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Abstract: We have undertaken a comprehensive theoretical study of the band structure,

density of states, dependence of the Curie point and saturation magnetization on the size of

NiFe2O4 nanoparticles prepared by the conventional ceramic method. Commercially available

NiFe2O4 powder was first annealed in an oxygen environment in a furnace at 1100
◦C for 3h.

The X-ray diffraction pattern indicated that the sample was single-phase at this stage. The

average grain size estimated by scanning electron microscopy (SEM) was in the range of 300 to

350nm. The magnetic behavior of the sample at room temperature was studied by means of

a superconducting quantum interference device (SQUID). The Curie temperature of the nickel

ferrite powder was measured using an LCR meter. The measurement of the Curie temperature

and saturation magnetization indicated that a decrease in the grain size leads to a decrease

in the Curie temperature and in the saturation magnetization. The small value of saturation

magnetization was attributed to a spin-glass-like surface layer on the nanocrystalline nickel

ferrite with a ferrimagnetically aligned core [1]. Good agreement was obtained between theory

and experimental results.

Keywords: band structure calculation, nickel ferrite nanopowder, Curie temperature, spin-

glass

1. Introduction

There is a growing interest in magnetic ferrite nanoparticles, owing to

their wide applications in permanent magnets, magnetic drug delivery, microwave

devices [2] and high-density information storage technology [3, 4]. Spinel ferrites

have the general molecular formula (A2+) [B3+2 ] O
2−
4 , where A

2+ and B3+ are
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divalent and trivalent cations, respectively, occupying the tetrahedral (A) and

octahedral (B) interstitial positions of the fcc lattice formed by O2− ions. Nickel

ferrite (NiFe2O4) is an inverse spinel in which the tetrahedral or A-sites are

occupied by ferric ions, and the octahedral or B-sites – by ferric and nickel ions.

Thus, the compound can be represented by the formula: (Fe3+)[Ni2+Fe3+]O2−4 .

The magnetic structure is generally assumed to be of the Néel collinear type,

i.e. the magnetization of the A sublattice is antiparallel to that of the B sub-

lattice [5].

This material is widely used in electric and electronic devices, as well

as in catalysis [6, 7]. In the present study, we investigated the synthesis of

nanocrystalline NiFe2O4 powders using the conventional ceramic method by

annealing the powders at high temperature (1100◦C). The Curie temperature,

saturation magnetization and hysteresis (M-H) loops as a function of powder grain

size were investigated. In the theoretical calculations, the renormalization group

method is applied to investigate the Curie temperature and magnetization. The

experimental results and theoretical calculations are compared and dependence of

the Curie temperature and magnetization to the particle sizes are studied. Finally

the band structure and density of states (DOS) are calculated for Nickel ferrite

using Pickett and Hohenberg-Kohn DFT.

2. Experiment

Polycrystalline nickel ferrite was first synthesized by the conventional

ceramic method. In order to produce nickel ferrite (NiFe2O4), nickel oxide (Ni2O3)

and iron oxide (Fe2O3) were mixed at a molar ratio of 1 : 2 (Ni2O3 + 2Fe2O3→

NiFe2O4 + 1/2O2). This was followed by annealing the mixture in an oxygen

environment in a furnace at 1100◦C for 3h.

In order to investigate the formation of a nickel ferrite phase in the powder,

the structure of the sample was studied by X-ray diffraction and the average

grain size was estimated by scanning electron microscopy (SEM). The obtained

nickel ferrite was then milled in a steel cylinder of a SPEX high-energy shaker

mill for 10h. The mill cylinder was loaded with 10g of NiFe2O4 (with a purity of

99.95at. %) and 30g of steel balls. The mill was set to shake at a frequency of ca.

1200Hz. The milled sample was annealed at 500◦C for 5h. The Curie temperature

of the samples was measured by an LCR meter. The measurements of magnetic

properties and magnetization were performed using a superconducting quantum

interference device (SQUID) magnetometer. The hysteresis (M-H) loops of the

samples were studied.

2.1. Crystal structure

Figure 1 shows the XRD pattern of the sample prepared by the conventional

ceramic method. Several strong and sharp peaks attributed to the face-centered

cubic NiFe2O4 phase with a lattice constant of 8.33Å are visible [8]. The SEM

image of a similar sample (Figure 2) illustrates the general morphology and

indicates the high yield of the NiFe2O4 octahedron phase. The octahedron faces
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Figure 1. X-ray diffraction pattern of NiFe2O4 powder sample prepared by the conventional

ceramic method

Figure 2. Scanning electron microscopy image of NiFe2O4 powder sample prepared

by the conventional ceramic method

can be distinguished. The size distribution of the octahedra ranges from 300 to

350nm.

2.2. Curie temperature measurement

The measurements of Curie temperatures for both bulk and nanocrystalline

nickel ferrites were performed with an LCR meter. The results are shown in

Figures 3 and 4, respectively. The Curie temperature of nanocrystalline nickel

ferrite was lower than that of the bulk material (Figures 3 and 4). A decrease in

inductance with an increase in temperature can be explained on the basis of Néel

theory [9]. In fact, the intrinsic magnetization vanishes at the Curie temperature,

therefore, the smaller the size of the particle, the lower the Curie temperature.

2.3. Magnetization measurement

The magnetization curve as a function of the applied magnetic field was

obtained with a SQUID magnetometer (Figure 5).
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Figure 3. Inductance versus temperature for bulk NiFe2O4. The Curie temperature was

measured to be 570◦C

Figure 4. Inductance versus temperature for nanocrystalline NiFe2O4. The Curie

temperature was measured to be 517◦C

Figure 5. Magnetization versus the applied magnetic field
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The saturation magnetization of nanocrystalline NiFe2O4 at 300K was

measured to be 24emu/g. This value was significantly lower than 55emu/g

reported for multidomain bulk NiFe2O4 [10]. The small value of saturation

magnetization (as compared with that measured for multidomain bulk NiFe2O4)

has been recently explained in terms of the core-shell morphology of nanoparticles

consisting of ferrimagnetically aligned core spins and a spin-glass-like surface

layer [1]. If this surface layer was absent, the saturation value of magnetization of

the particles would increase with the applied magnetic field up to a particular

magnetic field, whereas the core magnetic moments would be aligned in the

applied field. Nanoparticles which have a large surface-to-volume ratio exhibit

enhanced spin disorder in contrast to large (micron-size) particles when the

magnetizations are measured in the same applied magnetic field and at the same

temperature [1]. The magnetic moment anomalies of the surface layer can be

attributed to broken exchange bonds, the high-anisotropy layer on the surface, or

to the loss of the long-range order in the surface layer. These effects are more

pronounced in the case of ferrites because of the superexchange interactions

between the oxygen ions. The presence of another atom (ion) in the form of

impurity or the absence of oxygen ions on the surface leads to the breakage of

superexchange bonds between magnetic cations, inducing a large surface spin

disorder [11]. The superexchange interaction depends on the bond angles and

bond lengths, which would be different on the surface due to the termination of

bonds [12].

3. Theoretical calculations

3.1. Band structure and density of states (DOS)

The bands were calculated using the method outlined by Pickett [13], and

by Hohenberg-Kohn DFT [14]. A summary of the method and its applications was

presented by Devreese and Van Camp [15], therefore the method is only outlined

here.

Starting with the N -electron problem in the field of ionic potentials:

Vion(r)=
∑

m

vion(r−Rm) (1)

with the ions fixed at positions Rm, we have the Hamiltonian:

H =
∑

i

p2i
2m
+

∫
n(r)Vion(r)dr+

1

2

∫∫
n(r)v(r−r′)n(r′)drdr′ (2)

where n(r) is the electronic density at r and v(r−r′) is the Coulomb interaction.

Hohenberg and Kohn established that there is a one-to-one correspondence

between the ionic potential Vion (to within an arbitrary constant) and the ground

state density n, and therefore the many-body problem can be considered as

a functional of the density rather than as a functional of the potential [14].

Hohenberg and Kohn established that for variations δn of the energy density

which conserve the particle number N , the ground-state energy functional E[n]
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is minimized by the ground-state density, with corrections of order δn2. The

resulting variational principle allows one to accurately obtain numerical results.

Kohn and Sham [16] recast the energy functional into the form:

E[n] =T0[n]+

∫
Vion(r)n(r)dr+

1

2

∫∫
n(r)v(r−r′)n(r′)drdr′+Exc[n] (3)

where T0[n] is the kinetic energy of the system of non-interacting electrons with

the same density n(r), and the exchange-correlation energy Exc[n] is defined by

this expression (3). If one has adequate approximations for T0[n] and Exc[n], the

energy can be obtained directly from Equation (3) by minimizing the energy with

respect to n(r). T0[n] can be obtained exactly from the kinetic energies of the

one-particle wave-functions:
[
p2

2m
+Veff(r; n)

]
ψi(r)=Eiψi (4a)

Veff(r; n)=Vion(r)+

∫
v(r−r′)n(r′)dr′+vxc(r; n) (4b)

n(r)=

occ∑

i

|ψi(r)|
2 (4c)

where

vxc(r; n)=
δExc[n]

δn
(r) (5)

The energy functional is minimized by the density functional described by these

equations, and the energy is obtained by iteration to self-consistency. Within

density-functional theory, the one-electron eigenvalues and eigenfunctions have no

physical meaning, and are not physically realizable. They are the true excitation

energies and eigenfunctions of the system of non-interacting electrons, which has

the same density as the interacting material of interest; they arise from the

„external” potential Veff . This system is not physically realizable, but has an

interesting connection to the excitations. When well-defined quasi-particles exist

(i.e., their widths are much less than their energies), they are described by the

non-Hermitian problem:
(
p2

2m

)
ψi(r, Ei)+

∫
M(r, r′, Ei)ψi(r

′, Ei)dr
′=Eiψi(r) (6)

This equation bears a formal resemblance to the Kohn-Sham eigenvalue equation

(4a). In many solids, angle-resolved photoemission studies have shown that the

bands from Equation (4a) bear a close resemblance to the single-particle excita-

tions in the region of the fundamental band gap. The self-energy is well represented

by a local, real, energy-independent, effective potential Veff . Conversely, when the

excitations do not correspond directly to the calculated bands, one can conclude

that the non-locality or energy-dependence of the self-energy is necessary for an

understanding of the excitations. The lack of correspondence between calculated

bands and observed excitations does not in itself invalidate the formalism for
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obtaining ground-state properties. The exchange-correlation functional Exc[n] re-

mains unknown. The large majority of calculations invokes the highly successful

local-density approximation.

Exc[n] =

∫
εxc(n(r))n(r)dr (7)

where ε(n) is the exchange-correlation energy-density of the homogeneous in-

teracting electron gas of density n, which is known. Reviews containing discus-

sions of applications of density functional theory and of the generalization to

spin-polarized systems are given, for example, in the book by Devreese and Van

Camp [15]. The results of calculations of the band structure and the density of

states for NiFe2O4 are presented in Figure 6.

Figure 6. Results of our calculations of the band structure and the density of states (DOS)

for NiFe2O4

From the shape of the partial density of states it follows that the density

of states near the Fermi level is in practice completely determined by the d-states

of Fe (with rather insignificant contribution of the p-states of O).

3.2. Curie point and saturation magnetization

The renormalization group method was applied to the investigation of

the dependence of the Curie point and saturation magnetization on the size of

nanoparticles. Previously, the renormalization group method (scaling) was used

only for bulk crystals (infinite lattice). For the infinite lattice, two parameters were

introduced: the correlation radius rc and the size r0 of the solid section, in which
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the mean-square fluctuation was compared with its characteristic equilibrium

value. In the nanoparticle, which consists of one domain, the correlation radius rc
was compared with the lattice size. Theoretical estimations and their comparison

with experiment showed that the renormalization group method was applicable to

nanoparticles. Section 4 describes the critical point exponents typical of a second-

order phase transition. Section 5 describes the dependence of the Curie point

and saturation magnetization on the size of the nanoparticles obtained by the

renormalization group method.

4. Thermodynamic functions and critical behavior

For systems where the interactions are short-ranged, isotropic coupling, i.e.

the interaction Hamiltonian [17] was introduced:

H{~sx}=Hiso. exch.=−
1

2

∑

x, x′

J(x−x′)~sx ·~sx′ (8)

Let us consider a ferromagnet in equilibrium at temperature T and under the

action of a uniform magnetic field H. We will use the reduced temperature [18]:

t=
T −TC
TC

(9)

where TC is the critical temperature (or Curie, or Néel point) and consider

properties as → 0 with H = 0. In this regime, the initial susceptibility diverges

as [19]:

χ0(T )≈
C

tγ
(10)

The specific heat in zero field displays a critical anomaly which may be charac-

terized by:

CH=0(T )≈
A

tα
(11a)

or, more usefully in practice, by:

CH=0(T )≈ Ã
t−α−1

α
(11b)

Classical theory predicts only a jump discontinuity in C(T ). The scaling theory

of critical behavior now asserts that the singular part of the free energy F (T, H)

varies asymptotically as:

f(T,H)=−(kBT )
−1Fsing(T,H)≈ t

2−αY
H

t∆
(12)

where the gap exponent ∆ is determined in terms of α and γ by:

∆=
1

2
(2−α+γ) (13)

For a fluid the magnetic field H is to be replaced by the chemical potential

difference µ−µσ(T ), where µσ(T ) is the value on vapor pressure curve and its

linear extension [19]. The scaling function Y (y) depends only on a single variable,
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but is not otherwise given explicitly by the theory. From Equation (11b) we find

the spontaneous magnetization vanishes when t→ 0 as:

M0(T )≈B|t|
β (14a)

where the exponent is predicted by the exponent relation:

β=
1

2
(2−α−γ) (14b)

In addition, it follows that the equation of state M =M(T, H) can be written

asymptotically in the reduced or scaled form:

M

tβ
≈W

H

t∆
(15)

where W (y) is again a single-variable scaling function.

In addition to thermodynamic behavior, the variation of the scattering

intensity with wave vector q , and temperature, is of particular interest in the

critical region. This is proportional to:

Ĝ(x , T )=
∑

x

exp(iq ·x )G(x , T ) (16)

where the basic two-point correlation function is:

G(x , T )=
〈
~S0 · ~Sx

〉
(17)

in which ~Sx denotes a (localized) spin at site x . At the critical point itself, one

has:

GC(x )≈
DC

xd−2+η
, or Ĝ(q)≈

D̂C

q2−η
,

as x→∞, or q→ 0

(18)

As t→ 0 (in ero field) scaling predicts the form:

G(x, T )≈x−d+2−ηD

(
x

ξ

)
, ξ∼ t−ν (19)

where ξ is the correlation length or, equivalently:

Ĝ(q , T )≈Ct−γD̂
q2

t2ν
(20)

The correlation length exponent is given by:

ν=
γ

2−η
(21)

The scaling function D̂(z2) represents the scattering „line shape” near

TC . When η > 0, it must necessarily deviate from a simple Lorentzian (or OZ,

Ornstein-Zernike) form close to the critical point, although this may be hard to

detect.
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The exponent for the critical isotherm δ:

H ∼M δ (22)

the lattice sites will have coordinate vectors x =(xi) with i=1, 2, .. . d, where d is

the spatial dimensionality. By habit we normally consider only d=3, 2 and 1. It

will turn out later that, having defined continuous d, the difference:

ε=4−d (23)

forms a natural and important small parameter.

Once we have a lattice with sites x , we must populate it with spins ~Sx .

We suppose the spin vector has n components, i.e. ~Sx =(S
µ
x ) with µ=1, 2, .. . n,

which enter equally into interactions. The basic cases for the symmetry index are:

(a) n=3, ordinary or Heisenberg spins, ~S=(Sx,Sy,Sz);

(b) n=2, XY or „planar” spins, ~S=(Sx,Sy);

(c) n=1, uniaxial or Ising spins, ~S=Sz.

The last, Ising-like case also describes classical density fields as appropriate

to fluids, alloys, etc. The n=2 or XY -like case includes quantal fields since the

wave function Ψ= (Ψ′, Ψ′′) has independent but equivalent, real and imaginary

components.

One exponent scaling relation remains:

d
δ−1

δ+1
=2−η (24)

One of the most important outputs of the practical renormalization group

calculations has been expansions for the critical exponents. In leading order

in ε (> 0) the deviations from classical behavior for systems with isotropic short

range exchange are revealed by:

γ=1+
(n+2)

2(n+8)
ε+
(n+2)(n2+22n+52)

4(n+8)3
ε2+

(n+2)

8(n+8)3

[
(n+2)2+

24
(n+2)(n+3)−(10n+44)ζ(3)

(n+8)
+4
55n2+268n+424

(n+8)2

]
ε3+O(ε4)

(25)

β=
1

2
−

3

2(n+8)
ε+ . .. (26)

α=
4−n

2(n+8)
ε+
(n+2)2(n+28)

4(n+8)3
ε2+ . . . (27)

η=
n+2

2(n+8)2
ε2+

n+2

8(n+8)2

[
24(3n+14)

(n+8)2
−1

]
ε3+

n+2

2(n+8)2

[
−5n2+234n+1076

16(n+8)2
−

8
3n2+53n+160+3(5n+22)ζ(3)

(n+8)2
+45
(3n+14)2

(n+8)4

]
ε4+O(ε5)

(28)

δ=3+ε+ .. . (29)

where ζ(3)=
∞∑
k=1

1

k3
≈ 1.2020569 (Riemann function).
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5. Discussion

Nickel ferrite (NiFe2O4) is an inverse spinel, which has a three-dimensional

structure: d = 3, ε = 4− d = 1. It was assumed that for the three-dimensional

Heisenberg spin, n=3. During the investigation of a second-order phase transition

by the scaling approach, in the case of bulk crystals two characteristic sizes were

used, which determine the space distribution of fluctuations – the correlation

radius rc and the size r0 of the solid section, in which the mean-square fluctuation

of the order parameter was compared with its characteristic equilibrium value.

The condition for the applicability of the Landauer theory is rc>>r0. For t→ 0,

an increase in r0 is more substantial than in rc, whereas on the boundary of the

Landauer regime they are equal. From the theoretical point of view, the most

important assumption about the fluctuation regime (i.e. everywhere r0 ∼ rc)

is that: within this regime the small parameter is practically absent [20]. For

nanoparticles, r0 corresponds to their characteristic size. A nanoparticle can be

considered as one domain. In the case of the bulk crystal it can be assumed

that the sizes are infinite and thus the surface effects can be neglected, however,

in the case of nanoparticles, the finite size should be taken into account. The

Curie point of the bulk crystal was denoted with Tc0 . The Curie point of the

nanoparticle was lower than that of the bulk crystal: Tc < Tc0 . This can be

explained by the exchange interactions between O2− ions and by the strain of

bonds on the boundary of the nanoparticle, which destroys the spin correlation.

In nanoparticles Tc0 plays the role of the usual temperature. The results obtained

for the critical exponents were as follows:

α=0.19102, β=0.23121, γ=1.34656, η=0.03161,

∆=1.57777, ν=0.68409, δ=4.81615
(30)

It was assumed that the size of the nanoparticles was 10nm. Using the results

from [21, 22] as a starting point, the Curie temperatures and dependences of

magnetization due to the magnetic field, as calculated by the renormalization

group method for the nanoparticles, are presented in Figures 7–9. The results are

in good agreement with experimental data.

6. Conclusions

Nanocrystalline nickel ferrite was synthesized using the conventional ce-

ramic method and exhibited a Curie temperature of 517◦C.This value was lower

than that obtained for bulk nickel ferrite (570◦C). A decrease in the saturation

magnetization of the magnetic nanocrystalline nickel ferrite, as compared with the

bulk ferrite, can be explained in terms of a two-component nanoparticle system

consisting of a spin-glass-like surface layer and a ferrimagnetically aligned core.

Theoretical calculations, performed by the renormalization group method (scal-

ing), also predict the Curie temperature of the nanoparticles to be lower than that

of the bulk crystal. This can be explained by the presence of exchange interactions
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Figure 7. Dependence of magnetization on the magnetic field strength for the nanoparticles

with size of 5nm, Tc=424.01
◦C

Figure 8. Dependence of magnetization on the magnetic field strength for the nanoparticles

with size of 20nm, Tc=550.76
◦C

between O2− ions and by the strain of bonds on the boundary of the nanopar-

ticle, which destroys the spin correlation. The dependence of magnetization on

the magnetic field strength for the nanoparticles (5, 20 and 50nm in size) shows

that a decrease in the grain size leads to a decrease in the magnitude of the sat-

uration magnetization. The theoretical calculations were in good agreement with

experimental data.
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