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Abstract: During the past few years, the process of miniaturisation in the field of biochemical

laboratory equipment led to the introduction of the so-called “lab-on-a-chip” microdevices, which

combine separate functional units into a complex, multifunctional apparatus. Fluid dynamics

plays an essential role in the development of such equipment, since frequently the major part of

chemical analysis is based on soluble analytes. In this work, we consider a device for the analysis

of cell growth under different conditions.

In this device, dozens of cell spots absorb the nutrient (analyte) from the liquid medium.

The concentration of the analyte must be strictly controlled to maintain a specific microenvi-

ronment. A two-dimensional model for the flow field and the distribution of concentration of

the analyte is developed taking into account the geometrical shape of the spot with a simplified

absorption model. The dependence of the results on the controlling parameters is investigated

in order to determine the influence of the presence of the cell spot on the distribution of the

analyte.

Keywords: microfluidic device, lab-on-a-chip, advection-diffusion equation, Taylor dispersion

1. Introduction

In the device considered in this work, we investigate the growth of stem cells

consuming a nutrient [1, 2]. The considered domain is a shallow channel, in which

the fluid moves slowly transporting the analyte (nutrient) to the spots of cells.

Such an interrogation chamber can be connected to other microfluidic elements,

such as micropumps or mixers, in order to create a complete microanalysis

system [3, 4]. Each cell spot distributed along the channel consumes the nutrient

from the liquid medium, resulting in a depletion area. The rate of smoothing of

the depleted wake is of major interest, as it affects the microenvironment of the

cells downstream.
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This work does not constitute the first attempt to develop a model for

the flow in the considered type of microdevice. A model for the concentration

distribution in a simplified channel with parallel horizontal walls has already been

proposed [5]. The consumption of the analyte by the cells was described using

Michaelis-Menten kinetics, which is a fairly complex and realistic description,

taking into account the dependence of the intensity of consumption on the

concentration of the nutrient.

In the present work, the stationary flow around a single cell spot is studied,

with full consideration of the geometrical shape of the spot itself. For simplicity,

the cell consumption is represented by a prescribed consumption flux.

1.1. Governing equations

The distribution of concentration c = c(x,y,z) for incompressible flow is

governed by the advection-diffusion equation of the following form:

∂c

∂t
+u ·∇c=D∇2c (1)

The equation describes a conservation law for the total flux of the nutrient,

which consists of two terms – a convective term, due to the fluid flow (u=u(x,y,z)

– velocity vector), and a diffusive term – due to the molecular diffusion in the fluid

(D – diffusion coefficient). In the steady case considered in this paper, the local

time derivative ∂c
∂t
vanishes. To solve the problem, the velocity distribution is

required, This distribution is governed by the Navier-Stokes equation:

(u ·∇)u+ 1
ρ
∇p−ν∇2u=0 (2)

where p= p(x,y,z) is the pressure, and the continuity law:

∇u=0 (3)

These two problems are uncoupled, therefore first we calculate the velocity

field, subsequently inserting the results into the advection-diffusion equation.

Solving problems in their three-dimensional form is time-consuming and

thus not suitable for working with a large set of parameters. Therefore, we

developed a two-dimensional model by averaging the equations over the vertical

direction. A distribution of the averaged concentration was obtained, which

we believe to contain all the crucial information about the problem. During

the averaging of the advection-diffusion equation, additional terms of lower

order appear. The treatment of these terms, described in the following sections,

constitutes the focal point of this work.

1.2. Taylor dispersion

The effect of Taylor dispersion is encountered in shear flows with diffusion,

where an increase in the effective diffusivity can be observed. It was first described

by Taylor in his seminal work on dispersion in pipe flow [6]. If a spot of

a concentrated analyte in a channel is considered, high gradients of concentration

in the longitudinal direction are observed on the borders of the spot. In a constant
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Figure 1. Transport of the spot of concentrated analyte in a constant velocity field; the short

vectors on the borders of the spot represent the flux due to diffusion

velocity field, the spot is transported downstream, with diffusion acting solely in

the longitudinal direction (Figure 1).

In the case of shear flow, e.g. of a parabolic shape, Equation (26), the

spot is stretched and the diffusion acts also in the transverse direction, relatively

quickly smoothing out the gradient of concentration, due to a different spatial scale

H/L= ǫ≪ 1 and a larger surface on which the gradient is distributed (Figure 2).

Figure 2. Transport of the spot of concentrated analyte in a parabolic velocity field

The described effect was first observed for unsteady cases and proved to

be of crucial importance. Still, if the stationary advection-diffusion equation is

averaged over the transverse direction of the flow, there appears a correction to

the diffusion coefficient, which is a function of the average velocity. The Study

Group [5] obtained the correction for the case of a channel with two parallel

plates. In this paper, a similar procedure is undertaken for the case of a channel

of variable height, taking into account the presence of the spot. A correction to

the diffusion coefficient with both components of velocity is obtained.

1.3. Scaling of the problem

We derive a set of equations describing the flow in a thin domain, whose

height varies slowly due to the presence of the cell spot at the bottom of the

channel (Figure 3). The shape of the bottom of the channel is described by a given

function h(x,y).

An important insight into the flow in the considered domain is gained after

a suitable transformation of the governing equations (3)–(2) into dimensionless

form. This procedure helps us distinguish the most important terms in the

equations. The key parameter that determines the scale for the spatial variations

in the flow is the diameter of the cell spot Rs. It is assumed to be significantly

larger than the height H of the domain, therefore the aspect ratio ǫ is:

ǫ=
H

Rs
≪ 1 (4)
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Figure 3. Domain

These parameters, together with the characteristic flow velocity u0, deter-

mine the scale for the components of the velocity vector u= [u,v,w], u=u(x,y,z),

v= v(x,y,z), w=w(x,y,z) and the pressure p(x,y,z):

(x∗,y∗)=
(x,y)

Rs
, z∗=

z

H
, h∗=

h

H
(5)

(u∗,v∗)=
(u,v)

u0
, w∗=

w

ǫu0
, p∗=

pH2

ρνRsu0
(6)

where “∗” denotes dimensionless variables. In order to determine a suitable value
for the constant that would provide the dimensional scaling of velocity in the

z direction, we balanced all the terms in the continuity equation (3), assuming
u0
Rs
∼ w0
H
and w0∼ ǫu0. For the pressure, we balanced the leading terms of the N-S

equation (2), in the sense of ν u0
H2
∼ 1
ρ
p0
Rs
.

Owing to such scaling, the dimensionless form of the continuity equation

has a simple form:

∂u∗
∂x∗
+
∂v∗
∂y∗
+
∂w∗
∂z∗
=0 (7)

Hereinafter we omit “∗” for convenience. The dimensionless Navier-Stokes equa-
tion for each component has the form:

ǫRe

(

u
∂u

∂x
+v
∂u

∂y
+w
∂u

∂z

)

+
∂p

∂x
−ǫ2

(

∂2u

∂x2
+
∂2u

∂y2

)

− ∂
2u

∂z2
=0 (8)

ǫRe

(

u
∂v

∂x
+v
∂v

∂y
+w
∂v

∂z

)

+
∂p

∂y
−ǫ2

(

∂2v

∂x2
+
∂2v

∂y2

)

− ∂
2v

∂z2
=0 (9)

ǫ3Re

(

u
∂w

∂x
+v
∂w

∂y
+w
∂w

∂z

)

+
∂p

∂z
−ǫ4

(

∂2w

∂x2
+
∂2w

∂y2

)

−ǫ2 ∂
2w

∂z2
=0 (10)

where

Re=
u0H

ν
(11)

is the Reynolds number. According to the estimates provided in [5], Table 1 reports

typical values of the parameters for the considered type of microdevice.
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Table 1. Typical values of relevant dimensional parameters

Symbol Parameter Size Unit

H Height of the channel 10−4−10−5 m

Rs Diameter of the cell spot 10−3 m

Hs Height of the cell spot 2−5 ·10−6 m

u0 Mean velocity ∼ 10−5 m/s

ν Kinematic viscosity of the fluid 0.725 ·10−6 m2/s

c0 Input bulk concentration 10−6−10−4 mol/m3

D Diffusion coefficient 10−11−10−10 m2/s

Lc Distance between two spots 10−2 m

According to this, the Reynolds number is expected to be equal to 10−3.

Obviously, ǫ = H
Rs
∼ 10−1 − 10−2 satisfies the previous assumptions (4). The

Navier-Stokes equations can be approximated to the leading order as:

∂p

∂x
=
∂2u

∂z2
(12)

∂p

∂y
=
∂2v

∂z2
(13)

∂p

∂z
=0 (14)

As can be seen from Table 1, the height of the spot can be in the range of

0.02 to 0.5 of the height of the channel. This means that, in general, the influence

of the shape of the spot on the velocity field should be taken into account.

The flow in the microdevice is pressure-driven and is characterised by low

values of the Reynolds number, therefore it is expected to be laminar. The analyte

can only move in the direction transverse to the flow by means of diffusion.

By scaling the concentration as c∗ =
c
c0
and using the earlier assumptions for

the remaining variables (5)–(6), we obtain the dimensionless advection-diffusion

equation in the form:
(

u
∂

∂x
+v
∂

∂y
+w
∂

∂z

)

c=
1

Pe

(

∂2

∂x2
+
∂2

∂y2

)

c+
1

ǫ2Pe

∂2

∂z2
c (15)

where

Pe=
Rsu0
D
∼ 102−103 (16)

is the Peclet number, which is the measure of the ratio of the strength of advection

with respect to the diffusion in the considered problem.

2. Fluid flow around a single cell spot

2.1. Boundary conditions

To complete the formulation of the problem, the boundary conditions (BCs)

need to be specified. The inlet and outlet can be represented by x∈{0,L}, while
the vertical walls of the computational domain are given by y ∈ {0,W}. Owing
to the presence of the cell spot, only the top of the channel is flat (z=0), while
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the bottom profile is described by z = h= h(x,y) ∈ (0,1] (Figure 3), and can be
defined using the function:

F (x,y,z)=h(x,y)−z (17)

with F (x,y,z)= 0.

One can define the vector normal to the bottom of the channel as:

n|z=h=
∇F
|∇F | =

1
√

(

∂h
∂x

)2
+
(

∂h
∂x

)2
+1

[

∂h

∂x
,
∂h

∂y
,−1

]

(18)

For the pressure, the constant values at the inlet and the outlet and a no-

flux BCs at the side walls are assumed:

p|x=0= pin, p|x=L= pout (19)

∂p

∂y

∣

∣

∣

∣

y={0,W )

=0,
∂p

∂z

∣

∣

∣

∣

z=0

=0, n ·∇p|z=h=0 (20)

The last condition can be rewritten using the vector n, Equation (18) as:

∂p

∂z

∣

∣

∣

∣

z=h

= ǫ2
(

∂h

∂x

∂p

∂x
+
∂h

∂y

∂p

∂y

)
∣

∣

∣

∣

z=h

(21)

For the velocity, the no-slip condition on the horizontal walls of the channel reads:

u|z={0,h}=0 (22)

The value of the velocity is expected to remain constant in the areas of the inlet,

outlet and the vertical side walls of the computational domain:

∂u

∂x

∣

∣

∣

∣

x={0,L}

=
∂u

∂y

∣

∣

∣

∣

y={0,W}

=0 (23)

2.2. Calculation of the pressure and velocity fields

From the third dimensionless Navier-Stokes equation (14) it is clear that

the pressure does not depend on the z coordinate, therefore p = p(x,y). Now,

using the no-slip boundary conditions (22) it is easy to solve the two remaining

N-S equations (12)–(13) for u and v, obtaining:

[u,v] =−1
2
z(h−z)

[

∂p

∂x
,
∂p

∂y

]

(24)

The above equations show that the vertical components of the velocity

are proportional to the gradient of the pressure and that the velocity profile is

parabolic in the z direction. This flow is known in the literature as Hele-Shaw
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flow. The velocity field can be calculated as soon as the pressure distribution is

known. The vertically-averaged velocity is defined as:

[ū, v̄] =
1

h

∫ h

0

[u,v]dz=−h
2

12

[

∂p

∂x
,
∂p

∂y

]

(25)

Owing to the above equation, we can write:

[u,v] = [ū, v̄]
6

h2
z(h−z) (26)

By using the continuity equation (7) along with the above relations, the z

component of the velocity can be calculated as:

w=−6
(

z2

2h
− z

3

3h2

)(

∂ū

∂x
+
∂v̄

∂y

)

+6

(

z2

2h2
− 2z

3

3h3

)(

ū
∂h

∂x
+ v̄
∂h

∂y

)

(27)

By using the derivatives of the obtained solutions of the N-S equation (24)

and the no-slip boundary conditions (22), the continuity equation (7) can be

integrated along the z direction to obtain:

∂

∂x

(

h3
∂p

∂x

)

+
∂

∂y

(

h3
∂p

∂y

)

=0 (28)

The above equation can be solved numerically, together with the given

boundary conditions (19)–(20). The values pin and pout are chosen so that the

average velocity calculated with Equation (25) using a finite difference is equal to

u0.

The above equation is similar to the equation of the two-dimensional

stationary heat transfer in a non-homogeneous medium without sources [7]. It

was solved using the finite volume method [7, 8] on a regular 2D mesh of

control volumes (CVs) by integrating Equation (28) over each control volume. To

calculate the fluxes between the CVs, we assumed a linear distribution of pressure

between the nodes and a constant distribution of height over the boundaries of

the CVs. As a result, a single algebraic equation was obtained for each node.

To solve this set of algebraic equations, the alternating-direction implicit

(ADI or line-by-line) method was used [8]. In this method, having chosen initial

values for all the grid points, the values for a single grid line are treated as

unknowns and all values in the neighbouring nodes – as given. A resulting

tridiagonal matrix must be solved using e.g. the Gaussian elimination algorithm.

The procedure is repeated for each line in both directions in order to complete

one iteration of the method. Iterations are repeated until a prescribed convergence

condition is satisfied.

When the pressure field is known, the averaged velocity field (25) can be

calculated numerically with finite differences. The velocity field is given at the

boundaries of the control volumes. A staggered grid of this type is particularly

suitable for the given uncoupled problem and can be easily incorporated into the

advection-diffusion equation.
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3. Transport of the analyte

3.1. Advection-diffusion equation

Owing to the continuity equation (7), the advection-diffusion equation (1)

can be written in the form:

∂

∂x
(uc)+

∂

∂y
(vc)+

∂

∂z
(wc)=

1

Pe

(

∂2

∂x2
+
∂2

∂y2

)

c+
1

ǫ2Pe

∂2

∂z2
c (29)

To formulate the problem, suitable boundary conditions for the concentration

must be imposed. A given value of concentration c0 at the inlet is assumed, which

in the dimensionless form translates into c|x=0=1, and a no-flux condition at the
walls is also assumed. In particular, for the upper boundary we have:

∂c

∂z

∣

∣

∣

∣

z=0

=0 (30)

As for the lower boundary, we assume the flux δ
D
q(x,y) generated by the

consumption of the analyte by the cells. The dimensionless function q(x,y)

describes the spatial distribution of the intensity of consumption, while δ is the

dimensional flux magnitude. The vector n is normal to the lower boundary and

is directed towards the fluid. The BC can be written as:

n ·∇c|z=h=n ·
c0
Rs

[

∂c

∂x
,
∂c

∂y
,
1

ǫ

∂c

∂z

]∣

∣

∣

∣

z=h

=
δ

D
q (31)

The flux into the surface of the cell significantly depletes the fluid from

the analyte. Therefore, the uptake on the length Rs is expected to be similar

to the flux, i.e. Rsδ ∼ u0Hc0. Therefore, Rsδc0D = ǫPe. Using the vector normal to
the bottom of the channel (18), and expanding it into a Taylor series

√
1+ǫx=√

1+ ǫ2x+ . .., we can write:

∂c

∂z

∣

∣

∣

∣

z=h

=−ǫ2Peq+ǫ2
(

∂h

∂x

∂c

∂x
+
∂h

∂y

∂c

∂y

)∣

∣

∣

∣

z=h

−O
(

ǫ4Pe
)

(32)

We will subsequently neglect terms of order ǫ4Pe.

3.2. Averaged advection-diffusion equation

To calculate the average of the advection-diffusion equations (15) and (29),

a suitable averaging operator is defined as:

〈 〉=¯= 1
h

∫ h

0

dz (33)

Using one of the basic rules of calculus for the function G(x,y) =
∫ h(x,y)

0
g(x,y,z)dz, the derivative can be obtained:

∂

∂x
G(x,y)=

∫ h(x,y)

0

∂

∂x
g(x,y,z)dz+g(x,y,z)|z=b(x,y)

∂h

∂x
(34)

The second derivative can be calculated similarly, yielding:
∫ h

0

gxdz=(hḡ)x−g|hhx (35)
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∫ h

0

gxxdz=(hḡ)xx−
(

2gxhx+ghxx+gzh
2
x

)∣

∣

h
(36)

The subscripts x, y and z denote derivatives with respect to corresponding

coordinates.

Due to the above relations and suitable boundary conditions (22), the

averaged continuity equation has a simple form:

(hū)x+(hv̄)y =0 (37)

Under the boundary conditions (22), (30)–(32), Equation (29) can be

averaged, yielding:

ǫ2Pe((h〈uc〉)x+(h〈vc〉)y)= ǫ2 ((h〈c〉)xx+(h〈c〉)yy)+
−ǫ2 (cxhx+chxx+cyhy+chyy)|h−ǫ2Peq+
+ǫ4

(

h2x+h
2
y

)[

(hxcx+hycy)|h−Peq
]

(38)

In order to arrive at the equation for the averaged quantities, the average

velocity and concentration need to be separated from the components that depend

on the z coordinate:

u(x,y,z)= ū(x,y)+u′(x,y,z) (39)

c(x,y,z)= c̄(x,y)+c′(x,y,z) (40)

where the average of the last term in both equations is equal to zero:
∫ h

0

u
′(x,y,z)dz=

∫ h

0

c′(x,y,z)dz=0 (41)

It is assumed that:

c′≪ c̄ (42)

This assumption is valid when transverse diffusion almost smoothed out the

variation in the z-direction on the length scale L. In the mathematical sense,

this can be written as:

L≫ H
2

4D
ū (43)

where H
2

4D is the characteristic time after which the molecules travel from the

middle of the channel to the wall. Using (4) and (16), this can be rewritten as:

1

4
ǫ2Pe≪ 1 (44)

As was shown before, the flow in the domain of interest can be classified as

Hele-Shaw flow, thus the vertical distribution of the x and y components of the

velocity is parabolic (26). Therefore, the changing part of the x and y components

of the velocity can be approximated with the expression:

[u′,v′] =−[ū, v̄]
(

6z2

h2
− 6z
h
+1

)

(45)

The equations include terms of different orders. From the assumption (44)

and (4) one can find the following relations:

ǫ4≪ ǫ4Pe≪ ǫ2≪ ǫ2Pe≪ 1 (46)

We will subsequently neglect terms of order smaller than ǫ2.
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By inserting the separated quantities into the averaged equation (38), the

following equation is obtained:

ǫ2Pe((hūc̄)x+(hv̄c̄)y+(h〈u′c′〉)x+(h〈v′c′〉)y)= ǫ2 ((hc̄)xx+(hc̄)yy)+
−ǫ2(c̄hx)x−ǫ2(c̄hy)y−ǫ2 (c′xhx+c′hxx+c′yhy+c′hyy)

∣

∣

h
−ǫ2Pe q

(47)

Subsequently, the varying part of the concentration c′ must be estimated

in order to find the averages that depend on it (〈u′c′〉 and 〈v′c′〉). To achieve
this, the averaged equation (47) is subtracted from the main equation (15) and

rewritten in terms of the separated variables (39)–(40).

The previous assumption on c′ (42) allows us to introduce the varying part

of the concentration in an expanded form:

c′= c′0+ǫ
2Pec′1+ . .. (48)

If the terms of order smaller than ǫ2Pe are neglected, the following is obtained

after the averaged continuity equation (37) is invoked:

ǫ2Pe
(

hūc′0x+hu
′c′0x−(h〈u′c′0〉)x+hv̄c′0y+hv′c′0y−(h〈u′c′0〉)y+ w̄c′0z+w′c′0z

)

=

=−ǫ2Pe(hu′c̄x+hv′c̄y)+hc′0zz+ǫ2Pehc′1zz+ǫ2Peq
(49)

The first-order part of the above equation has the form c′0zz =0, which can

be easily solved using the conditions (30) and (41), to find:

c′0=0 (50)

The lower-order (ǫ2Pe) of the expanded equation is:

c′1zz =u
′c̄x+v

′c̄y−
q

h
(51)

The lower-order equation is solved using estimation of u′ and v′ (45) and the

conditions (30), (41), as previously, to find:

c′1=−
(

z4

2h2
− z
3

h
+
z2

2
− h

2

60

)

(ūc̄x+ v̄c̄y)+q

(

h

6
− z
2

2h

)

(52)

We then combine the formulas for u′ and v′ (45) with c′ (48), (50), (52) to

estimate the averages:

〈u′c′〉=−ǫ2Pe
(

c̄yh
2ūv̄

210
+
c̄xh
2ū2

210
− hqū
60

)

(53)

〈v′c′〉=−ǫ2Pe
(

c̄xh
2ūv̄

210
+
c̄yh
2v̄2

210
− hqv̄
60

)

(54)

Finally, if the above averages along with the calculated estimates of c′ (48),

(50), (52) are inserted into (47), the final form of the averaged advection-diffusion

equation is obtained:

J̄xx + J̄
y
y =S (55)

where the averaged total fluxes J̄x, J̄y and the source term S are defined as

follows:

J̄x=hūc̄− 1
Pe
hc̄x−

ǫ2Pe

210
h3
(

c̄yūv̄+ c̄xū
2
)

(56)
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J̄y =hv̄c̄− 1
Pe
hc̄y−

ǫ2Pe

210
h3
(

c̄xūv̄+ c̄y v̄
2
)

(57)

S=−ǫ
2Pe

60

[

(

h2qū
)

x
+
(

h2qv̄
)

y

]

−q (58)

Not only does the diffusive part of the equation include a correction due to

the velocity, but also the source term includes terms of lower order. After these

terms are neglected, the averaged advection-diffusion of the first order can be

obtained as:
(

hūc̄− 1
Pe
hc̄x

)

x

+

(

hv̄c̄− 1
Pe
hc̄y

)

y

=−q (59)

The difference between the solutions of the two equations allows us to study the

influence of the corrections on the main result. It is worth noticing that the first-

order equation defined above no longer depends on ǫ. Clearly, ǫ influences only

the corrections, therefore, as our results, we only present the distribution of the

concentration for the general case (h, Pe).

3.3. Numerical scheme

To numerically solve the averaged advection-diffusion equation (55), the

finite volume method was used, just as in case of the pressure equation (28). This

time, however, the equation is similar to the equation of the two-dimensional

stationary heat transfer in a non-homogeneous medium, but with the source term

present [7].

To obtain a suitable numerical scheme, the averaged advection-diffusion

equation (55) was integrated over the control volumes. In order to achieve this,

the surface integrals over the CV (S) were transformed into integrals over its

contour (∂S), using the 2D Gauss (divergence) theorem:
∫ ∫

S

∇J̄ ds=
∫

∂S

J̄ndl (60)

for J̄ = (J̄x, J̄y), where n is the outward-pointing unit vector normal to the

boundary of the CV at a given point, and∇ is the 2D divergence operator. The left
part of the equation was integrated over each boundary of the CV and the source

term – over its volume. The distribution of the velocity, the height of the channel

and the total fluxes over the boundaries of the CV were assumed to be constant,

just as the distribution of the source term over the volume. Owing to this, the

fluxes can be taken out of the integrals; also the terms with the c̄y derivative in

the J̄x flux and the c̄x derivative in the J̄
y flux (56)–(57) are lost. Nevertheless,

these derivatives can be considered as terms of lower order, since they are taken

in the directions parallel to the walls meaning they do not significantly affect the

fluxes.

There are several ways to estimate the distribution of concentration between

two nodes. In the central scheme, this distribution is assumed to be linear. For the
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value on a boundary i+ 12 located between nodes (i,j) and (i+1,j), this results

in the following expressions for the concentration and its derivative:

c̄i+ 1
2

=
c̄i+1,j+ c̄i,j
2

(61)

c̄x;i+ 1
2

=
c̄i+1,j− c̄i,j
∆x

(62)

where ∆x is the distance between two nodes in the regular grid. Such scheme is

not always valid, as it is expected that under the influence of a strong fluid flow,

the value of the concentration on the boundary does not depend on the value

at the node that lies downstream the flow. Therefore, in the upwind scheme, the

value on the boundary is taken from the node situated upstream:

c̄i+ 1
2

= c̄i,j , for ūi+ 1
2

> 0 (63)

c̄i+ 1
2

= c̄i−1,j , for ūi+ 1
2

< 0 (64)

Since a constant value of the concentration in the area of the wall has been

implicitly assumed, the derivatives are equal to zero. The transport of the analyte

in the given direction is governed solely by advection.

Both schemes are valid only for certain values of the Peclet number,

therefore the mixed hybrid scheme [8] is used, in which the central scheme is

used for small values of the Peclet number while the upwind scheme is used for

the large ones. Owing to this method, the coefficients of the numerical scheme

will never be negative (which could explain the instability of the central scheme

for the large values of the Peclet number). A detailed discussion of this problem

is, however, beyond the scope of this work.

If the flow is assumed to satisfy the continuity equation (7) in the numerical

sense, for each node (i,j) with the four neighbouring nodes (i±1,j), (i,j±1) and
four boundaries of the CV (i± 12 ), (j± 12 ), the hybrid scheme yields an algebraic
equation in the form:

ai,j c̄i,j = ai−1,j c̄i−1,j+ai+1,j c̄i+1,j+ai,j+1c̄i,j+1+ai,j−1c̄i,j−1−si,j (65)

where the coefficients are given by:

ai+1,j =hi+ 1
2

max

[

−ūi+ 1
2

,
1

Pe∆x

(

1+
ǫ2Pe2h2

i+ 1
2

ū2
i+ 1
2

210

)

−
ūi+ 1

2

2
,0

]

(66)

ai−1,j =hi− 1
2

max

[

ūi− 1
2

,
1

Pe∆x

(

1+
ǫ2Pe2h2

i− 1
2

ū2
i− 1
2

210

)

+
ūi− 1

2

2
,0

]

(67)

ai,j+1=hj+ 1
2

max

[

−v̄j+ 1
2

,
1

Pe∆x

(

1+
ǫ2Pe2h2

j+ 1
2

v̄2
j+ 1
2

210

)

−
v̄j+ 1

2

2
,0

]

(68)

ai,j−1=hj− 1
2

max

[

v̄j− 1
2

,
1

Pe∆x

(

1+
ǫ2Pe2h2

j− 1
2

v̄2
j− 1
2

210

)

+
v̄j− 1

2

2
,0

]

(69)
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si,j =
ǫ2Pe

60

(

h2
i+ 1
2

qi+ 1
2

ūi+ 1
2

−h2
i− 1
2

qi− 1
2

ūi− 1
2

)

+

+
ǫ2Pe

60

(

h2
j+ 1
2

qj+ 1
2

ūj+ 1
2

−h2
j− 1
2

qj− 1
2

ūj− 1
2

)

+qi,j∆x (70)

ai,j = ai+1,j+ai−1,j+ai,j+1+ai,j−1 (71)

This set of equations is solved using the ADI method, as in the case of

the pressure equation. To obtain a numerical scheme for the simplified first-order

averaged equation (59), it suffices to neglect the terms of order ǫ2Pe in the above

formulae.

4. Validation

4.1. Parallel plates

To validate the numerical scheme for the transport equation, we simulated

a simple case of a flat domain without any consumption of the analyte. In such

a case, we have c = c(x,y,z), u = u(x,z), v (x,y,z) = 0, w(x,y,z) = 0, q = 0

and h=const. These variables are inserted into the averaged advection-diffusion

equation (55) to obtain:

(ūc̄)x−
ǫ2Pe

210

(

c̄xū
2
)

x
− 1
Pe
(c̄xx+ c̄yy)= 0 (72)

The obtained results were compared with the result of the experiment performed

by Kraus et al. [9], in which a dye with a diffusion coefficient of D = 5.68 ·
10−10 m2/s was added to the flow in a square reaction chamber of 1 cm×1 cm
and investigated through the light transmission measurement. The height of the

channel was H = 525 µm and the overall flow rate was equal to 61 µL/min,

which corresponds to an average flow velocity of u0=1.936 ·10−4 m/s. The flow is
laminar, as the Reynolds number is Re= u0H

ν
≈ 0.14. The inlet of the dye is said

to be located in the centre of the channel. The average flow velocity is assumed

to approximate the velocity in the centre of the channel averaged over the z-

direction, therefore the channel can be approximated by the infinite parallel plate

model, neglecting the influence of the vertical side walls. Bruus [10] discovered

that the difference in flux between the exact and approximated solution is of the

order of 23% for an aspect ratio between the height and width of the channel

of 1/3, and 7% for 0.1. Assuming the error varies linearly with the aspect ratio,

the error caused by the presence of side walls is expected to be around 3% in

the present case, where H/B=0.0525, which we believe to be acceptable for the

current purpose.

Because of the lack of the cell spot, the length of the computational domain

L=1 cm was chosen for the spatial scale for the model, yielding an aspect ratio of

ǫ=0.0525 and the value of the Peclet number for the whole domain of Pe=3408.

These values are somewhat outside the domain of usability of the present model,

yielding ǫ2Pe≈ 9.4, compared to (44). Nevertheless, the results are expected to
qualitatively agree with experiment.
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According to the well-known model of light absorption in soluble matter,

the change of light intensity dI(x,y) due to absorption by an infinitesimal layer

of fluid dz is dI =−αcI dz. The equation can be solved to obtain the formula for
the light intensity as a function of the concentration of the nutrient:

I(c)= e−αc (73)

The normalisation parameter α was chosen so as to reflect given results [9].

Figure 4 presents both the measured and calculated absorption profile

obtained by Kraus et al. [9]. The graphs show the light intensity profiles for

ten crossections of the channel, equally spaced along the x-axis. The employed

computational model was based on the analytical solution for a point source.

Kraus et al. [9] conclude that an overall broadening very similar to the one

measured was observed, although the unexpectedly high absorption profile at

the centre of the stream was not reflected by the computational model. This is

believed to be due to local 3D effects near the injection geometry and due to

velocity gradients in the (x,z)-plane, which were not taken into account in the

simulation. The model employed was not able to make use of the exact absorption

profile measured at the inlet, therefore a step function was used.

Figure 4. Results obtained by Kraus et al. [9]. The left panel presents the calculations

performed by Kraus et al. using the model based on the superposition of analytical solutions

for point sources; the right panel presents the results of the experiment. The narrowest line

corresponds to the absorption profile measured at the inlet. The other profiles were measured

with 1 mm increments in the x-position

Figure 5 presents the results obtained using the proposed model. Calcu-

lations were performed for two cases of the boundary conditions at the inlet –

a step function and the exact distribution obtained from the experiment using

Equation (73). The results for a step function are very similar to the numerical

results obtained by Kraus et al. Unfortunately, incorporating the exact conditions

at the inlet did not significantly affect the results. As the current model takes the

velocity gradients in the (x,z)-plane into account as a Taylor dispersion correction
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(Figure 6), the additional variations in the concentration that were measured are

believed to be due to other 3D effects. The Taylor dispersion correction obtained

for the given case is of significant order, however, the set of parameters (Pe, ǫ) for

the given problem was slightly outside the assumed range of the values allowed

for the model.

Figure 5. Results obtained with the current method. The left panel corresponds

to the simplified distribution at the inlet, the right panel corresponds to exact

inlet conditions taken from the experimental results (Figure 4)

Figure 6. Influence of the Taylor dispersion correction across the channel, computed with the

current method for the case described in [9]. The plot presents the difference between

normalized light intensities calculated with and without the Taylor dispersion correction

4.2. Flow around a cell spot

A qualitative test for the validity of numerical calculations of the laminar

flow around a cell spot was proposed by Walker et al. [11], who suggest that the

treatment of the cell spot with two laminar fluid streams requires the interface

between the streams to be positioned exactly in the middle of the spot. Otherwise,

the laminar flow would cause the spot to be exposed to the contents of only one

stream. Such a numerical experiment was performed using the proposed method.

To represent a round spot with a unit radius, a particular function was chosen:

h(r)=

{

1− 1+cos(r
2π)

2 hf if r≤ 1
1 if r > 1

(74)
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where r is the distance from the centre of the spot, and the parameter hf is

the fraction of the height of the channel occupied by the cell spot in its centre.

A particular case, where the computational domain is a rectangle 5×12, with the
spot located at (2.5,3) is shown in Figure 7. The size of computational area and

the location of the cell spot, together with the parameters r and h, are given in the

dimensionless form (5)–(6). The velocity field obtained for hf =0.5 is presented in

Figure 8. The concentration distribution at the inlet was given in the form of a step

function, resembling the case with two streams, one of which carries the analyte.

The interface between the streams was set slightly off the centre of the spot.

Figure 7. Graph of a particular cell spot for the case hf =0.5

Figure 8. Velocity field around the spot; hf =0.5; the colour indicates the magnitude

of the velocity vector

The numerical calculations for the concentration distribution were per-

formed for Pe=2000, ǫ=0.02. The results (Figure 9) clearly reflect the behaviour

described in [11]. The interface between the two streams is effectively pushed away

from the spot. This can be clearly seen by comparing with the case without the

influence of the presence of the spot (Figure 10). The analyte from the carrying

stream is transported to the second stream by means of diffusion. This process is

also influenced by the flow profile.

4.3. Stability of the flux throughout the domain

One of the most basic and important requirements for a numerical appli-

cation is the lack of numerical divergence. The finite volume method that was
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Figure 9. Distribution of concentration influenced by the velocity field due to the presence

of the cell spot; the position of the spot is indicated with the dashed line

Figure 10. Distribution of concentration without taking into account the presence

of the cell spot

used here naturally incorporates this feature, as it is based on the calculation of

fluxes over the boundaries of computational cells. The total flux of concentration

through the channel is calculated by integrating the flux Jx (56) over the entire

cross-section of the channel for different x-positions.

Figure 11. Flux of concentration throughout the channel. A spot of radius RS =1

and height hf =0.5 is located at x=3
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From the plot of the flux of concentration for different cross-sections of the

channel (Figure 11), we can see that the numerical code is well-behaved: the flux

is constant, and the only changes are due to the absorption of the nutrient in the

area of the spot. There are no artificial sources or sinks in the computational area.

5. Numerical results of concentration distribution

To represent the intensity of consumption of the nutrient across the channel

and across the spot itself, we must choose a suitable function q(x,y). A detailed

discussion of this topic is beyond the scope of this work, but we can assume that

the intensity depends on the distance from the centre of the spot, in the similar

way as the height of the spot does. For simplicity, we assume a function analogous

to h(x,y):

q(r)=

{

1+cos(r2π)
2 Q if r≤ 1

0 if r > 1
(75)

Different values of Q result in different uptakes. The depletion of the concentration

is different for different heights, as it depends on the thickness of the fluid above

the spot. To allow comparison of results, the value of Q was kept constant (0.2)

and two cases were studied: hf = 0.0 (no influence of the spot on the flow) and

hf =0.5. This results in different minimum values of the concentration for the two

cases (Figures 12 and 13), while the uptake is believed to be of the same order.

The graphs for the case of hf =0.5 (Figures 13 and 14) show the contraction

of the wake due to the specific velocity distribution at the rear of the spot

(Figure 8). This effect becomes stronger as the Peclet number grows. No such

effect was observed in the case of parallel plates, where the width of the wake is

similar to the diameter of the spot. This phenomenon is deemed interesting and

requires further study.

The theoretical analysis of averaged advection-diffusion equations (56)–(57)

shows that the effect of Taylor dispersion is significant only in the area where the

fluid flows in the direction parallel to the concentration gradient. In our case, this

took place in the area of the spot (Figure 15). Still, for the considered values of ǫ

and Pe, the corrections of order ǫ2Pe are negligible when compared to the order

of the main result (compare Figures 13 and 15). This indicates that the effect of

Taylor dispersion does not play an essential role in our model. One of the reasons

for this is the assumption ǫ2Pe≪ 1 (46), which does not allow us to select all
possible values of Pe and ǫ from the ranges defined in Table 1.

According to Table 1, a typical distance between two successive spots in the

device is an order of magnitude larger the diameter of the spot. This corresponds

to our computational area, in which the next spot may be located just beside the

outlet. Because of the high concentration of the wake for Pe = 300 (Figures 12–

13), it is not reasonable to assume that the successive spots do not affect one

another. Decreasing the Peclet number by one order of magnitude (to Pe = 30)

resulted in a significant smoothing out of the wake by diffusion before it reached

the outlet (Figure 14).
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Figure 12. Concentration of the nutrient, hf =0.0, Pe=300

Figure 13. Concentration of the nutrient, hf =0.5, Pe=300

Figure 14. Concentration of the nutrient, hf =0.5, Pe=30

Figure 15. Influence of the correction terms: hf =0.5, Pe=300, ǫ=0.05
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6. Conclusions

In this work, we developed a numerical model for the fluid flow and cell

nutrient concentration in a micro-fluidic device. In particular, we considered the

region where cells are cultured. This area is typically a very shallow environment

where the fluid carrying the cell nutrient flows slowly. As the fluid passes over the

cell spot, the nutrient concentration decreases and, behind the cell spot, a wake

of a depleted nutrient is generated. Concentration gradients in the wake are then

smoothed out by diffusion and advection. The ability to predict the concentration

values behind each cell spot and the evolution of the wake are of fundamental

importance for the proper use of the microdevice. Indeed, cell spots may be

placed in various locations across the channel, and the concentration in a cell

spot may be influenced by the depletion of nutrient induced by cells located

upstream.

This work was aimed at investigating the above phenomeonn, taking into

account the influence of the presence of the cell spot on the size of the wake and the

concentration within it. Modelling of fluid flow and the evolution of concentration

were performed with a two-dimensional model. Owing to the fact that the domain

is very shallow, fluid flow is governed by a linear equation for the pressure (Hele-

Show flow). The laminar flow around the cell spot highly influences the shape and

intensity of the depleted wake, resulting in narrowing downstream.

For the advection-diffusion equation, the effect of Taylor dispersion was

taken into account by the application of an asymptotic expansion. The small

parameter is ǫ2Pe, where ǫ is the ratio of the thickness of the domain to the

diameter of the cell spot, and Pe is the Peclet number of the flow. It was shown

that the corrections to the leading-order equation due to Taylor dispersion come

into play at the order ǫ2Pe and thus are, in general, insignificant. On the other

hand, Taylor dispersion was found to be of crucial importance for the unsteady

cases and, therefore, an extension of the current model to non-stationary problems

would be desirable and would enable a detailed study of this effect.

In this work, the flux of nutrient consumption (described by the uptake

function) was arbitrarily chosen as proportional to the height of the cell spot.

Although such a function enables the study of particular cases, refinements to

this approach are suggested for the model to be more realistic and flexible. In

particular, it would be very interesting to couple the nutrient uptake with the

concentration and cell state. This could be performed, for instance, using the

Michaelis-Menten model. Also, this might enable predicting the ideal thickness

of the domain, which would then allow sufficient cell nutrition with maximum

possible reduction in the magnitude of the wake behind each cell spot.

The problems of fluid dynamics involving the combined effects of convection

and diffusion are not easy to solve and usually require special treatment for each

particular case. Careful validation of the code is always required, and therefore

it was one of the major aims of this work. Two simplified cases, both without

the consumption of the nutrient were considered – a case of parallel plates and
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of a round cell spot with an off-centre step in concentration. Comparison with

available literature data proved that the model gives satisfactory results under

a wide range of conditions.
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