
TASK QUARTERLY 14 No 4, 377–396

VOICE COMMAND RECOGNITION USING

HYBRID GENETIC ALGORITHM

MARTA WRONISZEWSKA AND JACEK DZIEDZIC

Faculty of Technical Physics and Applied Mathematics,

Gdansk University of Technology,

Narutowicza 11/12, 80-233 Gdansk, Poland

martapad@gmail.com, jaca@kdm.task.gda.pl

(Received 10 May 2010; revised manuscript received 16 December 2010)

Abstract: Speech recognition is a process of converting the acoustic signal into a set of words,

whereas voice command recognition consists in the correct identification of voice commands,

usually single words. Voice command recognition systems are widely used in the military, control

systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for

controlling a wheelchair or operating a computer system).

This paper describes the construction of a model for a voice command recognition system

based on the combination of genetic algorithms (GAs) and K-nearest neighbour classifier (KNN).

The model consists of two parts. The first one concerns the creation of feature patterns

from spoken words. This is done by means of the discrete Fourier transform and frequency

analysis. The second part constitutes the essence of the model, namely the design of the

supervised learning and classification system. The technique used for the classification task

is based on the simplest classifier – K-nearest neighbour algorithm. GAs, which have been

demonstrated as a good optimization and machine learning technique, are applied to the feature

extraction process for the pattern vectors. The purpose and main interest of this work is to adapt

such a hybrid approach to the task of voice command recognition, develop an implementation

and to assess its performance.

The complete model of the system was implemented in the C++ language, the imple-

mentation was subsequently used to determine the relevant parameters of the method and to

improve the approach in order to obtain the desired accuracy. Different variants of GAs were

surveyed in this project and the influence of particular operators was verified in terms of the

classification success rate.

The main finding from the performed numerical experiments indicates the necessity of

using genetic algorithms for the learning process. In consequence, a highly accurate recognition

system was obtained, providing 94.2% correctly classified patterns. The hybrid GA/KNN

approach constituted a significant improvement over the simple KNN classifier. Moreover, the

training time required for the GA to learn the given set of words was found to be on a level that

is acceptable for the efficient functioning of the voice command recognition system.

Keywords: voice command recognition, genetic algorithms, K-nearest neighbour, hybrid ap-

proach
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1. Introduction

The aim of this work was to construct a model for a voice command

recognition system based on the combination of genetic algorithms and the K-

nearest neighbour classifier.

Speech recognition is a very complex task and in the last decades sub-

stantial effort has been undertaken in order to find efficient recognition meth-

ods [1]. Nowadays, real-time voice recognition systems are widely used in many

commercial electronic devices. Typically in such cases, speech recognition is user-

dependent and concerns a small vocabulary consisting of only a few commands

that are used, for instance, for navigation. One of potentially important applica-

tions of voice command recognition is in systems for handicapped persons. These

aspects make the development of recognition techniques noteworthy and encour-

age further research in this field.

However, significant variability is associated with the signal, even if the

words are spoken by the same person. First, the acoustic realizations of phonemes

are highly dependent on the context in which they appear. Second, the same word

is never spoken by the same person in exactly the same way, sometimes it can

have a different length or emphasis on other phonemes. Finally, changes in the

environment in which the words are spoken can strongly affect the recognition

process. The above problems have to be overcome during the construction of

a successful recognition system.

Genetic algorithms (GAs) have been demonstrated as a good optimization

and machine learning technique [2]. Due to their unusual ability of searching in

a large space of possible solutions they have been used previously in combination

with the K-nearest neighbour algorithm (KNN), forming a hybrid approach

(GA/KNN). GA/KNN has been proven to be an efficient classifier [3, 4]. This

approach has been used successfully in many practical applications such as

biological measurements [3], the classification of soil samples [4], cancer diagnosis

[5] or fraud detection [6]. Such a wide spectrum of possible uses inspired the

authors to attempt to adapt the GA/KNN approach to voice command recognition.

The construction of the voice command recognition model described in this

paper consists of two parts. The first one concerns the creation of feature patterns

from spoken words. This is done by the discrete Fourier transform and subsequent

frequency analysis. The second part constitutes the essence of the model, namely

the design of the supervised learning and classification system. Patterns are

divided into a training set, on which the algorithm learns; and a testing set,

which serves to estimate the accuracy of the system. The main idea of the hybrid

approach is an application of the GAs to the process of feature extraction in the

pattern vectors, in order to improve the rate of correct classifications subsequently

made by the KNN.

The model was implemented in C++ and a series of numerical experiments

was performed in order to verify the influence of the parameters of the method

tq414k-e/378 24III2011 BOP s.c., http://www.bop.com.pl



Voice Command Recognition Using Hybrid Genetic Algorithm 379

on the accuracy of the system, leading to a formulation of a satisfactory structure

for the model.

This paper is structured as follows. Section 2 introduces basic concepts of

genetic algorithms. In Section 3, the hybrid approach combining GAs and KNN is

described. Section 4 is devoted to the construction of a voice command recognition

system, including data pre-processing and supervised learning and classification.

In Section 5, the details of the numerical experiments are described, followed by

results and comments. Section 6 presents conclusions.

2. Genetic algorithms

Genetic algorithms constitute powerful tool for solving computational

issues requiring searching [2, 7]. These kinds of problems are very common

in optimization, machine learning or modelling and in predicting real-world

phenomena. Genetic algorithms were first described by John Holland in the 1960s

[8] and were subsequently studied by Holland and co-workers at the University of

Michigan in the 1960s and 1970s [8].

The general idea is to use evolution as an inspiration for solving problems.

Evolution can be seen as a method for searching among an enormous number of

possibilities. Genetic algorithms use an evolutionary mechanism, the basic con-

cept of which can be described as follows. A population consists of a number

of individuals. Each of individuals has an unique code called a chromosome and

presents a different level of adaptation to environment. In each generation, evo-

lution promotes better fit individuals by allowing them to reproduce and transfer

their genetic code to the next generation. Therefore, by natural selection highly

fit individuals have a greater chance compared to poorly-fit individuals. During

reproduction, the crossover operator exchanges subparts of two chromosomes,

while mutation serves to change the value at randomly chosen locations in the

genetic code. Following reproduction, a new generation is created, replacing the

“old” population. Due to the higher probability of reproduction for well-fit in-

dividuals, evolution eliminates poorly-fit individuals over generations and tends

towards saving the optimal (highest fit) individuals.

In GA terms, an individual, or rather its chromosome, represents a potential

solution to the problem. The set of all possible individuals can be seen as a search

space. This refers to the collection of candidate solutions to a problem. GAs

operate on a population, which represents a subset of all possible solutions. Every

individual is represented by a chromosome which can be either a vector (e.g.,

a bit string) or a matrix, or even a tree structure (cf. genetic programming, [9]).

The act of representing a candidate solution as a chromosome is called encoding.

During the simulation, the whole population is subject to simulated evolution.

First, the fitness of every individual in the population is evaluated. Fitness is

calculated according to a criterion (fitness) function which depends on the problem

under study. The value of the criterion function corresponds to the perceived

success of the individual in solving the problem. Then, selection chooses solutions
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with higher values of the fitness function giving them a greater probability of

recombination. After a pool of individuals for reproduction is selected, crossover

takes place. This operator randomly exchanges parts of chromosomes between the

two parents. The next operator – mutation randomly flips some of the bits in the

chromosome. Mutation and crossover occur with a certain probability. Finally,

the old population is replaced by the newly obtained one. The above procedure

describes the basic concept of a genetic algorithm. For a more thorough description

the reader is referred to [7, 9].

The following procedure describes all steps of the simple GA:

Procedure:

1. Initialize the population. Randomly generate the set of candidate solutions

(i.e. N chromosomes)

Repeat steps 2–6 G times (G is the number of desired generations):

2. Calculate the fitness f(x) of each chromosome in the population.

3. According to the fitness, select a pool of parents (one chromosome can be

selected more than once to become a parent).

4. For each pair of parents, with a probability pc (crossover probability),

perform crossover. With a uniform probability, choose a point for the

exchange of chromosome parts. If no crossover takes place, offspring are

exact copies of their parents.

5. With a probability pm (mutation probability) mutate the offspring in each

locus in their chromosome.

6. Replace the current population with the new one.

7. Go to step 2.

3. GA/KNN for pattern classification

As mentioned earlier, the essential part of this work consists in designing

a supervised learning and classification system. In this paper we propose a hybrid

approach combining genetic algorithms and the nearest neighbour method for

voice command recognition.

3.1. K-nearest neighbour algorithm

K-nearest neighbour algorithm (KNN) is a simple, yet quite useful tool

for dealing with the classification problem [10]. The main idea can be expressed

as follows: given a dataset of classified examples, an unclassified pattern should

belong to the same class as its nearest neighbour (in case of K =1) or the same

class as the majority of its nearest neighbours (in case of K > 1) in the dataset.

The distance between neighbours is usually measured in the Euclidean metric.

Figure 1 illustrates the mode of action of the K-nearest neighbour algorithm in

2-dimensional space. KNN is a quick and effective method for classification and for

many particular problems it is at least as good as more sophisticated classification

algorithms [11]. It tends to fail, however, in cases in which the proportion of

attributes that are significant in the classification process is small with respect to
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Figure 1. The K-nearest neighbours algorithm for K =3. The pattern denoted by

the question mark is subject to classification. The three nearest neighbours to the unclassified

pattern are inside the circle. One of them belongs to the red circle class and two of them

belong to the green square class, therefore, according to the majority rule, the unknown

pattern should be classified as a green square

the number of attributes that are irrelevant or misleading [12]. To address this

problem feature extraction has been proposed [13].

3.2. Feature extraction

As mentioned earlier, the KNN algorithm is a very effective procedure

but suffers in the presence of noisy or irrelevant features, because it treats all

the attributes equally. Unfortunately, very often (particularly when the feature

vector is highly dimensional) there is a large variation between the importance of

attributes and this should be taken into account in the classification process.

This is accomplished by feature extraction techniques, where the closeness

to the more important attributes becomes more critical than the closeness

with respect to the less important ones. Feature extraction is accomplished by

assigning weights w= (w1, w2, . . ., wn) to every attribute in the pattern vector.

A large weight assigned to a feature means that this feature is very important in

classification and a low weight means that this feature is noisy or less relevant and

should not be taken into account as much in the class determination procedure.

The effect of such scaling is illustrated by the example in Figure 2.

The scaling should be applied to every pattern in the data set. In this case,

the KNN algorithm is transformed into a so-called weighted K-nearest neighbour

algorithm and the closeness between the two patterns x and y is measured (in the

Euclidean metric) by:

distx, y =

√√√√
n∑

i=1

(wi(xi−yi))
2

(1)

where wi is the weight of the ith attribute. Weights can be real or integer numbers

from a defined interval.
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Figure 2. Consider two classes: red and green. Suppose, that the pattern (1, 1) is subject

to classification. In the left panel, according to the KNN rule with K =1, this pattern would

be incorrectly assigned to the green class. Scaling all pattern vectors by a weight vector

w=(2, 1) leads to correct classification as shown in the right panel

Feature extraction improves the performance of the KNN. Nevertheless,

finding a suitable weight vector is a very complex task, impossible to solve directly,

because an exhaustive search through all the combinations is computationally

impractical. Because of the implicit parallelism inherent the GAs, they cope well

with highly dimensional parameter spaces, thus they are a good candidate for

improving the performance of the K-nearest neighbour algorithm, which is then

applied to feature extraction.

3.3. Structure of GA/KNN

In this approach genetic algorithms are used to find a sufficiently

good weight vector. Here, a population of GA defines a set of vectors w =

(w1, w2, . . ., wn), where n is the dimension of data patterns. Then, each vec-

tor w is multiplied by every sample pattern x from the dataset. Such transformed

patterns are then classified by the KNN rule. The result of the classification is

fed back as part of the fitness function, to guide the genetic search towards the

best transformation. Therefore, the GA returns the nearly optimal weight vec-

tor, which leads to satisfactory classification of all samples in the data set – the

training set. Figure 3 schematically illustrates the mode of action of the GA/KNN

approach. When the process of supervised learning is over, it is possible to check

if the constructed algorithm is able to correctly classify new, unknown patterns,

taken from testing set.

4. Model for a voice command recognition system

The aim of our work is to design a system capable of recognizing voice

commands. The basic steps that were undertaken to create such system can be

expressed as follows. Several words spoken by the same man have been recorded

and a dataset consisting of those words has been built. The task for the system

was to recognize new utterances of the words spoken by the same person as one of

the words recorded earlier. As the utterances of the same word, even if said by the

same person, do not produce the exact same waveform, it was very important to

make learning possible for the system by using a larger dataset. Therefore, each
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Figure 3. Mode of action of the hybrid GA/KNN approach

word spoken by the same person was recorded several times. The next step was

to design a proper decision system capable of correctly classifying the new voice

commands, based on the training data. Finally, the system was tested on new,

unknown utterances and its accuracy was assessed.

4.1. Data pre-processing

All words were recorded in a noise-free environment using a standard mi-

crophone. They were stored in the waveform audio format (WAV) with a sampling

rate equal of 44.1 kHz, which changes a continuous sound signal x(t) into a discrete

series X(k), k=1, 2, . .. , N−1.

After reading the sounds from the WAV files into arrays, a set of words,

each descried by a discrete series, is obtained:

V = {X1, X2, . . ., XWN } (2)

where WN is the number of words.
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The first step is to normalize the representations to the highest volume:

X ′i(n)=
Xi(n)

max
0≤n≤N−1

{Xi(n)}
, n=0, 1, 2, .. . i=1, . .. ,WN (3)

The second step consists in finding where each words begins. The starting point

of a word is determined by finding a sample with an amplitude greater or equal

to 3% of the maximum volume:

mi= min
0≤n≤N−1

{n|Xi(n)≥ 0.03} (4)

Then all samples Xi(n) where n<mi are discarded. The end of the word is also

discarded but in such a way as to leave all words with the same length. Having

checked all the recordings, it turned out that none of the the words had a length

greater than one second. For this reason, all the recordings were truncated to

one second. Assuming a sampling rate of 44.1kHz, all the words of one second in

length consist of 44100 samples:

X ′′i (n)= {Xi(m), . .. , Xi(N−1)} (5)

where N =m+44100, i=1, . .. ,WN .

Therefore, each of the words is represented as a vector of 44100 numbers.

The Fast Fourier Transform algorithm (FFT) was subsequently employed in order

to transform every word from the time domain into the frequency domain. The

size of the FFT was taken as equal to NFFT=2048.

The frequency vector f is given by:

f(k)=
kfs
NFFT

, k=0, 1, 2, .. . , NFFT−1 (6)

where fs is the sampling rate and NFFT is the FFT step. Therefore, every time

frequency vector will be in the range [0, 44100]Hz.

To avoid aliasing, the frequency vector is truncated at the Nyquist frequency

[14]:

f(k)=
kfs
NFFT

, k=0, 1, 2, . .. , NFFT/2−1 (7)

reducing the frequency spectrum to the range [0, 22050]Hz.

The output of the FFT, X̂(k), is a vector of complex values. By transforming

these values, a power spectrum of the sound in each frequency is obtained. The

following formula yields the power vector in decibels:

X̄(k)= 20log

(√
Re2

(
X̂(k)

)
+Im2

(
X̂(k)

))
[dB] (8)

where X̂(k) is the FFT output vector.

Averaging over the whole word is not likely to give sufficient information

for the recognition process, instead we propose the following approach.
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First, all words were divided into 10 equally long sections:

X1i = {X(0), .. . , X(4409)}

X2i = {X(4410), . .. , X(8819)}

...

X10i = {X(39690), .. . , X(44099)}

and the FFT was performed on each section of the word, to obtain X̂ji (k), where

i= 1, 2, .. ., WN , j = 1, . .. , 10, k = 0, 1, .. . , NFFT−1. The FFT output is then

transformed according to the formula (8) to obtain the power spectra X̄ji (k).

Since the power vector of length NFFT/2 for every 1/10th of the word is

still too long for an efficient recognition and not all frequencies provide important

information about the sound, we have decided to calculate the average power over

predefined frequency intervals. This was achieved by dividing the frequency vector

into several ranges and computing the average value of the power of the sound

over all frequencies in this frequency interval. Taking into account the fact that

low frequencies carry more information [15], the vectors were divided into roughly

geometrically growing intervals, finishing at a frequency above which only noise

was seen to occur. After careful experimentation we have arrived at the following

points separating the ranges (in kHz):

r1=0.1,

r2=0.3,

r3=0.7,

r4=1.5,

r5=3.1,

r6=6.3,

r7=12.7.

Therefore, for each frequency range, the average value of power of the sound in

this range is obtained as:

〈
X̄ji

〉

q
=

frq+1−1∑
k=frq

X̄ji (k)

frq+1−1− frq
, q=1, . . ., 6 (9)

where

frq = min
1≤k≤N

{k|fk ≥ rq} (10)

The next step is to normalize these values to a range of our choosing 0–10:

xmax= max
1≤i≤WN

max
1≤j≤10

max
1≤q≤6

{〈
X̄ji

〉

q

}
(11)

〈
X̄ji

〉

q
=
10

xmax

〈
X̄ji

〉

q
(12)

In this way 6 values in the range 0–10 for each 1/10th of the word are

obtained, allowing us to express each word as a 6×10 = 60-dimensional vector
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xi=
(〈
X̄1i
〉
1
, . .. ,

〈
X̄1i
〉
6
, , .. . .. . ,

〈
X̄10i

〉
1
, dots,

〈
X̄10i

〉
6

)
, which is a reasonable

size for the recognition techniques.

4.2. Hybrid GA for supervised learning and classification

The test data consisted of 7 different words from the Polish vocabulary:

V = {napisz, pulpit, start, uruchom, wyślij, zadzwoń, zatrzymaj}1.

10 utterances of each word were recorded, yielding 70 samples in the training

set. The hybrid genetic algorithm operates only on this set. Its task is to learn,

based on the training set, which would ultimately lead to the capability of

correct classification of unknown samples from the testing set, which consists

of 175 utterances – 25 samples for each word. To make the estimation of the

accuracy of the system more reliable, simulations on the model are performed

taking a different training and test set each time.

For supervised learning and the classification of data patterns characterising

words, the hybrid GA/KNN algorithm introduced in Section 3.3 was used. The task

of the genetic algorithm consists in finding near-optimum weights for the scaling

of all the feature vectors assigned to each word. The components of the weight

vector, w, were chosen as integer numbers from the interval [0, 127].

The GA was set up as follows:

• Initialization

An initial set of the chromosomes was chosen randomly. The size of the

population was set to 60, which balanced the computational effort and the

obtained accuracy.

• Encoding

Binary encoding was used and each weight component of the vector w is

encoded on 7 bits, yielding chromosomes of 490 bits in length.

• Fitness function and selection

We have experimented with different types of the fitness function. First,

intuitively the fitness was taken to be equal to the number of correctly

classified patterns, i.e. fitness =NC . This led to acceptable results, however,

the evolution in this case proved to be very slow, since the degree of

similarity between individuals was high, leading to a flattened fitness

landscape. An obvious development was to promote individuals producing

K identical neighbours:

fitness =NC+

NT∑

i=1

bi (13)

where NT is the number of patterns and

bi=

{
∆, if the number of the identical neighbours
for ith pattern =K,

0, otherwise.
(14)

The parameter ∆ was chosen to be 4.

1. Meaning {write, desktop, start, activate, send, call, stop}, respectively.
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In order to choose individuals for reproduction, proportionate selection was

used initially but due to the very small diversity in the population, it became

obvious fitness scaling would become necessary [2]. Linear fitness scaling was

applied, according to the procedure:

Procedure:

1. Find the maximum and minimum fitness value in the population:

fmax=maxf(xi) i∈ 1, 2, .. . , N (15)

fmin=minf(xi) i∈ 1, 2, .. . , N (16)

2. Determine the average fitness in the population:

favg=
1

N

N∑

i=1

f(xi) (17)

3. Scale the fitness for each individual as follows:

f ′(xi)= af(xi)+b (18)

where a and b are scaling parameters determined by the condi-

tion (20).

• check scaling condition (non-negative test):

fmin>
cfavg−fmax
c−1

(19)

where c is the number of expected copies desired for the best

population member

• if above condition is satisfied then:

a=
favg(c−1)

fmax−favg
, b=−favg(a+1) (20)

• else:

a=
favg

favg−fmax
, b=

−fminfavg
fmax−favg

(21)

The application of fitness scaling did indeed improve the search but after

further experiments ranking selection [2] turned out to be a better choice.

It was implemented according to the following description. Each individual

was ranked in increasing order of fitness from 1 to N , where N is the

size of the population. Expected number of children of individual is given

by ExpVal(i) =Min+(Max −Min) rank(i)−1
N−1 , where Max is the expected

value of the highest fit individual with rank N (this value is chosen

by the user) and Min is the expected value of the lowest fit individual

with rank 1. rank(i) is the ranking number assigned to the individual

i. Since we want to keep the population size constant from generation

to generation and assume Max to be greater then 0, it is required that

1≤Max ≤ 2 and Min = 2−Max . Baker recommended Max = 1.1 (derived

experimentally) [16].
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• Crossover and mutation

Single-point crossover was used. After experiments with varying crossover

rates, pc was chosen as 0.9. The difference in the rate of evolution for varying

pc was not pronounced.

The choice of the probability of mutation (pm) turned out to significantly

affect the algorithm. pm=0.002 was chosen.

Elitism [7] was used to improve convergence.

5. Experiments and results

5.1. Basic model

The first experiment is the realization of the basic model of a classification

system that arises directly from the techniques described in the previous sections.

It plays a meaningful role as a reference and a source of basic conclusions.

The fitness function in the basic model was given by the formula (13)–(14).

Proportionate selection with linear fitness scaling and elitism were used for the

GA. The GA in this model tends to maximize the number of correct classifications,

which is equal to 70 (the size of the training set) and to maximize the number of

identical and correct neighbours which is equal to 3 for every sample. Therefore,

the maximum possible value of the fitness function is 70×5 = 350 (in the case

that all words are correctly classified and having all nearest neighbours from the

right class).

The results for the basic model are compared with the simple KNN classi-

fication without evolutionary guided learning (i.e., without feature selection). 10

experiments were performed and the average score was calculated. The experi-

ments in this subsection, as well as all the others described here were performed

on a desktop PC to reflect the application point of view. Table 1 presents the

results for this model.

Table 1. Results for the basic model

Set Correctly classified Correctly classified

(number of patterns) patterns by KNN patterns by GA/KNN

Training (70) 84.6% 95.7%

Test (175) 87.0% 93.1%

Training time (seconds) 26

It is immediately seen that GA/KNN outperforms KNN by a significant

margin. The reason for this is that ordinary KNN is sensitive to the noise in

the data and does not rate the relative importance of individual features for

discrimination, in contrast to the hybrid approach.

5.1.1. Analysis of GA

Here we turn our attention to the behaviour of the GA for the test set.

The experiments described below were performed to examine the influence of the

parameters on the algorithm’s efficiency.
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Figure 4. Population fitness for 10 runs with the basic model

The plot in Figure 4 shows how the average population fitness changes with

the number of generations (for 10 simulations).

Initially, the rate of change is high, then the fitness stabilises with small

fluctuations. This is a manifestation of the following facts: at the beginning, the

evolution rate is very high, crossover is the dominant operator and the algorithm

quickly converges towards the optimum solution. As the diversity decreases,

mutation starts to play a more important role – the evolution slows down and

only small fluctuations are observed.

An important finding is that elitism and linear fitness scaling turned out to

be very important improvement to the basic model (cf. Figure 5).

As can be inferred from the plots, in the simple GA model the popula-

tion fitness tends to stabilize after reaching a certain sub-optimal level, whereas

with elitism and linear fitness scaling, the population keeps the best individuals

unchanged (elitism), which guides the rest towards better solutions. Moreover,

fitness scaling promotes diversity in the population, allowing even poorer indi-

viduals to reproduce and keeps selection pressure at sufficiently high level. This

leads to a marked improvement in the rate of change of the fitness and the final

fitness.

Another crucial aspect is the influence of mutation and crossover rates.

Figure 6 shows the plots of the average fitness for different crossover probabilities

(pc) and Figure 7 for the different mutation probabilities (pm).

From the above plots it can be seen how important the crossover operator

for the GA is. With pc = 0 evolution at the beginning is guided only by random

changes in the chromosomes and very quickly stagnates at a low level. A crossover

probability of 0.9 seems to represent a sufficient balance. It is high, yet leaves
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Figure 5. Comparison of simple GA (green) and the elitist linear fitness scaling model (red)

Figure 6. Fitness for different crossover rates

some chance for the best individuals, not to destroy their genetic code during

reproduction.

Despite the fact that mutation is a secondary operator with less importance

then crossover [2], its influence is still significant. With pm = 1 the optimization

process becomes a random search. On the other hand, an excessively small

mutation probability is not desirable either, since it leads to stagnation in

one of thr local optima. The value of pm = 0.002 was found to be a good

choice, preventing stagnation but at the same time not causing a problem with

convergence.
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Figure 7. Fitness for different mutation rates

5.2. Error correction model

In this model, a slightly different approach was tested. Instead of taking the

number of correctly classified patterns, misclassifications are counted (NT −NC)

and their ratio to the total number of patterns (NT ) forms a penalty term, which

becomes a part of the fitness function. The second component of the fitness

function affects the performance of the KNN algorithm by counting the number

of neighbours which are from the wrong class and do not take part in the voting

process (Smin). Therefore, the fitness function is subject to minimization, as the

decrease of misclassifications and number of different neighbours is desired. The

formula for the fitness function becomes:

fitness = γ
NT −NC
NT

+δ
Smin/K

NT
(22)

The parameters γ and δ tune the influence of each term on the fitness

function. An increase in γ emphasises the number of correctly classified patterns,

whereas larger δ forces the algorithm to look for such classifications that are as

close to being unanimous as possible. In this experiment the rank selection for

the GA was also introduced.

Table 2 presents results for this model for different values of γ and δ. The

measure of the efficiency is the error rate in the classification process, i.e., the

ratio of missclassifications to the total number of patterns.

The influence of the parameters γ, δ is easily noticeable. With lower δ

and higher γ, the algorithm focuses on the maximization of correctly classified

patterns, leaving the number of different neighbours on quite a high level. Setting

γ=5δ, proves to be the best choice for γ and δ parameters, leading to best results.

The final result in this case is an error rate of 5.8%, corresponding to a final

accuracy of 94.2%, which represents an improvement over the simple model.
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Table 2. Results for the error correction model

Error rate Different Error rate
Parameters

(training) neighbours (testing)

γ=1.0, δ=0.5 1.7% 5.5% 7.2%

γ=1.0, δ=0.2 1.1% 4.4% 5.8%

γ=1.0, δ=1.0 2.4% 5.3% 8.2%

γ=2.0, δ=0.2 0.8% 6.4% 7.5%

Training time (seconds) 26

Figure 8. Antifitness for the error correction model with γ=1.0 and δ=0.2 for 10

experiments/initial populations

Figure 8 shows the plots of the average antifitness for 10 simulations.

5.3. Varying K parameter model

The aim of this model is to examine the impact of the different number of

neighbours in the KNN algorithm. Tests were performed with different values of

K. Table 3 presents recognition results for K =1,5 and 7.

All the parameters for the GA in this model are the same as in the basic

model. The fitness function takes into account the number of correctly classified

patterns and in case of K = 5 and K = 7 it additionally rewards the individuals

which produce the highest number of correctly classified neighbours.

Curiously, K = 1 yields a better classification score for the pure KNN

algorithm, than K = 3. However, this does not imply better performance of

the GA – we can see that learning and feature extraction leads to only a slight

improvement over KNN eventually producing a worse final result than the basic

model. Obviously, in case of K =1 the fitness function takes into account only the

number of correctly classified patterns, since there is no room for optimization
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Table 3. Results for the varying K model

Number Correctly classified Correctly classified Training

of neighbours patterns by KNN patterns by GA/KNN time

K = 1 89.7% 90.2% 24

K = 5 86.2% 88.5% 27

K = 7 76.5% 82.2% 29

of the number of neighbours. The population has a small level of diversity and

with one neighbour, the GA learns perfectly on the training set but shows low

capability for generalization when it comes to the testing set.

From the other results, it can be inferred that an increase in the number of

neighbours causes a decrease in the classification score. For K =5, the number of

correctly classified patterns by the simple KNN algorithm is lower than for K =1

or K =3. In case of K =7, the percentage of correct classifications is even lower.

However, in this last case the GA plays an essential role, since it improves on

the plain KNN significantly. The reason for this can be expressed by contrasting

this with the situation for K =1. Here, the GA tends to increase the number of

correct neighbours and since there are more neighbours, it gives a better degree

of generalization.

This experiment showed that for the system under study the number of

neighbours equal to 3 is the perfect choice and consequently this value was used

in subsequent experiments.

5.4. Changing the size of the training set

This experiment investigated the influence of the size of the training set on

the results of the classification. The program was executed for sizes of the training

set ranging from 4 to 15. Figure 9 presents the results.

It is seen that an increase in the training set size lead to increase of

the classification score. As expected, for the training set the correctness rate

is acceptable from the beginning. Intuitively, fewer utterances require fewer

conditions to be satisfied, in order to find a reasonable good weight vector correctly

classifying training patterns. However, achieving perfect discrimination for a small

training set hinders generalization – the algorithm learns only the features typical

for a small subset of patterns, which are not necessarily representative for new

samples – lower classification result for the testing set speaks well for this fact.

What is significant, however, is that up to 10 utterances of each word, the

percentage of correctly classified patterns grows very fast. A further increase

of the training set size improves the score only marginally, yielding diminishing

returns.

The conclusions from the above results cannot be formulated in isolation.

They are strongly connected with the processing time required for the classifica-

tion process, which differs with the number of words in the training set. Clearly,

the time required for training grows with the number of patterns in the training

set. This growth is significant, so one has to be very careful in increasing the
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Figure 9. Percentage of correctly classified patterns as a function of the number

of utterances of each word in the training set

training set size, keeping in mind the fact that this will lead to an increase in the

learning time.

6. Conclusions

The main goal of this paper was to describe a voice recognition system

based on the hybrid genetic algorithm and K-nearest neighbour classifier and to

determine the performance of the constructed method. Having determined the

influence of the simulation parameters on the classification score, a satisfactory

construction of the model was proposed, providing the overall accuracy of 94.2%

correctly classified patterns in 26 seconds.

6.1. Overall performance

The first experiment established the most important inference for this model

– the necessity of using genetic algorithms for the learning process. The proposed

GA/KNN approach was a significant improvement over the simple KNN classifier.

Clearly, the basic KNN is sensitive to the noise in the data and does not rate the

relative importance of individual features for discrimination. The introduction of

a GA for feature extraction resulted in a significant increase in the accuracy of

the system. The GA/KNN outperforms the KNN algorithm for voice command

recognition, which is a very meaningful conclusion, as simple KNN is still widely

used in the area of voice recognition. Moreover, the training time required for the

GA to learn on the given set of words turned out to be on a reasonable level –

26 seconds, which is acceptable for an efficient functioning of a voice command

recognition system.
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A further result, provided by the last experiment, proved that a training set

size of 10 utterances of each word is an equilibrated value. This amount reconciled

two opposite issues that have to be taken into account – large enough size of the

training set to enable generalization and as small as possible number of repetitions,

in order to avoid the necessity of recording an excessive number of samples of one

word and excessive computational overload. The influence of the K parameter

has been assessed. We found that an increase in the number of neighbours causes

a decrease in the classification score. However, with K = 1, the algorithm did

not produce better results either, since it was not able to develop generalization

capability in the learning process. As a consequence, the number of neighbours

equal to 3 was found to be the best choice.

Finally, it is worth mentioning that the relatively high performance of

the simple KNN algorithm is the result of quite discriminant data set, which

is a consequence of the careful choice made in the construction of pattern vectors.

The discrete Fourier transform and spectral analysis were found to be an efficient

component of the recognition system.

6.2. GA’s performance

Since a GA played an essential role in the voice command recognition

system, it is important to highlight the most meaningful results of its performance.

First of all, the nearly optimum score for the training set achieved in the

very short time confirmed the capability of the GA for searching in a large space

of possible solutions. Series of experiments with changing conditions proved the

GA to be a very adaptive method.

The results for the basic and error correction model provided further con-

clusions. Comparison of the average fitness for the different crossover probabilities

determined the importance of the crossover operator. Using crossover is absolutely

necessary for the correct functioning of the algorithm. Similarly, although with

less impact, the mutation operator introduces randomness into the evolution pro-

cess, preventing stagnation in local optima and resulting in a better algorithm

score.

It is worth mentioning that the determination of a selection method turned

out to be an important issue in the GA as well. Results for the proportionate

selection and ranking selection methods showed better performance of ranking.

This technique helped overcome the low diversity in the population, yielding

a better final score.

Another finding is that for this model, like for many other applications of

GAs, the simple GA was not sufficient. Introduction of elitism and linear fitness

scaling led to significant improvements.

6.3. Further work

Further work can be devoted to the following issues.

One idea would be to emphasize the influence of the nearest neighbour in the

class determination by the KNN. It is likely that the vote of the closest neighbour
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should have more influence than that of any other kth neighbour. Taking this fact

into account requires the construction of a new fitness function for the GA.

Using an alternative metric for measuring the distance between patterns,

e.g. the Minkowski metric [17] could also be considered.

More effort could be put into the verification of the influence of the

parameters used in the construction of the pattern vectors. The first, obvious

candidate is the choice of the frequency ranges over which average powers were

calculated. However, the methods of dividing words and cutting the samples could

be revised as well.

Finally, the impressive performance of GAs encourages one to go further

and use them as a direct classification technique. Some results have already been

achieved in this field [18], however it is worth a try to develop and adapt such

genetic classifiers for voice command recognition systems.
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