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Abstract: The monitored case of deep excavation works located in the centre of Warsaw is

described and back analysed as a boundary value problem with the finite element method.

The excavation was carried out in over-consolidated clayey layers under the support of braced

diaphragm walls. Accurate simulation of such soil-structure interaction problems requires

advanced soil constitutive models – especially for the pre-failure range of small strains. On

the other hand, such models should not be very complex and their material parameters should

be relatively simple to obtain from laboratory and in situ surveys. By means of a case study,

this paper examines several simple elasto-plastic constitutive models for the simulation of the

behaviour of soil layers. The influence of such characteristics of the soil behaviour, as anisotropy

and non-linearity of stiffness, is studied in the paper. The discussion concerns the problems

related to the application of the models for a practical example. The comparison is focused on

the obtained and measured displacements of the neighbouring building and diaphragm walls.

Keywords: deep excavation, constitutive modelling, ground deformation, finite element

method, case histories

1. Introduction

Construction activities, particularly those related to the improvement of the

infrastructure in densely populated city areas, often take place in close vicinity

of existing buildings. One of the most problematic engineering operations in such

a situation is the execution of deep excavations. Changes in the stress state in the
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ground, which occur during the excavation, cause deformations of the surrounding

soil layers and displacements of the foundations of existing structures. This may

be dangerous, especially for tall buildings or old, historical structures. The correct

estimation of these displacements, as well as a safe design of the excavation

support, become a crucial task for geotechnical engineers.

Nowadays, a given deep excavation case is often treated as a boundary

value problem and solved numerically with the finite element method. The most

important aspects in such numerical analysis are the choice of an appropriate

constitutive model for the description of soil behaviour, and the estimation of

material parameters. An excavation is an instance of unloading of the ground,

and in the event of a properly designed support, the soil surrounding the

excavation area undergoes relatively small strains. In this situation, the stiffness

of the soil is high and the standard design secant stiffness moduli of soil, which

are commonly used in the Mohr-Coulomb model, are generally inadequate for

numerical calculations. The soil stiffness has a direct influence on the behaviour of

an applied support system and its structural strength. The accurate simulation of

this soil-structure interaction problem requires advanced soil constitutive models

– especially for the range of small and intermediate strains (≤ 10−3). However,

such models should not be overly complicated and their material parameters have

to be relatively simple to obtain from laboratory and in situ surveys. It should

also be clear how to set the initial values of state variables in the model and how

to set the initial stress conditions.

By means of a case study, this paper examines several constitutive models

for the simulation of the behaviour of soil layers. The soil models are formu-

lated within a simple elasto-plastic framework. The shear strength criterion of

Matsuoka-Nakai [1] is used with different formulations of the stiffness character-

istics inside the yield locus. The following stiffness formulations are examined:

linear isotropic elastic, anisotropic linear elastic, and non-linear hyperelastic and

para-elastic.

2. Analysed case of deep excavation

The analysed excavation pit is located in the centre of Warsaw. It was

designed for a two-storey underground garage underneath a multi-storey building.

The top-down method was applied with a single floor slab at the depth of 1.8m

below the ground level. The final depth of the excavation was 10.2m. Diaphragm

walls 14.2m long and 0.8m thick were used to support the excavation. The plan

view of the excavation is shown in Figure 1. Geometry, loading details and finite

element discretisation of the analysed plane strain section of the excavation is

presented in Figure 2. Loading details are presented for the closing stage of

the underground part of the structure, without additional loadings from the

new building. A nine-storey bank building, founded on a slab at the depth of

5m below the ground level, is located in the neighbourhood of the excavation

pit. In the analysed section, the distance between the bank building and the
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excavation is 10.8m. The lower part of the diaphragm walls ends 3.4m within the

low permeability sandy clay. This allowed carrying out the earthworks without

lowering the existing water level. Dewatering was carried out only at the bottom

of the excavation pit.

Figure 1. Plan view of the excavation and measurement instrumentation with the location

of the 2D section used in the plane strain calculations

The vertical (ux) and horizontal (uy) displacements of the foundations

of the neighbouring bank building, as well as the horizontal movement of the

diaphragm walls (ux), were monitored by geodetic survey. The location of the

benchmarks is shown in Figure 1.

2.1. Soil layers and water conditions

Soil layers with basic material properties and water conditions are shown

in Figure 3. From the geomorphological point of view, the terrain is formed by

the denudation of the glacial upland. It represents the so-called Warsaw level of

the Vistula River Valley.

The characteristic soil layers are distinguished for the purposes of analysis,

based on the results of drilling, cone penetration and supplementary dilatometric

tests (Barański et al. [2]). In the model, the layers are assumed to be parallel

and horizontal, which is a simplification. However, the deviations observed due to

this idealisation are not significant in the analysed section. The first soil layer is

a heterogeneous silty fill with some content of rubble and humus. The subsequent

layer 2 includes sandy deposits related to the denudation processes of the North
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Figure 2. Geometry and finite element mesh used in the calculations: (a) – soil layers

and dimensions of the problem; (b) – loading details, distributed loading [kPa],

line loadings [kN/m]; (c) – full finite element mesh used for the initiation of the in situ stress

(6-node quadratic pore pressure elements are used)

Polish Glaciation and the fluvioglacial formations of the Wartanian Glaciation,

which belong to the Middle Polish Glaciations. These soils are of medium density

and stiffness. Layer 3 represents the stagnation clayey deposits of medium stiffness.

The formations of layers 4 and 5 are related to the Odranian Glaciation – the older

Middle Polish Glaciation. The fluvioglacial medium dense sands of layer 4 are

deposited over the continuous and thick layer 5, composed of high stiffness clay.

Deeper deposits correspond to the Great Interglacial and are represented by dense

sands (layer 6). The thickness of this layer exceeds 10m and was not estimated

by drilling. In the model, this layer is chosen as a bottom layer, which limits the

boundary problem. All natural layers in the analysed profile are over-consolidated

with OCR> 10.

The first unconfined aquifer is built of the sand layer 4 and partly of layer 3.

The water level of this aquifer changes seasonally. The second aquifer is built of

the bottom sand layer 6 and is confined by the low permeability clay layer 5. The

hydraulic head in this aquifer corresponds to the level located between layers 4

and 5.
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Figure 3. Soil layers, water conditions and the basic material parameters

The Continuous Surface Wave System (CSWS) geophysical technique was

used for evaluating the small strain stiffness of soil layers (Matthews et al. [3]).

The CSWS survey results are presented in Figure 4, where we present the average

changes of the small strain Young’s modulus with depth, as well as operational

moduli used in the calculations.

3. Constitutive models

The soil layers in the analysed problem are the over-consolidated clayey

deposits with dense, granular, saturated soils at the bottom of the analysed area.

Field observations from similar excavations in the vicinity demonstrate that the

ground is very stiff, with high bearing capacity, and typically, during the period of

excavation works a heave of the surrounding terrain was observed. This suggests

that the soils mostly undergo unloading or reloading within the so-called small

and intermediate strain regions. However, in the vicinity of diaphragm walls,

larger plastic shear strains may develop locally. Taking this as an assumption,

the constitutive model of soil may be simplified for practical aims. Here, the

elastic – rigid plastic framework is employed with the focus on the modelling of

the pre-failure behaviour of natural soils. The yield locus is formulated only by

the shear strength criterion, without introducing the cap surface and volumetric

hardening, which is irrelevant/inconsequential in the analysis of soil behaviour in

the case of high over-consolidation.
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Figure 4. Small strain stiffness Young’s moduli from the CSWS survey. Shear moduli G0
in the para-elastic model are calculated from the operational values Eref0

3.1. Matsuoka-Nakai base model

Basic soil parameters used in routine calculations concern the Mohr-

Coulomb model, which is always implemented in the geotechnically-oriented finite

element programs. The Mohr-Coulomb model realises the elastic-rigid plastic

constitutive law, which is based on the Hooke’s isotropic linear elasticity and

Mohr-Coulomb shear criterion for the yield function and plastic potential. The

strength parameters are: φ, c, ψ – the effective friction angle, effective cohesion

and dilatancy angle, respectively. The stiffness parameters are chosen differently,

according to local practice (e.g. Poisson’s ratio ν and the oedometer modulus Eoed
or Young’s modulus E). The elastic stiffness may be expressed in the following

form:

Deijkl=
E

(1+ν)(1−2ν)

[

νδijδkl+
1−2ν

2
(δikδjl+δjkδil)

]

(1)
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Although it is unclear what kind of stiffness parameters need to be used,

this model is very often applied in practical calculations. In most cases, the

secant stiffness moduli from standard triaxial or oedometer tests are employed

and the Poisson’s ratio is chosen arbitrarily, according to experience. However,

this method is very imprecise if an accurate estimation of displacements and of

the soil responses under the small strain conditions is expected, as in the case of

well-designed strutted deep excavation works.

The Mohr-Coulomb yield contour on the deviatoric plane represents the

isoline of the constant friction angle. It is a conservative approach, which according

to experimental evidence underestimates the shear strength for the plane strain

conditions (Eekelen [4]). In the present study, the set of Mohr-Coulomb model

parameters is retained, however, a different yield function is chosen to represent

the shear strength for non-axisymmetric stress conditions more realistically.

Among smooth yield surfaces reported in the literature, the shear criterion

of Matsuoka and Nakai, based on the so-called spatially mobilised plane concept is

adopted [1]. This criterion agrees with the Mohr-Coulomb model for axisymmetric

compression and extension, and allows slightly higher shear strengths for non-

axisymmetric stress states. The shear strength criterion is defined as:

f =−
I1
I2I3
+
9−sin2φ

−1+sin2φ
=0 (2)

where I1,I2,I3 are the stress invariants:

I1=σkk (3)

I2=
1

2

[

σijσij−(I1)
2
]

(4)

I3=det(σ) (5)

If cohesion needs to be included, the invariants are calculated for the

modified stress state σ∗ij =σij−pcδij , where pc= ccotφ.

The Drucker-Prager function is taken as the plastic potential and is defined

as:

g= q−
6sinψ

3−sinψ
p (6)

where ψ is the dilatancy angle and p, q are mean and deviatoric stress invariants,

respectively:

p=−
1

3
σkk, q=

√

3

2
sijsij (7)

s is the deviatoric part of the stress tensor (sij =σij+pδij).

The use of the Drucker-Prager function, instead of the Matsuoka-Nakai

function for the plastic potential, is again a simplification which helps in the

implementation of the model (owing to its simple definition and stress derivatives).

This simplification is based on the fact that the actual values of the dilatancy angle

for soils are small (≤ 10◦). From this it ensues that the isolines of both functions

on the deviatoric and meridian planes in the principal stress space are very similar

and overlap for ψ=0◦.
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In the following sections, we will build on the simple elasto-plastic model

of Matsuoka-Nakai by modifying the stiffness formulation (1).

All presented models are implemented into the displacement-based com-

mercial finite element code PLAXIS within the user-defined soil models facility

(Brinkgreve et al. [5]). The backward Euler return algorithm is used for the local

integration of constitutive relations. To this end, the Newton-Raphson iterative

procedure is used, as described by Jeremić and Sture [6].

3.2. Linear anisotropic stiffness

Directional dependence of mechanical properties prevails in natural soils.

Deposition, diagenesis and consolidation of pre-glacial, as well as post-glacial,

soil deposits produce a microstructure with a preferred particle orientation. This

directly influences the stiffness and strength anisotropy. The degree of strength

anisotropy may be changed during the monotonic loading process, however, the

small strain stiffness anisotropy remains, even after significant straining, which

may be demonstrated by stress probe testing after unloading (Jovičić and Coop

[7]). The importance of taking the anisotropic stiffness characteristics into account

has already been demonstrated by many authors for some practical cases, e.g.

Poulos [8], Simpson et al. [9], Addenbrooke et al. [10] or Kung et al. [11].

The deposition and strain history in most of the soils are essentially

one-dimensional with a single vertical axis of symmetry. This common type of

anisotropy is known as cross-anisotropy or transverse isotropy. A full description

of cross-anisotropic elasticity requires five independent constants. They are usually

chosen as follows: Young’s modulus in the vertical direction, Ev; Young’s modulus

in the horizontal direction, Eh; Poisson’s ratio for horizontal strain due to

vertical strain, νvh; Poisson’s ratio for horizontal strain due to horizontal strain

at right angles, νhh; shear modulus in the vertical plane, Ghv. Because of the

thermodynamic requirement of positive strain energy which holds in the elastic

material, there are bounds for the values of parameters of cross-anisotropy. For

details, the reader is referred to Pickering [12].

In routine calculations, all five parameters of cross-anisotropy are usually

not available. From the standard triaxial test, equipped with accurate transducers

for the measurements of both vertical and horizontal displacements, the parame-

ters Ev and νvh may be estimated. Obtaining the remaining parameters for the

cross-anisotropy requires more advanced testing procedures (Lings et al. [13]). An

alternative, three-parameter formulation of cross-anisotropy was proposed by Gra-

ham and Houlsby [14]. This model represents a limited form of cross-anisotropy

and involves only one parameter in addition to the two that are required to de-

scribe an isotropic elastic material. The material constants of the three-parameter

Graham-Houlsby model are: modified Young’s modulus, E∗; modified Poisson’s

ratio, ν∗; the anisotropy factor, α. The factor α simply fixes the ratio of Young’s

modulus, Poisson’s ratio and shear modulus in the following way:

α=

√

Eh
Ev
=
νhh
νvh
=
Ghh
Ghv

(8)
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where Ghh is the shear modulus in the horizontal plane, which is related to the

parameters of cross-anisotropy by the expression:

Ghh=
Eh

2(1+νhh)
(9)

A comparison between all five parameters of cross-anisotropy and the three

parameters of the Graham-Houlsby model leads to:

Ev =E
∗ (10)

Eh=α
2E∗ (11)

νvh=
ν∗

α
(12)

νhh= ν
∗ (13)

Ghv =α
E∗

2(1+ν∗)
(14)

The stiffness of the Graham-Houlsby cross-anisotropic model in the sim-

plified form of a 6×6 matrix in the principal directions of anisotropy may be

expressed within the stress-strain relation as:



















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

(15)

where

A=α2(1−ν∗) (16)

B=1−ν∗ (17)

C =αν∗ (18)

D=α2ν∗ (19)

E=α(1−2ν∗) (20)

F =α2(1−2ν∗) (21)

Note that, unusually, the stress components σij and the strain components

εij are written in the vector form and directions x1 and x3 are the horizontal

directions and x2 is the vertical direction. This is the order used in the applied

finite element code, however, this needs to be examined, and perhaps reorganised,

when implementing the model in other computer programs.

A comparison of different stiffness formulations may be obtained by con-

fronting the so-called response envelopes. The response envelopes are polar di-

agrams of stiffness drawn for visualisation purposes (Gudehus [15]). They are

usually shown in the triaxial stress plane as closed curves, showing response to
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Figure 5. Response envelope in the triaxial plane in the principal stress space – a polar

diagram of stiffness D; (a) – input circular strain probe; (b) – output stress response envelope

the circular strain probe. The schematic description for obtaining the response

envelopes is presented in Figure 5.

The influence of the factor α on the shape and rotation of the response

envelopes for the cross-anisotropic elasticity is presented in Figure 6. Taking

the value α= 1.0 gives the isotropic Hooke’s elasticity. The response envelopes

for isotropic elasticity are elliptical curves, which are oriented parallel to the

hydrostatic axis (σ1 = σ2 = σ3). The shape is controlled by the Poisson’s ratio

and the size is proportional to the value of Young’s modulus. Using a value of α

other than 1.0 results in a rotation of the main axes of the response envelope. For

α> 1.0, the rotation is clockwise and for α< 1.0, it is anticlockwise. A similarity

can be observed with the shape of yield surfaces for natural, over-consolidated

and normally consolidated clayey soils, respectively. However, fixing the value of

the vertical Young’s modulus Ev, while rotating the response envelope results

in a significant change of its size. This signifies an important change of the

stiffness for the radial stress path directions other than the triaxial compression

(∆σ1 6= 0,∆σ2 = ∆σ3 = 0). Generally, for α > 1.0, the response envelope is

stretched and for α < 1.0, it is compressed when compared with the isotropic

case (α=1.0). If the size of the isotropic response envelope needs to be retained,

then the value of Ev =E
∗ also needs to be adjusted. However, the application of

different values of α slightly influences the proportions of the response envelopes.

3.3. Non-linear hyperelastic stiffness

Another important feature of the soil stiffness is its stress dependency. Some

empirical relations for stress dependency of the stiffness moduli are well known

in the literature (e.g. Ohde [16], Janbu [17], Houlsby and Wroth [18]) and are

used to formulate general stress-strain relations. Usually, in the Equation (1)

the value of Poisson’s ratio is kept constant and the preferred empirical relation

E=E(σ) is introduced. However, this results in hypoelastic stiffness, which may

render unrealistic behaviour for some closed unloading-reloading loops (Zytynski
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Figure 6. Response envelopes for linear isotropic Hooke’s model and linear cross-anisotropic

Graham-Houlsby model; ν= νvh= ν
∗/α=0.2; the stiffness moduli are scaled for visualisation

on both graphs with E=Ev =E
∗

et al. [19], Niemunis and Cudny [20]). The sound non-linear hyperelastic model

that avoids these problems may be derived from the elastic potential, which is

a scalar function of stress W (σ) or strain W (ε). In the case of function W (σ),

the hyperelastic compliance Ce is obtained by the following differentiation:

Ceijkl=
∂2W (σ)

∂σij∂σkl
(22)

The stiffness is obtained from the inversion: De=(Ce)−1.

Among the elastic potentials proposed in the literature, it is difficult to

find functions based on typical parameters available to practising engineers. One

of the interesting proposals is the function introduced by Vermeer [21]:

W (σ)=
3p1−βref

2Gref(1+β)

(

1

3
σijσij

)(1+β)/2

(23)

where Gref is the shear modulus at the reference pressure pref and β is a material

constant. After differentiation, the compliance has the following form:

Ceijkl=
1

2G

[

δikδjl−(1−β)
σijσkl
σrsσrs

]

(24)

with stress-dependent shear modulus

G=Gref





√

1
3 σrsσrs

pref





1−β

(25)

It is important for the implementation of the model that the compliance

matrix may be inverted analytically and the final form of the stiffness matrix is:

Deijkl=2G

[

δikδjl−
(β−1)

β

σijσkl
σrsσrs

]

(26)

The stiffness is a homogeneous function of stress of order 1−β. The value of β must

satisfy the condition β 6=0. This limits the use of the model only to simulations

tq414g-e/349 24III2011 BOP s.c., http://www.bop.com.pl



350 M. Cudny and P. Popielski

of dense granular soils or over-consolidated fine-grained soils. For lightly over-

consolidated and normally consolidated fine-grained soils, the stiffness is changing

as a linear function of stress with a proportionality constant, commonly known

as the swelling index, which would imply the value of β=0.

The stress dependency of Vermeer’s hyperelastic stiffness is illustrated in

Figure 7. The response envelopes for the hyperelastic model are confronted here

with those for the linear isotropic elasticity. For the isotropic stress condition

p = pref , the response envelopes for both models are the same, assuming the

following relation between their parameters:

Gref =
Eref

2(1+ν)
(27)

β=−2+
3

1+ν
(28)

where Eref is the Young’s modulus at the reference pressure p= pref .

Figure 7. Response envelopes for linear isotropic Hooke’s model and non-linear hyperelastic

Vermeer’s model; ν=0.2, β=−2+3/(1+ν)= 0.5; the stiffness moduli

are scaled for visualisation

The size of the response envelopes for the hyperelastic stiffness increases

with the stress. Additionally, the envelopes are rotated for deviatoric stress states

(K 6= 1.0) and oriented along the radial stress paths (K = const). This latter

characteristic of the stiffness is termed stress-induced anisotropy.

3.4. Non-linear para-elastic stiffness

In the previous subsections, the stiffness is formulated within the theory

of elasticity for the stress states limited by the conventional yield criterion.

A simplification of this method is based on the assumption that soil layers in the

given practical problem undergo almost exclusively small shear strains (γ < 10−4).

However, for intermediate strains (10−4 to 10−3), dissipation of energy is observed

and in the case of cyclic loading, the stress-strain curves become hysteretic. For

a monotonic loading, the stiffness gradually decreases with the accumulated shear
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strain. This phenomenon is ascribed to the small-scale local yielding and fretting

at the interparticle contacts. Such a behaviour may be described in the simple

shear case by the hyperbolic equation (Hardin and Drnevich [22]):

Gs

G0
=

1

1+ |γ/γr|
(29)

where Gs is the actual secant shear modulus, G0 is the shear modulus at very

small strains and γr = τfailure/G0 is the threshold shear strain. The strain history

is represented here only by a single component of the shear strain. For general

cases, the shear strain invariant may be used:

γ=
3

2
εq =

√

3

2
eijeij (30)

where e is the strain deviator (eij = εij−
1
3 εkkδij).

Within simple elastic-ideally plastic models, which are used regularly in

practice, the fact that the stiffness decays with the accumulation of shear strains

is provided for by using constant secant stiffness moduli for the expected strains,

rather than small strain. However, this procedure may be erroneous as the

intensity of stiffness reduction relates to the loading direction and the stiffness

increases suddenly for sharp stress path reversals (Richardson [23]). In constitutive

modelling, these phenomena are possible to simulate only by a careful tracing of

the stress-strain history. Typically, additional yield surfaces are introduced in

the stress space to control and record changes of the stress path (Mróz [24],

Al-Tabbaa and Muir Wood [25], Stallebrass [26]). Other original proposals are

formulated by Simpson [27], where the loading history is captured solely in the

strain space and by Niemunis and Herle [28], where the so-called intergranular

strain is introduced, which is an additional tensorial state variable within the

hypoplastic model. These modelling methods aspire to being complete solutions

which cover all known features of the constitutive behaviour. However, their use

in routine design is rather uncommon and requires material parameter sets, which

are still far from being standardised.

In this study, a simple approach based on the well-known empirical for-

mula (29) is applied. The shear strain history will be controlled only by a scalar

variable and hence the application of the resulting model will be limited to the

monotonic loading cases. The stiffness decay of the shear modulus is introduced

into the hyperelastic stiffness (26). The resulting stiffness is no longer conserva-

tive and cannot be called hyperelastic. It may be classified as a para-elastic model

where thermodynamic considerations are abandoned.

A modification of the Hardin-Drnevich hyperbolic equation proposed by

Santos and Correia [29] is used:

Gs

G0
=

1

1+ 37γ/γ0.7
(31)

where γ0.7 is the threshold shear strain, for which the secant shear modulus G
s

drops to a value of 0.7G0. This equation is shown to give satisfactory results and it

tq414g-e/351 24III2011 BOP s.c., http://www.bop.com.pl



352 M. Cudny and P. Popielski

is implemented by Benz [30] into the new constitutive model within a commercial

finite element code. For the incremental loading in the numerical calculations, the

tangent shear modulus Gt is needed:

Gt

G0
=

(

γ0.7

γ0.7+
3
7γ

)2

(32)

After reaching a certain value of accumulated shear strain, the tangent

modulus is reduced to a very low value. However, for larger shear strains, the

strength criterion is reached and elasto-plastic stiffness is applied in the model.

Therefore, it is better to specify the minimum value for the tangent shear modulus

inside the yield surface Gt = Gtmin. In the model formulated by Benz [30], the

minimal tangent shear modulus is equal to the secant unloading-reloading shear

modulus. This cutting-off of the stiffness degradation curve is performed for the

shear strain γco, which may be calculated from the following equation:

γco=
7

3

(√

G0
Gtmin

−1

)

γ0.7 (33)

The shape of the stiffness degradation curves for tangent and secant moduli

are shown in Figure 8, where the threshold strains used in the para-elastic model

have also been indicated.

Figure 8. Stiffness reduction curves used in the para-elastic model. The decay of secant (Gs)

and tangent (Gt) shear moduli as well as the effect of the threshold parameters

γ0.7, γco are shown

The threshold strain γ0.7 is assumed to be constant and it does not depend

on the current stress level. Therefore, the stiffness decay is applied to the reference

shear modulus Gref in the Equation (25), according to:

Gref =G0

(

γ0.7

γ0.7+
3
7γ

)2

(34)
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Note that the small strain modulus G0 is also stress-dependent and should

be estimated at the reference mean pressure pref .

During the implementation of the algorithm of small strain models, it

is very important to apply a substepping scheme, since generally large strain

increments can be delivered from the main program to the stress integration

procedure. Small increments of loading are needed to avoid overshooting the non-

linear stiffness changes in the small strain region. In the calculations presented

in this article, the substepping is applied for the strain increments, the norm of

which (‖∆ε‖=
√

∆εij∆εij) is larger than 10
−5.

4. Calculations

The calculations of the boundary problem of the excavation-induced defor-

mation are performed with the finite element method. The geometry and discreti-

sation of the analysed plane strain model are shown in Figure 2. The triangular

6-node u−p quadratic elements are used in the calculations, in order to allow cou-

pled analysis of the soil skeleton deformation and varying pore-water pressure. All

calculation phases are executed using the updated mesh option, and consolidation

of all soil layers is allowed during the numerical simulation of the excavation, i.e.

dissipation and build-up of the excess pore-water pressure is possible in the same

time increment, within the analysed area. An unstructured finite element mesh is

applied with local refinement in the vicinity of structural members, where some

stress concentrations can be expected. No regularisation method is applied as the

back-analysed boundary problem concerns the pre-failure soil behaviour. However,

because no strain-softening is involved within material models, an application of

different meshes would produce some slight differences in the results.

All structural elements of the diaphragm walls and slabs are modelled

with continuum finite elements and linear elastic material characteristics (E =

3 · 107kPa, ν = 0.1). The floor slab is simulated by a single horizontal spring

element with axial stiffness EA=1.1 ·105kN/m.

The extent of the boundary problem is chosen so as to minimise the side

effects on the deformation. Sliding boundaries are used on the sides of the model,

whereas fixed boundaries are applied at the bottom. In the initial analysis, the

interaction between the slurry walls and soil was modelled alternatively with or

without interface elements. The observed deformation was not influenced by this

exchange and the mobilised wall friction angle was low. The final results are shown

for tied interfaces with local mesh refinement, both for the slurry walls and slab,

where direct sliding is further reduced by the blinding concrete interlayer.

The initial stress distribution is applied according to the K0 values given

in Figure 3. These values are obtained from dilatometric tests. In the first phase

of the calculation, the neighbouring bank building is introduced to the model.

In the next phase, the diaphragm walls are introduced by changing the material

model from a soil model to the linear elastic model, characteristic of the concrete

in the area reserved for the diaphragm walls. After this phase, all strain history
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and displacements are reset to zero. The subsequent simulation phases concern

the gradual execution of the excavation with the installation of the floor slab,

according to the documented time schedule. The bottom of the excavation was

reached after 200 days. Reloading phases related to the slab-making and finalising

of the underground part of the building were completed within the next 35 days.

4.1. Parameters of the material models

Material parameters listed in Figure 3 are obtained from standard in

situ surveys and laboratory tests on undisturbed samples. They are commonly

used in the Mohr-Coulomb model for the numerical simulations of soil-structure

interaction problems in similar local, geological conditions. The elastic moduli in

this record represent the secant stiffness of soils for typical geotechnical operations.

The parameters used in the linear anisotropic Graham-Houlsby model are

listed in Table 1. In the analysis, three values of the parameter α are examined.

For α=1.0, the model reproduces the isotropic Hooke’s stiffness and for α=1.25

and α= 1.35, the obtained anisotropic stiffness represents the behaviour of the

over-consolidated soils, where horizontal stiffness is higher than the vertical one.

For α> 1.0, the parameters E∗ and ν∗ are adjusted in such a way that the sizes

of the main axes of the response envelope are constant for different values of α. In

so doing, the parameter α controls only the rotation of the anisotropic response

envelopes relative to the orientation of the response envelope for isotropic stiffness

(α=1.0). The same degree of anisotropy is assumed for all natural soil layers.

Table 1. Stiffness parameters used in the linear anisotropic Graham-Houlsby model

α=1.0 α=1.25 α=1.35

layer ν∗= ν E∗=E ν∗ E∗ ν∗ E∗

[—] [kPa] [—] [kPa] [—] [kPa]

1 0.30 35660 — — — —

2 0.20 43200 0.25 25620 0.27 20750

3 0.20 37350 0.25 22150 0.27 17940

4 0.15 104180 0.19 65440 0.18 71810

5 0.15 84290 0.19 52940 0.20 44140

6 0.10 163290 0.13 105820 0.14 89600

In this study, the behaviour of the shallow fill (layer 1) is simulated with

the isotropic linear stiffness inside the yield locus in all calculations.

The parameters used in the non-linear hyperelastic model are listed in

Table 2. The reference shear modulus Gref and the exponent β are calculated from

the basic stiffness parameters shown in Figure 3, using relations (27) and (28).

The response of this model is compared for three different values of the reference

pressure pref , which are not routinely specified.

In the non-linear para-elastic model with stiffness degradation, the param-

eters obtained from the seismic tests are used. They are listed in Table 3. The

small strain shear moduli G0 are related to the operational Young’s moduli val-

ues shown in Figure 4. The values of the Poisson’s ratios and exponents β are
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Table 2. Stiffness parameters used in the non-linear hyperelastic model

Gref ν β preflayer
[kPa] [—] [—] [kPa]

2 18000 0.20 0.50 100/250/400

3 15560 0.20 0.50 100/250/400

4 45290 0.15 0.61 100/250/400

5 36650 0.15 0.61 100/250/400

6 74220 0.10 0.73 100/250/400

the same as in the calculations with the hyperelastic model. The minimal tan-

gent shear modulus is simply chosen relative to the small strain shear modulus as

Gtmin =G0/5. The threshold shear strain γ0.7 and the reference pressure pref are

assumed constant for all natural soil layers.

Table 3. Stiffness parameters used in the non-linear para-elastic model

G0 Gmin γ0.7 preflayer
[kPa] [kPa] [—] [kPa]

2 54170 10834 0.0001 100

3 30000 6000 0.0001 100

4 146090 29218 0.0001 100

5 146090 29218 0.0001 100

6 92730 18546 0.0001 100

4.2. Simulation results

The excavation-induced deformation of the surrounding ground is the main

focus of the simulations. Due to the over-consolidation, the soil layers exhibit

good strength properties and no significant yielding within the numerical model

is noticed. Some passive yielding is observed at the bottom of the excavation

and in the area of the diaphragm wall embedment. Generally, from the field

measurements of the analysed excavation case, as well as from the observations

of similar excavations in the same geological area, high swelling is evidenced

with maximal magnitudes located in the bottom centre. The displacement of the

excavation bottom is difficult to measure, however, it is reported to have reached

a heave of several centimetres. In the simulations, the heave of the excavation

bottom is the highest for the anisotropic model (0.058m for α = 1.35) and for

the para-elastic model (0.056m). Lower values are obtained for the hyperelastic

model (0.025m for pref =400kPa).

A precise comparison is presented for the monitored points of the bank

building foundation and the diaphragm wall at the height of the floor slab. The

time-displacement curves are shown in Figures 9–11 for anisotropic, hyperelastic

and para-elastic stiffness formulations, respectively.

The time progression of the heave observed at point A is most accurately

reproduced in the simulations with para-elastic stiffness. For linear anisotropic

stiffness, the best results are obtained for high values of the parameter α,
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Figure 9. Time-displacement curves from simulations with the linear anisotropic stiffness

for different values of the parameter α
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Figure 10. Time-displacement curves from simulations with the non-linear hyperelastic

stiffness for different values of the reference pressure pref
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Figure 11. Time-displacement curves from simulations with the para-elastic stiffness
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representing the anisotropy ratio, however, the calculated progression differs from

the measured one. Due to the constant average stiffness in this model, calculated

displacements are higher at the initial phase of the excavation. It is also important

to note that the peak value of the heave occurs long before reaching the bottom

of the excavation and the subsequent reloading phase. The shape of the time-

displacement curve is better reproduced when using the hyperelastic stiffness.

Nevertheless, the calculated heave is underestimated here.

A similar discrepancy between the calculated and measured displacements

is observed for point B, located at the back of the bank building. Here, the relative

differences are greater and, generally, the heave obtained from all simulations is

underestimated. The results of simulations with the para-elastic stiffness are in

better accordance with observations. These inaccuracies of the simulations may

be attributed to the simplified numerical model of the bank building foundation.

The calculated and measured horizontal displacements of the diaphragm

wall (point C) are in good agreement for all applied material characteristics.

In Figures 9–11 two independent measurement results of this displacement are

shown. It should be remarked that the imposed initial value of the K0 coefficient

and the axial stiffness of the floor slab, which is difficult to estimate precisely,

significantly influence the calculated horizontal displacement of the wall.

The calculated changes of the surface vertical displacements are shown in

Figure 12 for the para-elastic model, which yielded the best fit to the monitored

behaviour at points A, B and C. The distribution of the incremental displacement

Figure 12. Surface incremental displacements ∆uy at different excavation phases

from simulations with the para-elastic stiffness: (1) 1.0m excavation, 20 days;

(2) 5.0m excavation with installation of the floor-slab, 100 days; (3) 1.8m excavation, 40 days;

(4) 1.2m excavation, 20 days; (5) 1.2m excavation, 20 days; (6) installation of the base slab

and reloading, 40 days
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∆uy is shown for the successive phases of the excavation. Initially, the ground

surface displayed a decrease in the heave with the distance from the diaphragm

wall. When the excavation depth of 7.8m was reached, the area between the

bank building and the excavation started to settle, forming the distinctive trough.

However, the sum of the vertical displacements remained positive, even for the

final excavation depth before concreting the slab.

5. Conclusions

An example case of excavation is analysed by means of a FEM simulation.

Nowadays, this modelling technique is becoming favoured and is often used in

routine design. The main focus of the article was to validate calculations with

different constitutive models by comparing them with results of field monitoring.

For the chosen geometry and discretisation of the boundary problem, four

stiffness formulations were examined by comparing the calculated and measured

displacements. The applied elasto-plastic models were simple and the choice of

the material parameters was based on the documentation typically available in

practice, with the exception of small strain characteristics, which were estimated

here from seismic tests.

The influence of the anisotropy is significant and it was shown that for pa-

rameters representing high inherent anisotropy of the over-consolidated deposits,

the results are closer to the measurements, however, the predicted progression of

the ground deformation differs from the observed one. The general consequence

of increasing the anisotropy factor on the results of an excavation simulation is

a larger heave of the surrounding ground, and the occurrence of larger differences

along the monitored distance. Introducing the non-linear stress dependency of the

stiffness in the hyperelastic model with stress induced anisotropy did not improve

the predictions significantly and the observed high heave of the neighbouring

building is still simulated on the lower level. The best results are obtained for the

para-elastic formulation, where the stress dependency of the stiffness is coupled

with the degradation of the reference shear modulus with the accumulated shear

strain. An extension of such a model presented in the article is very simple and

limited to the monotonic loading or reloading.

It was demonstrated that taking into account the anisotropy and stress, as

well as strain dependency of the stiffness, in the pre-failure behaviour of over-

consolidated soils is important for realistically estimating deformation. However,

standard soil parameters available for geotechnical engineers are not sufficient

for this task. Additional testing should require the estimation of the small strain

stiffness moduli, preferably by in situ or laboratory seismic methods. The stress

dependency and anisotropy factor can be estimated from known empirical formu-

las or, in the case of important geotechnical structures, by extended laboratory

testing. For monotonic loading, small strain tangent stiffness and intermediate

secant stiffness need to be incorporated within the constitutive model, as was

exemplified in the article.
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