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Abstract: This paper presents a new analytical method of finding streamlines for creeping flows

in a ring cascade composed of an infinite number of infinitely thin blades. An analytical solution

was obtained by minimizing the dissipation functional by means of the variational calculus. The

necessary condition for the optimum of the functional yields the Stokes equation after certain

additional assumptions are introduced. We considered different variants of fixing of the inlet

and outlet of the cascade.
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Notation
D – strain-rate tensor

Dij – strain-rate tensor components

f,F – function

~g – acceleration due to gravity

g – metric-tensor determinant

gij – metric-tensor components

J – functional

Nd – dissipation power

N – dissipation functional

p – pressure

r – radius

R1 – inner radius (outlet)

R2 – outer radius (inlet)

Re – Reynolds number

Ur – radial velocity component

Uϕ – angular velocity component

U i, Ui – ith velocity component

xi – ith coordinate
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72 K. Tesch and M. Banaszek

α – inlet angle

β – outlet angle

γ1 – outlet position (angle)

γ2 – inlet position (angle)

Γijk – Christoffel symbols

µ – dynamic viscosity

τ – pitch

ρ – density

ϕ – angle

φµ – dissipation function

ψ – stream function

Ω – considered flow domain

∇4 – bilaplacian operator
⊳ – angle (α or β)

1. Introduction

Creeping, steady-state flow is considered, together with the additional

assumption of axial symmetry. Creeping flow occurs when Re≪ 1. This condition,
however, is not satisfied for typical technical applications in cascade flows.

Therefore, the methods presented here are mostly of cognitive and academic

value. Despite the fact that the assumption of Re≪ 1 is not satisfied for cascade
flow, there are other interesting applications of this type of flows (see [1, 2]).

A very important feature of creeping flows is worth mentioning here, i.e. they

are characterized by the minimum possible dissipation. This feature follows from

Helmholtz’s theorem [3].

Firstly, we present the governing equations along with their representation

by means of stream functions. Secondly, we give the analytical solution in terms

of the velocity field. This solution was utilized to validate the variational solution

discussed later. The variational method consists in minimizing the dissipation

functional, which is also presented here. This functional takes several forms

depending on the exact way the ends are fixed. A discussion of the relationship

between the dissipation functional and the equation of motion follows. Finally,

several solutions are presented.

Certain analytical solutions of similar problems involving bladeless ring

cascades can be found in [4, 5]. New analytical solutions presented here apply

to cascades made of an infinite number of infinitely thin blades. Also, a new,

analytical method of finding streamlines is discussed here. This method is far

more general than the direct solution of the governing equations in terms of the

velocity field.

1.1. Conservation equation in curvilinear coordinate systems

Because of the shape of the cascade (see Figure 1), it is most convenient to

express the conservation equations in a coordinate system in which they exhibit

the simplest form. The mass conservation equation for the incompressible case
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does not simplify, however, under the Re≪ 1 assumption. In any curvilinear
coordinate system, it reads:

∂

∂xi

(√
gU i

)

=0 (1)

The Navier-Stokes equations without nonlinear terms simplify to:

gjk
∂p

∂xj
=
2µ√
g

∂
(√
gDik

)

∂xi
+2µDilΓkil (2)

Also, the assumptions of incompressibility and constant viscosity µ were intro-

duced along with the steady-state character of the flow. The strain-rate tensor is

given by:

Dik =
1

2
gilgkm

(

∂Um

∂xl
+
∂Ul

∂xm

)

−gilgkmΓjlmUj (3)

In cylindrical coordinates (or polar on a plane), we have r := xi, ϕ := x2,

z :=x3. The metric tensor in this case takes the form:

(

gij
)

=





1 0 0
0 r−2 0
0 0 1



 (4)

The determinant of the metric tensor is written here as g =
∣

∣(gij)−1
∣

∣= r2. The

nonzero Christoffel symbols are Γ122 = −r, Γ212 = Γ221 = 1r . Therefore, the mass
conservation equation (1) and the two components of the Stokes equations (2) for

the directions r and ϕ can be now rewritten as:

∂

∂r
(rUr)+

∂Uϕ

∂ϕ
=0 (5a)

1

µ

∂p

∂r
=
1

r

∂

∂r

(

r
∂Ur

∂r

)

+
1

r2
∂2Ur

∂ϕ2
− Ur
r2
− 2
r2
∂Uϕ

∂ϕ
(5b)

1

µ

∂p

∂ϕ
=

∂

∂r

(

r
∂Uϕ

∂r

)

+
1

r

∂2Uϕ

∂ϕ2
− Uϕ

r
+
2

r

∂Ur

∂ϕ
(5c)

The above system (5) is closed. The unknown functions are the velocity com-

ponents Ur, Uϕ and pressure p. The uniqueness of this system with prescribed

boundary conditions was first proved by Helmholtz [6].

γ
1

|γ
1

−
γ
2 |

−
β

−
α

− γ
2

τ

R 1

R 2

Figure 1. Scheme and description
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The concept of the stream function ψ can be introduced according to

the following definitions: Ur =
1

r
∂ψ
∂ϕ
and Uϕ =−∂ψ∂r . The alternative definitions:

Ur = − 1r
∂ψ
∂ϕ
and Uϕ =

∂ψ
∂r
are also possible. Both definitions satisfy the mass

conservation Equation (5a). After differentiating Equation (5b) with respect to

ϕ and (5c) with respect to r and subsequent subtracting one from the other, we

obtain:

1

r

∂

∂r

(

r
∂

∂r

(

1

r

∂

∂r

(

r
∂ψ

∂r

)))

+
2

r2
∂4ψ

∂r2∂ϕ2
+
1

r4
∂4ψ

∂ϕ4
− 2
r3

∂3ψ

∂r∂ϕ2
+
4

r4
∂2ψ

∂ϕ2
=0 (6)

The above equation is the so-called biharmonic equation in polar coordinates.

A shorter version of this equation reads ∇4ψ = 0. Goursat [7] proved that a
general solution of this equation exists. We point out that although Equation (6)

corresponds to the system (5), it is of fourth order.

1.2. Dissipation function and dissipation power

In polar, physical coordinates, the strain rate tensor (3) takes the form:

D=

(

∂Ur
∂r

1

2

∂Uϕ
∂r
+ 1
2r
∂Ur
∂ϕ
− Uϕ
2r

1

2

∂Uϕ
∂r
+ 1
2r
∂Ur
∂ϕ
− Uϕ
2r

1

r

∂Uϕ
∂ϕ
+ Ur

r

)

(7)

The same tensor expressed in terms of the stream function ψ reads:

D=

(

1

r
∂2ψ
∂r∂ϕ
− 1
r2
∂ψ
∂ϕ

1

2r2
∂2ψ
∂ϕ2
+ 1
2r
∂ψ
∂r
− 1
2

∂2ψ
∂r2

1

2r2
∂2ψ
∂ϕ2
+ 1
2r
∂ψ
∂r
− 1
2

∂2ψ
∂r2

1

r2
∂ψ
∂ϕ
− 1
r
∂2ψ
∂r∂ϕ

)

(8)

By means of this tensor, it is possible to express the dissipation function φµ =

2µD2 as [3]:

φµ=
µ

r4

(

4

(

∂ψ

∂ϕ
−r ∂

2ψ

∂r∂ϕ

)2

+

(

∂2ψ

∂ϕ2
+r

(

∂ψ

∂r
−r ∂

2ψ

∂r2

))2
)

(9)

The dissipated power is defined as:

Nd=

∫∫

Ω

φµrdrdϕ (10)

where the considered flow domain Ω is the following subset of the plane Ω :=

{(r,ϕ) : r∈ [R1,R2];ϕ∈ [0,τ ]}.

2. Analytical solutions

In this section, we discuss the analytical solution of the system (5) for an

axially symmetric geometry. This case can also be regarded as a cascade composed

of an infinite number of infinitely thin blades. Formally, this is the case where all

the streamlines are identical with respect to rotation around the symmetry axis.

From this arises an additional assumption, i.e. ∂
∂ϕ
=0.

It may be shown that for axial symmetry, there exists a solution of the

system (5). This system now simplifies to:

d

dr
(rUr)= 0 (11a)
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1

µ

dp

dr
=
1

r

d

dr

(

r
dUr
dr

)

− Ur
r2

(11b)

0= r
d2Uϕ
dr2
+
dUϕ
dr
− Uϕ

r
(11c)

We are dealing with ordinary differential equations. The first one, i.e. Equa-

tion (11a), can be integrated and gives the analytical solution Ur = c1r
−1. This

solution can be substituted into Equation (11b). This results in dp
dr
= 0, which

means that the pressure is constant in the entire flow domain, p= c2. The last

Equation (11c) is an ordinary differential equation in terms of Uϕ. Its solution

takes the form Uϕ= c3r
−1+c4r. Finally, the system (11) is integrated to:

Ur =
c1

r
(12a)

p= c2 (12b)

Uϕ=
c3

r
+c4r (12c)

In view of the axial symmetry, the biharmonic equation ∇4ψ = 0 (6)
simplifies to:

1

r

d

dr

(

r
d

dr

(

1

r

d

dr

(

r
dψ

dr

)))

=0 (13)

This is also the case with the strain rate tensor (8), which takes the following

form:

D=

(

∂Ur
∂r

1

2

∂Uϕ
∂r
− Uϕ
2r

1

2

∂Uϕ
∂r
− Uϕ
2r

Ur
r

)

(14)

Following the same line of reasoning, the dissipation function (9) simplifies to:

φµ=
µ

r4

(

2

(

∂ψ

∂ϕ

)2

+2

(

∂ψ

∂ϕ
−r ∂

2ψ

∂r∂ϕ

)2

+r2
(

∂ψ

∂r
−r ∂

2ψ

∂r2

)2
)

(15)

3. Dissipation functional

The assumption of axial symmetry results in a set of identical streamlines f ,

which depend only on the coordinate r. The following form of the stream function

ψ may be proposed [3]:

ψ(r,ϕ) :=
ϕ−f(r)

τ
(16)

It cannot be determined whether this function satisfies the biharmonic Equa-

tion (13), since the function f is unknown. The problem is now reduced to the

search for the single-variable function f instead of the two-variable function ψ.

The form of ψ (16) is fully determined by f .

3.1. Form of the functional

The dissipation function (15) or (9) takes the following form by virtue

of (16):

φµ=
µ

r4τ2

(

4+r2 (f ′−rf ′′)2
)

(17)
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The dissipation power (10) may now be rewritten as an iterated integral for any

pitch τ (Figure 1):

Nd=

τ
∫

0

R2
∫

R1

φµrdrdϕ (18)

What is important is that the form (16) allows us to integrate the dissipation

power once, since it explicitly depends on ϕ. On the basis of Equations (17)

and (18), we have:

Nd=
µ

τ

R2
∫

R1

1

r3

(

4+r2 (f ′−rf ′′)2
)

dr (19)

The above integral is a certain functional which depends on the radius r and the

function f together with its derivatives (up to the second). Symbolically, this can

be written as:

N [f ] =

R2
∫

R1

F (r,f,f ′,f ′′)dr (20)

The necessary condition for the optimum of this functional, in the general case

with unconstrained ends, takes the form [8]:

R2
∫

R1

(

∂F

∂f
− d
dr

∂F

∂f ′
+
d2

dr2
∂F

∂f ′′

)

δf dr+

(

∂F

∂f ′
− d
dr

∂F

∂f ′′

)

δf
∣

∣

R2

R1
+
∂F

∂f ′′
δf ′
∣

∣

R2

R1
=0 (21)

Therefore, the optimization problem consists in the search for a streamline f

which would minimize the functional (20). The form of the function f results

from the necessary condition (21). This condition can simplify, if certain additional

assumptions are introduced. This is discussed later.

3.2. Dissipation functional vs. equations of motion

The method presented here consists in choosing the function f (streamlines)

which would minimize the functional (19). However, the essential question is

whether the solution obtained by minimizing the functional satisfies the equations

of motion (11). To answer this question, we need the functional which yields the

Stokes equations as a result of a necessary condition. The general form of this

functional is [3]:

J =

∫∫

Ω

(

ρ
∂~U

∂t
· ~U−ρ~g · ~U−p∇· ~U+µD2

)

dΩ (22)

The necessary condition δJ =~0 yields the Stokes equations ρ∂
~U
∂t
= ρ~g−∇p+µ∇2~U .

In this case, we deal with steady-state flow ∂
∂t
=0 and we neglect mass forces. In

this case the functional (22) simplifies to:

J =

∫∫

Ω

(

−p∇· ~U+µD2
)

dΩ (23)
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From the necessary condition, we obtain Equation (2) in absolute notation

∇p= µ∇2~U . From solution (12) of the system (11), it follows that the pressure
is constant and therefore, ∇p=~0 and J =

∫∫

Ω

µD2dΩ. This means that 2J =Nd

where Nd is defined by means of (17)–(19). This guarantees that the minimization

of the dissipation functional Nd, which yields the streamlines f , leads to a solution

that satisfies the Stokes equation (for constant pressure). Additionally, one can

consider only the cases with one end unconstrained and with both ends partially

constrained (when the angles are known). This is discussed in Section 4. The

above reasoning does not apply to the Navier-Stokes equations, since they are

non-linear and there is no classical variational formulation such as (22) [9].

However, there is a non-classical variational formulation which can be used for

the non-linear Navier-Stokes equations. This means that dissipation is not the

only component of the functional and there is no guarantee that the streamlines

f , which arise from the minimization of the functional, satisfy the equations of

motion.

4. Streamlines

4.1. Both ends constrained

Here we deal with the case where the angle α and the position γ2 are known

at the inlet and the angle β and the position γ1 (Figure 1) are known at the outlet.

From the necessary condition (21), we obtain the Euler equation in the following

form:

∂F

∂f
− d
dr

∂F

∂f ′
+
d2

dr2
∂F

∂f ′′
=0 (24)

Since both ends are constrained, so are the appropriate variations δf |Ri =0 and
δf ′|Ri = 0. From the Euler equation (24) for the functional F , we obtain an
ordinary differential equation of the fourth order:

f ′

r3
− f

′′

r2
+
2f ′′′

r
+f IV =0 (25)

This equation should be solved together with the following boundary conditions

f(R1) = γ1, f(R2) = γ2, f
′(R1) = tanβ, f

′(R2) = tanα. The general solution of

Equation (25) is the function f (streamline):

f(r) :=C1+C2r
2+C3 lnr+C4r

2 lnr (26)

It can be easily verified that the solution (26) satisfies the biharmonic Equa-

tion (13). After calculating the stream function (16), the velocities Ur, Uϕ and

the pressure p, we find that the second equation of motion (11b) gives 0=4C4τ
−1.

This means that the pressure does not satisfy the axial symmetry condition and

thus the problem with both ends constrained it too general (too stiff). In addition,

all the following solutions must satisfy the condition C4=0. Only then, the axial
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symmetry condition is satisfied for all the variables. Finally, the most general form

of the solution of Equation (25) has the form:

f(r) :=C1+C2r
2+C3 lnr (27)

4.2. One end partly constrained

Two cases are possible. In the first one, we know one of the angles α or β.

In the second, we know the position γ1 or γ2.

4.2.1. Known angle

Here, we know both angles: the inlet angle α and the outlet angle β. We look

for one of the positions γi. This requires δf
′|Ri = 0 and δf |R1 6= 0 or δf |R2 6= 0.

From the necessary condition (21), we obtain an additional equation:
(

∂F

∂f ′
− d
dr

∂F

∂f ′′

)∣

∣

∣

∣

r=Ri

=0 (28)

The solution must satisfy this condition together with the Euler equation (24).

It can be shown that the additional condition (28) for the functional F can be

reduced to −4C4r−2
∣

∣

Ri
=0, which yields C4=0. Therefore, the solution (26) takes

the form (27). This means that the problem with one end partly constrained (with

constrained position) is well-formulated.

The known position serves as a reference point and its value has no sig-

nificance, owing to the axial symmetry of the function f . The boundary con-

ditions take the form f ′(R1) = tanβ, f
′(R2) = tanα. For the sake of simplic-

ity, the additional reference point can be assumed as f(R2) = 0. In so do-

ing we deal with two partly constrained ends (constrained position). The solu-

tion of Equation (27) together with the discussed boundary condition has the

form:

f(r) :=
2R1R2 (R1 tanα−R2 tanβ)ln r

R2
−
(

r2−R22
)

(R2 tanα−R1 tanβ)
2(R2

1
−R2

2
)

(29)

By using formula (16) and the definition of the stream function it can be shown

that the velocity Ur = τ
−1r−1. This means that the constant c1 in Equation (12a)

equals c1= τ
−1. The velocity is then:

Uϕ=
1

τ (R2
1
−R2

2
)

(

r(R1 tanβ−R2 tanα)+
R1R2

r
(R1 tanα−R2 tanβ)

)

(30)

which means that the constants in Equation (12c) take the form:

c3=
R1R2 (R1 tanα−R2 tanβ)

τ (R2
1
−R2

2
)

(31)

c4=
R1 tanβ−R2 tanα

τ (R2
1
−R2

2
)

On the basis of Equations (19) and (29) one can calculate the dissipated

power. Figure 2 presents the dissipation power as a function of the angles α and

β. The dissipation is dimensionless, that is to say it is divided by the value of
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Figure 2. Dimensionless dissipation power as a function of the angles α and β for R2
R1
=4

the dissipation for α=β=0◦. There is no minimum value in the form of a point.

However, there is a line of minimum dissipation crossing the point (0◦,0◦). Here,

the slope is identicalto that of the other isolines.

Figure 3 shows the wrap-around angle |γ1−γ2| as a function of the angles
α and β. The minimum value was obtained for α= β=0◦. The largest values of

the wrap-around angles |γ1−γ2|→∞ are obtained for (α,β)→ (−90◦,−90◦) and
(α,β)→ (90◦,90◦).

The stream function ψ defined by Equation (16) is shown in Figure 4.

Examplary streamlines, obtained from Equation (29), are shown in Figure 6,

where α=−80◦. The outlet angles vary from −80◦ to 80◦ with a step of 10◦.

4.2.2. Known position

Here, we know both positions: the inlet γ2 and the outlet γ1. We look for

either the inlet angle α or the outlet angle β. This requires that the variations

δf |Ri = 0 and δf ′|R1 6= 0 or δf
′|R2 6= 0. From the necessary condition (21), we

obtain an additional equation in the following form:

∂F

∂f ′′

∣

∣

∣

∣

r=Ri

=0 (32)
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Figure 3. Wrap-around angle of the streamlines as a function of the angles α and β

for R2
R1
=4

Figure 4. Stream function ψ for α=−80◦, β=80◦, R2
R1
=4

tq115g-e/80 8V2012 BOP s.c., http://www.bop.com.pl



Variational Method of Finding Streamlines in Ring Cascades for. . . 81

Figure 5. Stream function ψ for α=−80◦ and R2
R1
=4

Figure 6. Streamlines as a function of β for α=−80◦ and R2
R1
=4

which must be satisfied together with the Euler equation (24). The additional

Equation (32) for the functional F simplifies to C3=C4r
2
∣

∣

Ri
. This leads to the

following form of the streamline:

f(r) :=C1+C2r
2+C4

(

R2i +r
2
)

lnr (33)

The above solution does not have the admissible form (27). This means that

the pressure is not axially symmetric. Therefore, the case with one end partially

constrained (in the form of a known angle) was too stiff and hence not well-formed

(C3=C4R
2
i 6=0).
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Figure 7. Streamlines as a function of the inlet angle α for R2
R1
=4

4.3. One end unconstrained

Here, we know either the inlet position γ2 and inlet angle α or the outlet

position γ1 together with the outlet angle β. This requires that the variations

δf ′|Ri = 0 and δf |Ri 6= 0. Apart from the Euler equations (25), additional
conditions (28) and (32) must be satisfied. This is the combination of the two

previously discussed cases, where C3=C4R
2
i =0. From Equation (26) follows the

general solution:

f(r) :=C1+C2r
2 (34)

The specific solution of (34) must satisfy the following boundary conditions

f(Ri) = γi, f
′(Ri) = tan⊳, where Ri ∈ {R1,R2}, ⊳∈ {α,β}. From this conditions

we obtain the specific solution:

f(r) := γi+
r2−R2i
2Ri

tan⊳ (35)

The solution is valid both for the unconstrained inlet and the unconstrained outlet.

From Equation (16) and the definition of the stream function, it follows that

the velocity Ur = τ
−1r−1, which means that c1 in Equation (12a) c1 = τ

−1. The

velocity Uϕ= rR
−1

i τ−1 tan⊳, which means that the constants in the solution (12c)

take the form c3=0 i c4=R
−1

i τ−1 tan⊳.

The dissipation power as a function of the inlet or outlet angle can be

calculated on the basis of Equations (19) and (35). In both cases, this power is

constant and for a pitch τ =2π it equals:

Nd=
µ

π

(

1

R2
1

− 1
R2
2

)

(36)

Figure 5 shows the distribution of the stream functions ψ calculated by

means of Equation (16). The streamlines corresponding to the solution (35) are

shown in Figure 7. This is the case with the unconstrained outlet. The shortest
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Figure 8. Outlet angle β as a function of the inlet angle α for R2
R1
=4
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Figure 9. Wrap-around angle as a function of the inlet angle α for R2
R1
=4

streamlines are obtained for the angles 0◦. The larger the angle (a step of 5◦

was used), the larger the wrap-around angle. Figure 8 presents the values of the

unconstrained outlet angle β as a function of the inlet angle α. Figure 9 shows

the distribution of the wrap-around angle |γ1−γ2| as a function of the inlet angle.
For the extreme position ⊳→−90◦, the wrap-around angle |γ1−γ2|→∞.

5. Conclusions

It is possible to find an analytical solution of the Stokes equation for an

axially symmetric geometry in terms of the velocity field. This can be done by

direct integration of the system (11). Furthermore, it is even possible to find

a solution of the biharmonic equation (13) using the proposed decomposition of
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the stream function (16). Basing on these solutions, one cannot determine whether

further relaxations of the inlet and outlet are possible, since there are no additional

conditions that can be imposed on the solution. A far more general method

was presented here that allowed us to overcome these difficulties. This method

consists in the minimization of a dissipation functional by means of the variational

calculus. This allows to formulate additional conditions to be imposed on the

solution. Moreover, this method allows to obtain further solutions depending on

how the inlet and the outlet are fixed and to find the solutions which are too

stiff. Such analytical solutions were obtained and presented here. Also, a detailed

discussion of the relationship between the dissipation functional and the Stokes

equation was given in order to clarify when and where this method could be

applied.
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