Pentium(R) Dual-Core CPU E6500 @ 2.93GHz,
• RAM: 2GB DDR2-667 (333MHz).

The performance of the proposed algorithms was measured for the following
operating systems:
• Linux Ubuntu 10.04,
• MS Windows XP (SP3).

The following component environments were installed:
• .NET 2.0 & 4.0,
• Sun Java JRE 1.6.20, tested with and without the -server option,
• Mono 2.6.4 (WinXP) and 2.4.4 (Linux), gmcs compiler.

Each loop was executed 100000 times. The priorities of the tested threads
were increased to avoid preemptions during the run. Each test was repeated several
times, and the minimum value was taken. We used time measurement techniques
that provide sufficient measurement accuracy of ±1ms.

The default optimization level for the .NET and Mono environments is
geared towards generating the fastest code, similarly to the O2 optimization
level for C compilers. The Java environment offers the -server option, which
performs optimization method testing, and therefore it is substantially more time-
consuming, but only at the beginning.

The results observed in the .NET 2.0 and .NET 4.0 environments were
identical. It was observed that the default settings in Mono produce very good
results. The results obtained with the default settings were very similar to those
obtained using the single-loop optimization method, therefore we present only the
results for the default case.

In the first step, the performance of a standard code motion algorithm was
measured. The results of this test are shown in Table 4. Figure 1 presents these
results in the form of a chart.

Loop execution times measured during the tests for the proposed algorithms
are collected in Table 5. Figure 2 shows the loop execution times for the three
versions of the code (A1, A2 and A3). Figure 3 presents time savings achieved by
the proposed algorithms (A2 and A3).

We observe that although the original code (CM1) and the equivalent code
(CM2) are very similar, their loop execution times differ significantly. Therefore,
despite the fact that virtual machines effectively optimize the original code, further
improvement can be obtained by employing manual optimization (CM2).

tq414n-e/400 24III2011 BOP s.c., http://www.bop.com.pl



Loop Optimization in Managed Code Environments. . . 401

Table 4. Loop execution times for the code motion algorithm

loop time [s]
environment

CM1 CM2

.NET 2.0 0.3354 0.2942

Mono 2.6.4 0.3414 0.2844
WinXP

Java 1.6.0 20 0.6232 0.4582

E1 Java 1.6.0 20 S 0.1958 0.0993

Mono 2.4.4 0.3684 0.3139

Linux Java 1.6.0 20 0.6721 0.4947

Java 1.6.0 20 S 0.2158 0.1074

.NET 2.0 0.1067 0.1029

Mono 2.6.4 0.1215 0.0916
WinXP

Java 1.6.0 20 0.2049 0.1474

E2 Java 1.6.0 20 S 0.0695 0.0438

Mono 2.4.4 0.1152 0.0910

Linux Java 1.6.0 20 0.1928 0.1474

Java 1.6.0 20 S 0.0697 0.0437

Figure 1. Loop execution times for the code motion algorithm

The proposed algorithm A3 was effective in all the tested cases. In several
cases, it resulted in time savings exceeding 50% for the presented synthetic code.
The algorithm A2 gave less satisfactory results, particularly in the case of the
.NET environment where loop execution times were increased by 20%.

tq414n-e/401 24III2011 BOP s.c., http://www.bop.com.pl



402 A. Piórkowski and M. Żupnik

Table 5. Loop execution times for the proposed algorithms

loop time [s] ratio [%]
environment

B A1 A2 A3 A2/A1 A3/A1

.NET 2.0 0.3834 0.3101 0.3499 0.2869 112.83% 92.52%

Mono 2.6.4 0.3576 0.3645 0.3529 0.2874 96.82% 78.85%
WinXP

Java 1.6.0 20 0.5794 0.5092 0.4715 0.4487 92.60% 88.12%

E1 Java 1.6.0 20 S 0.3137 0.1986 0.0992 0.0964 49.95% 48.54%

Mono 2.4.4 0.3579 0.3609 0.3547 0.2860 98.28% 79.25%

Linux Java 1.6.0 20 0.5829 0.5101 0.4735 0.4500 92.82% 88.22%

Java 1.6.0 20 S 0.2908 0.1986 0.0992 0.0964 49.95% 48.54%

.NET 2.0 0.1297 0.1099 0.1211 0.1028 110.19% 93.54%

Mono 2.6.4 0.1184 0.1419 0.1090 0.0923 76.81% 65.05%
WinXP

Java 1.6.0 20 0.1837 0.1534 0.1571 0.1474 102.41% 96.09%

E2 Java 1.6.0 20 S 0.0931 0.0679 0.0430 0.0437 63.33% 64.36%

Mono 2.4.4 0.1416 0.1926 0.1095 0.0919 56.85% 47.72%

Linux Java 1.6.0 20 0.1133 0.0681 0.0431 0.0438 63.29% 64.32%

Java 1.6.0 20 S 0.1199 0.0682 0.0433 0.0439 63.49% 64.37%

Figure 2. Loop execution times for the codes A1, A2 and A3

An interesting observation was made with regard to the performance of the
code motion, i.e. that manually performed code motion is effective in the three
aforementioned environments with Just-in-Time compilers.

tq414n-e/402 24III2011 BOP s.c., http://www.bop.com.pl



Loop Optimization in Managed Code Environments. . . 403

Figure 3. Time savings achieved by the algorithms A2 and A3

5. Conclusions

This article is concerned with the problem of numerical code optimization
for leading virtual machine environments. We prove that manually performed code
motion can be effective for these platforms. A new case of code motion, namely,
that of code containing expressions evaluated only once in a loop is examined.
This paper proposes two solutions – the first one is based on a flag-checking, the
second one – on rearranging one loop into two blocks. Careful testing revealed
that the second method was effective for all leading virtual machines. At present,
the method must be applied manually and it allows to speed up the execution
of the numerical code in specific cases, i.e. when the execution time is a crucial
factor. Automatic optimization is a direction for future work.

References

[1] Kowal A, Piórkowski A, Danek T and Pięta A 2010 Innovations and Advances in
Computer Sciences and Engineering, Springer, pp. 359–362

[2] Kowal A, Piórkowski A, Pięta A and Danek T 2009 Mineralia Slovaca, supl. Geovestnik
41 (3) 361

[3] Piórkowski A and Plodzien D 2009 16 th Conf. Computer Networks, CN 2009 (Kwie-
cień A, Gaj P and Stera P, Eds), Wisła, Poland, Springer, Berlin-Heidelberg, CCIS, 39,
pp. 225–232

[4] Hoste K, Georges A and Eeckhout L 2010 Proc. 8 th Annual IEEE/ACM Int. Symposium
on Code Generation and Optimization, Toronto, pp. 62–72

[5] Vinodh Kumar R, Lakshmi Narayanan B and Govindarajan R 2002 Proc. 9 th Int. Conf.
on High Performance Computing (HiPC-02), Bangalore, pp. 495–505

[6] Gampe A, Niedzielski D, von Ronne J and Psarris K 2010 Safe, Multiphase Bounds
Check Elimination in Java, Technical Report Dept. of Computer Science, Univ. of Texas
at San Antonio CS-TR-2010-001

tq414n-e/403 24III2011 BOP s.c., http://www.bop.com.pl



404 A. Piórkowski and M. Żupnik

[7] Gal A, Probst Ch W and Franz M 2006 Proc. 2nd Int. Conf. Virtual Execution
Environments (VEE ’06), ACM, New York, USA, pp. 144–153

[8] Kalibera T and Tuma P 2006 Formal Methods and Stochastic Models for Performance
Evaluation, LNCS, 4054 63

[9] Mono Project homepage: http://www.mono-project.com/
[10] Aho A V, Sethi R and Ullman J D 1986 Compilers: Principles, Techniques, and Tools,
Addison Wesley

[11] Song L, Futamura Y, Glück R and Hu Z 2000 IEICE Trans. Information & System
E83-D (10) 1841

[12] Song L, Futamura Y, Glück R and Hu Z 2000 Proc. IFIP Conf. Software: Theory and
Practice (16 th World Computer Congress 2000), Beijing, pp. 80–90

[13] Song L and Kavi K 2002 Proc. 5 th Int. Conf. on Algorithms and Architectures for Parallel
Processing (ICA3PP’02), pp. 0390

tq414n-e/404 24III2011 BOP s.c., http://www.bop.com.pl


