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Abstract: This paper is devoted to the space-time conservation (STC) method and its applica-

tion to a water hammer in steel pipelines. The STC method, due to its numerical properties, in

particular its high accuracy, can be an interesting alternative to traditional numerical methods,

especially when dealing with problems where the numerical errors have the potential to sig-

nificantly influence the solution, making interpretation very difficult. As the problem of water

hammer is one of such problems, an analysis of the application of the STC method to this case

can be very interesting.
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1. Introduction

A water hammer consists in violent changes of pressure values in the form

of a rapid pressure wave, which occurs in a pipeline as a consequence of sudden

changes in flow velocity. The celerity of such a disturbance is a function of the

liquid is compressibility and elasticity of the pipe walls and may exceed 1000m/s.

Unfortunately, the pressure oscillates between very high and very low values

(sometimes leading to underpressure) with a high frequency, which means that

the phenomenon may become particularly dangerous, despite being short-lived.

A traditional description of a water hammer in a pipeline was given by

Allievi [1, 2] and its subsequent modifications are due to Jaeger [3], Wood [4],

Parmakian [5], Streeter and Lai [6], Streeter and Wylie [7], and Chaundry [8]. The

relationships between the basic parameters of pressurized water flow during rapid
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unsteady conditions may be derived from the mass and momentum conservation

equations, and can be expressed as a set of two hyperbolic equations:

1

ρa2
∂p

∂t
+
v

ρA2
∂p

∂x
+
∂v

∂x
=0 (1a)

∂v

∂t
+v
∂v

∂x
+
1

ρA

∂(β−1)ρv2A

∂x
=−g sinθ−

1

ρ

∂p

∂x
−
τsOz
ρA

(1b)

where p and v are, respectively, the mean values of pressure and flow velocity

in the pipe cross-section, ̺ is the density of the liquid, g is the acceleration due

to gravity, a is the pressure wave celerity, A is the cross-section area, β is the

Saint-Venant coefficient, θ is the angle between the pipe axis and the horizontal,

Oz is the wetted perimeter, τs is the shear stress, and x and t denote the distance

and time variable, respectively.

The above system of equations is often simplified by neglecting the terms

whose values are very small in comparison with the remaining terms. As in the

case of a water hammer the Mach number satisfies Ma≪ 1, Equations (1) can be

simplified to the following form:

1

ρa2
∂p

∂t
+
v

ρA2
∂p

∂l
+
∂v

∂l
=0 (2a)

∂v

∂t
+
1

ρ

∂p

∂l
+g sinθ+

τsπD

ρA
=0 (2b)

It is more convenient to perform calculations in terms of the water head

rather than pressure, the above equations can be further rewritten to this end.

Following the application of the Darcy-Weisbach formula, we obtain a system

of equations often considered to be the classical description of a water hammer

(e.g. [5]):
∂v

∂t
+v
∂v

∂x
+g
∂H

∂x
+
λ

2D
v |v|=0 (3a)

∂H

∂t
+v
∂H

∂x
+
a2

g

∂v

∂x
=0 (3b)

where D is the internal diameter of the pipe, and λ is a linear friction factor.

The description of a water hammer defined by Equation (2) or (3) is valid for

1D flows of compressible fluids in deformable pipes, as long as the Mach number

(Ma) satisfies Ma≪ 1.

The above systems of equations can be solved using numerical modeling.

The most popular approaches applied to the solution of the water hammer

problem are the method of characteristics (MOC) and various finite difference

methods (FDMs), the finite volume method (FVM) can also be applied. Since the

comparison of the calculated results and the measurements showed a significant

discrepancy, attempts were made at modifying the system of equations. Many

authors focused on improving the shear stress in (1) or (2) (e.g. [9–13]). This,

however, did not lead to satisfactory results, as apparent good agreement resulted

from the influence of significant numerical errors, not from a proper mathematical

description of the phenomenon [14]. The results of calculations are easier to

tq315p-e/354 8V2012 BOP s.c., http://www.bop.com.pl



Space-time Conservation Method Appplied to Numerical Solution of . . . 355

interpret when a highly accurate numerical scheme is applied and an analysis

of accuracy and stability is carried out.

An interesting alternative to the commonly applied numerical methods for

solving partial differential equations (MOC, FDM, FVM) is the non-traditional

approach proposed by Chang [15]. This method is relatively new and rarely used.

Originally, this approach was known as the method of space-time conservation

element and solution element, however, in this papger we refer to it as the

space-time conservation (STC) method. The calculations in the STC approach

are performed on the basis of enforcement of flux conservation (which is also

the basic assumption of the finite volume method) with the unification of space

and time, which are treated on an equal footing. Such an approach leads to the

construction of space-time cells (or in the case of 1D problems – rectangles in the

x-t plane), in which flux conservation is enforced.

The STC method, previously applied to solving classical initial-boundary

problems of the Saint-Venant equations [16], constitutes a modification of a scheme

called “a−µ” [15], which was originally applied to solving the advection-diffusion

equation. It was shown previously [17] that the STC method can be also success-

fully applied to solving the reverse flow routing problem. In the next section, the

application of the STC method to the water hammer problem is presented.

2. Solution of a system of water hammer equations

using the STC method

The application of the STC method requires that the description of the

analyzed problem expressed as a system of equations is written in conservative

form. Such a description helps to avoid many difficulties which arise during the

computations when the non-conservative form of the equations is used, e.g. those

related to mass conservation.

A system of equations describing a water hammer (2), combined with

the Darcy-Weisbach friction formula, is rewritten for a horizontal pipe in its

conservation form:
∂f

∂t
+
∂G

∂x
=S (4a)

where

f =

{

p
q

}

, G =

{

a2

A q
q2

ρA+Ap

}

, S =

{

0
−λq|q|
2ρAD

}

(4b)

where q= ρvA.

Assuming elastic behavior of water and of the pipe wall material, the density

of water and the cross-section area can be defined as follows:

ρ= ρo

(

1+
p−po
Ec

)

(5)

A=Ao

(

1+
D

e

p−po
Es

)

(6)

where D is the internal diameter of the pipe, e is the pipe wall thickness, Es is the

modulus of elasticity of the pipe wall, and Ec is the bulk modulus of the fluid. The
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subscript “o” in (5) and (6) denotes values under steady-flow conditions, i.e. the

density, pressure and the pipe cross-section, respectively. The wave celerity a, can

be expressed with the Moens-Korteweg equation [18]:

a=

√

Ec
ρ

(

1+
DEc
eEs

)−1

(7)

According to the assumptions of the STC method, the solution of (4) is

sought in 2D space-time (x,t).

Let the solution domain in the global case be an area Ω with the boundary

s(Ω) (Figure 1). For this area, flux conservation through the boundary is enforced

and Equations (4) must be satisfied. Thus, the integral is calculated as follows:
∫∫

Ω

(

∂f

∂t
+
∂G

∂x

)

dΩ=

∫∫

Ω

SdΩ (8)

The left-hand side of Equation (8) can be transformed by applying Green’s

theorem [19]:
∫∫

Ω

(

∂f

∂t
+
∂G

∂x

)

dΩ=

∮

s(Ω)

f dx−Gdt=

∮

s(Ω)

hds (9)

where h =(G,f ), and hds represents the space-time flux of h through s(Ω). The

integration along the boundary of the domain Ω is performed anticlockwise.

Figure 1. Solution domain in the x-t plane

By applying Equation (9) to Equation (8), the integral form of Equa-

tion (3a) is obtained:
∮

s(Ω)

hds=

∮

s(Ω)

f dx−Gdt=

∫∫

Ω

SdΩ (10)

An uncommon unification of variables x and t is proposed, and the inte-

gration is performed along the s(Ω) curve in the (x,t) plane. Such an approach

is considerably different from those of other methods, including the finite volume

method, which operate on volumes in geometric space.

tq315p-e/356 8V2012 BOP s.c., http://www.bop.com.pl



Space-time Conservation Method Appplied to Numerical Solution of . . . 357

The solution domain for the water hammer problem can be represented by

a plane shown in Figure 2. The plane is covered with a set of nodal points (j,n)

described by indices j = 1,2, .. . ,M and n= 0,1,. . .,N (Figure 2, panel (a)). The

grid constructed in such a way is additionally covered by a set of intermediate

points in a staggered mesh, with indices (j±1/2,n±1/2) for j = 2,3,. . .,M −1

and n=2,3,. .. ,N−1. Consequently, a grid as in Figure 2, panel (a) is obtained.

The values in the nodes at the time level n are known. The unknown values

at the cross-section n+1 are calculated in two stages. First, the values in the

intermediate points at the time level n+1/2 are computed, then, according to the

same formulas, the step from n+1/2 to n is made.

(a)

(b)

Figure 2. (a) Mesh of nodes in the STC method; (b) solution element SE(j,n)

and conservation elements CE− and CE+

Equation (10) must be satisfied in the whole solution domain Ω, which

is equivalent to global flux conservation. Moreover, local flux conservation is

also required in each cell comprising the solution domain. The cells, termed

conservation elements (CEs), are rectangular domains of the dimensions ∆x/2
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and ∆t/2 in the (x,t) plane. Each cell is defined by two nodes of the grid, situated

on the diagonal of the rectangle (Fig. 2, panel b). In order to determine the values

of f and G in each cell, a solution element (SE) is defined around every mesh

point of the grid. Every SE consists of vertical and horizontal segments of the

grid (of the lengths of ∆x/2 and ∆t/2, respectively), going from the mesh point in

question in the positive and negative directions of the x and t axes to the nearest

neighbours of these segments. An example of an SE corresponding to the node

(j,n) is shown in Figure 2, panel (b).

In each solution element, for any (x,t)∈SE(j,n) the values of f and G are

approximated by f ∗ and G∗, according to:

f ∗(x,t;j,n)= f nj +(fx)
n
j (x−xj)+(ft)

n
j (t− t

n) (11a)

G∗(x,t;j,n)=Gnj +(Gx)
n
j (x−xj)+(Gt)

n
j (t− t

n) (11b)

where, f nj , (fx)
n
j , (ft)

n
j and G

n
j , (Gx)

n
j , (Gt)

n
j , respectively, are the constants in

SE(j,n); and (xj ,t
n) are the coordinates of the node (j,n). From Equations (11),

it follows that:

f ∗(xj ,t
n;j,n)= f nj (12a)

∂f ∗

∂x
(xj ,t

n;j,n)= (fx)
n
j ,
∂f ∗

∂t
(xj ,t

n;j,n)= (ft)
n
j (12b,c)

and similarly for G.

The values of variables f nj , (fx)
n
j and (ft)

n
j in Equation (11a) are the

values of the function f and its derivatives ∂f /∂x and ∂f /∂t in the node (j,n)

(similarly for G – from Equation (11b)). Thus, the right-hand side expressions

in Equations (11) become first-order Taylor series expansions of f and G around

the node (j,n). The values of f nj , (fx)
n
j and (ft)

n
j can be treated as numerical

equivalents of f and its derivatives ∂f /∂x and ∂f /∂ (and similarly for G) in

the node (j,n). Moreover, f = f ∗(x,t;j,n) and G =G∗(x,t;j,n) should satisfy

Equation (3a), which implies that:

(ft)
n
j =S

n
j −(Gx)

n
j (13)

Any segment that constitutes a side of the CE (e.g. segment AB in Figure 3,

panel (b)) is also an interface separating two adjoining cells (e.g. CE−(j,n) and

CE+(j,n)). The flux through this interface is evaluated using information from

only one SE (SE(j,n)).

In each cell flux must be conserved. The values of f and G for each cell

are approximated by f ∗ and G∗, according to formulas (11a) and (11b) for

suitable SEs, which constitute the cell boundary. Since the boundary of each

cell is composed of the segments that belong to two neighbouring SEs, the values

of only two nodes, i.e. one at the “known” (lower) and one at the “unknown”

(higher) time level, appear in the conservation equation for each cell.
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(a)

(b)

Figure 3. (a) Conservation cells associated with SE(j,n); (b) Conservation cells influencing

the value of functions f and G in the node (j,n)

Let the variables at the time level n−1/2 be known, whereas the variables

at the time level n are sought. Moreover, let:

F+(j,n)=

∮

s(CE+
(j,n)
)

−G∗dt+f ∗dx=F+ (14a)

F−(j,n)=

∮

s(CE−
(j,n)
)

−G∗dt+f ∗dx=F− (14b)

By substituting Eqsations (11) into Equations (14) and by integrating along

the boundary of CE+(j,n) and CE−(j,n), we obtain:

2

∆x
F+= f nj +

∆x

4
(fx)

n
j −
∆t

∆x
Gnj +

(∆t)2

4∆x
(Gt)

n
j −f

n−1/2
j+1/2 +W

n−1/2
j+1/2 (15a)

2

∆x
F−= f nj −

∆x

4
(fx)

n
j +
∆t

∆x
Gnj −

(∆t)2

4∆x
(Gt)

n
j −f

n−1/2
j−1/2 +W

n−1/2
j−1/2 (15b)
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where

W
n−1/2
j±1/2 =

∆x

4
(fx)

n−1/2
j±1/2 +

∆t

∆x
G
n−1/2
j±1/2 +(Gt)

n−1/2
j±1/2

(∆t)2

4∆x
(15c)

We note that

Gt=
∂G

∂t
=
∂G

∂f

∂f

∂x
=
∂G

∂f
fx (16)

which means that the fluxes F+ and F− from Equation (15) can be expressed as

a combination of f , G and fx.

According to Equation (10), it is required that:

F+=

∫∫

Ω(CE+)

S∗dΩ=S+ (17a)

F−=

∫∫

Ω(CE−)

S∗dΩ=S− (17b)

The vector S∗ in Equations (17) is determined as follows:

• for CE−:

S∗=S
n−1/2
j−1/2 +(Sx)

n−1/2
j−1/2 (x−xj−1/2)+(St)

n−1/2
j−1/2

(

t− tn−1/2
)

(18a)

• for CE+:

S∗=S
n−1/2
j+1/2 +(Sx)

n−1/2
j+1/2 (x−xj+1/2)+(St)

n−1/2
j+1/2

(

t− tn−1/2
)

(18b)

thus

S+=S
n−1/2
j+1/2

∆x∆t

4
−(Sx)

n−1/2
j+1/2

∆t(∆x)2

16
+(St)

n−1/2
j+1/2

∆x(∆t)2

16
(19a)

S−=S
n−1/2
j−1/2

∆x∆t

4
+(Sx)

n−1/2
j−1/2

∆t(∆x)2

16
+(St)

n−1/2
j−1/2

∆x(∆t)2

16
(19b)

where

Sx=
∂S

∂f
fx (20a)

St=
∂S

∂f
ft=
∂S

∂f

(

S−
∂G

∂x

)

=
∂S

∂f

(

S−
∂G

∂f
fx

)

(20b)

When there are no source terms, Equation (17) simplify to:

F+=0 (21a)

F−=0 (21b)

By combining Equations (15) with Equations (17), (18) and (19) or, when

source terms are absent, with Equation (21), a system of two vector equations is

obtained, in which f and fx are the unknowns, treated independently. All other

values at the unknown time level n can be calculated as a combination of the two

above values. Taking into consideration the definition of f , G and S in the case

of the water hammer from Equation (4b), the final formulas for p and q at the

unknown time level can be obtained.
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The scheme presented above in its pure form, however, leads to several

numerical problems. Having applied such an approach to the direct problem for

the advection-diffusion equation, Chang [15] showed that in the case of pure

advection, the absolute value of the amplification factor for this scheme is equal

to unity, regardless of the grid size. This means that the method is always non-

dissipative. In addition, accuracy analysis showed that the scheme is dispersive,

and the dispersion disappears only for a Courant number equal to unity. In

real-life cases, it is often difficult or impossible to perform computations with

Cr = 1, and in consequence, we obtain a solution which suffers from unphysical

oscillations. In order to improve the properties of this scheme, Chang [15] modified

it by introducing non-zero terms (responsible for numerical dissipation) to the

right-hand sides of Equations (21). The magnitude of such terms depends on the

values of the derivatives at the known time level and on a numerical parameter

(0 ≤ ε ≤ 1), independent of any other variables. The numerical dissipation is

controlled by the value of the parameter ε, which can be modified in the scheme.

For ε=0, the values of the additional terms are equal to zero (corresponding to no

numerical dissipation). The terms introduced into the equations are of the same

magnitude, but of opposite signs (positive for F+, negative for F−). As a result,

in each CE+ and CE− cell the conservation law is not satisfied and symmetry

is broken. However, the conservation law is satisfied for CEs which are sums of

CE+ and CE−, since the artificially introduced terms cancel out.

The application of the above modifications to Equation (4a) leads to:

F++F−=

∮

s(CE+(j,n))

−G∗dt+f ∗dx+

∮

s(CE−(j,n))

−G∗dt+f ∗dx

=

∫∫

Ω(CE+)

S∗dΩ+

∫∫

Ω(CE−)

S∗dΩ = S++S−
(22)

and thus:
2

∆x
(F++F−)=

2

∆x
(S++S−) (23)

The values of F+ and F− are determined according to Equations (15).

After substituting the formulas for F+, F−, S+, and S− to Equation (22),

we obtain:

(f )nj =
1

2

[

f
n−1/2
j−1/2 +f

n−1/2
j+1/2 +(W )

n−1/2
j−1/2 −(W )

n−1/2
j+1/2 +E

]

(24)

where

E =
∆t

8

{

4
[

(S)
n−1/2
j−1/2 +(S)

n−1/2
j+1/2

]

+∆x
[

(Sx)
n−1/2
j−1/2 −(Sx)

n−1/2
j+1/2

]

+∆t
[

(St)
n−1/2
j−1/2 +(St)

n−1/2
j−1/2

]

} (25)

and

Sx=
∂S

∂f

∂f

∂x
, St=

∂S

∂f

∂f

∂t
=
∂S

∂f

(

S−
∂G

∂x

)

(26)
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The values of Gt, required for the determination ofW , are obtained from:

Gt=
∂G

∂t
=
∂G

∂f

∂f

∂t
=
∂G

∂f

(

S−
∂G

∂x

)

=
∂G

∂f
S−

(

∂G

∂f

)2
∂f

∂x
(27)

The derivatives fx in the node (j,n) are determined according to the

formula:

(fx)
n
j =
f nj+1/2−f

n
j−1/2

∆x
+(2ε−1)(dfx)

n
j (28)

where

(dfx)
n
j =
(fx)

n−1/2
j+1/2 +(fx)

n−1/2
j−1/2

2
−
f
n−1/2
j+1/2 −f

n−1/2
j−1/2

∆x
(29)

and

f nj±1/2= f
n−1/2
j±1/2 +

∆t

2
(ft)

n−1/2
j±1/2 (30)

The simplest approximation for fx is obtained for ε=1/2. In this case, the

formula:

(fx)
n
j =
f nj+1/2−f

n
j−1/2

∆x
(31)

is obtained, which in fact is the central difference approximation. This formula

was presented by Molls and Molls [16] without an explicit explanation to which

value of ε it corresponds.

In the literature [15, 16] more involved formulas for fx can be found as well,

e.g.:

(fx)
n
j =

∣

∣(fx+)
n
j

∣

∣

ω
(fx−)

n
j +
∣

∣(fx−)
n
j

∣

∣

ω
(fx+)

n
j

∣

∣(fx+)
n
j

∣

∣

ω
+
∣

∣(fx−)
n
j

∣

∣

ω (32)

where

fx± =
f nj±1/2−f

n
j

∆x/2
(33)

ω is a weighting parameter, which takes the value of either 1 or 2. For ω = 0,

the formula (30) is obtained The application of more involved formulas for (fx)
n
j ,

such as Equation (32), significantly diminishes oscillations in the vicinity of the

discontinuity, since the role of ω is basically similar to that of ε.

By taking into consideration the definition of f , G and S from Equa-

tion (4b), final formulas for p and q at the unknown time level can be obtained.

The full transition from the known time level (n−1) to the unknown level n is

carried out in two steps: first, level (n−1/2) is calculated, and then (according to

the same formulas) level n is obtained.

3. Stability and accuracy of the scheme

More information concerning any numerical features of the numerical

scheme can be obtained by investigating its stability and accuracy. Usually, this
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is examined for the case of a linear system of equations [20] which in the case of

a water hammer can be written as follows:

∂U

∂t
+g
∂H

∂x
=0 (34a)

∂H

∂t
+
a2

g

∂U

∂x
=0 (34b)

The system of Equations (34) can be written in the form (4a), yielding:

f =

{

U
H

}

, G =

{

gH
a2

g U

}

(35)

Formulas (25)–(30) are applied to Equation (35), and a system of algebraic

equations resulting from the STC method is obtained. If the procedure is repeated

twice (for both steps, i.e. from level n−1 to n−1/2, and then from level n−1/2

to n), the final system of equations with the unknowns f nj and (fx)
n
j is obtained:

t(j,n)= (P+)
2t(j+1,n−1)+(P+P−+P−P+)t(j,n−1)+(P−)

2t(j−1,n−1)

(36)

where

t(i,m)=







Umi
∆x
4 (Ux)

m
i

Hmi
∆x
4 (Hx)

m
i






(37)

P+=
1

2











1 −(1−Cr2) −∆tg∆x 0

1−ε 2ε−1 0 −∆tg∆x
− ∆x∆tgCr

2 0 1 −(1−Cr2)

0 − ∆x∆tgCr
2 1−ε 2ε−1











(38)

P−=
1

2











1 (1−Cr2) ∆tg
∆x 0

−(1−ε) 2ε−1 0 ∆tg
∆x

∆x
∆tgCr

2 0 1 −(1−K2)

0 ∆x
∆tgCr

2 −(1−ε) 2ε−1











(39)

and (P+)
2=P+P+, (P−)

2=P−P−.

Stability analysis can be performed with use of the well-known Neumann

method [21]. This is done similarly as with other applications of the STC

method [15, 17]. We can conclude that:

• for ε∈ 〈0,1〉 and Cr≤ 1 the modulus of every eigenvalue of the amplification

matrix is in the range of 〈0,1〉, and thus the scheme is stable;

• for ε= 0 and Cr≤ 1 the modulus of every eigenvalue of the amplification

matrix is equal to unity, which means that the wave amplitude is neither

damped nor amplified and the scheme does not produce numerical diffusion;

• for ε 6= 0 and Cr < 1 the scheme produces numerical dissipation, whose

magnitude depends on the value of ε;

• for Cr=1 the scheme is non-dissipative, since the largest eigenvalue of the

amplification matrix is equal to unity for any ε.
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Additional information about numerical errors introduced by the scheme

can be obtained from accuracy analysis. If all nodal values in Equation (36) are

replaced with their Taylor series expansions around the node (j,n−1), we can

obtain the modified equations, which gives us insight about the numerical errors

this scheme introduces. Their analysis leads to the following conclusions:

• the scheme leads to algebraic equations that are consistent with the

differential ones, as for ∆x, ∆t→ 0, the numerical errors tend to zero, and

thus the modified equations tend to the governing system of Equations (34);

• in general, the modified equations include terms involving derivatives of the

third and higher orders, which means that the scheme is of second-order

accuracy, i.e. it generates numerical dispersion the magnitude of which is

governed by the third-order derivative and numerical dissipation resulting

from the fourth-order terms;

• for Cr=1 an accurate solution is obtained;

• for ε = 0 even-order derivatives disappear from the right-hand sides of

the modified equations, which corresponds to the absence of numerical

dissipation and the presence of numerical dispersion. Numerical dispersion

vanishes when Cr=1, in which case an accurate solution is obtained.

The above conclusions result from the analysis of the linear problem. For

non-linear problems, it is more difficult to estimate the magnitude of numerical

dissipation and dispersion. However, according to the presented analysis, the STC

method has certain advantages, particularly important when numerical errors are

essential for the proper interpretation of the results.

To sum up, the most important properties of the STC method are:

• explicit formulas for f and fx;

• uniform treatment of temporal and spatial variables;

• independent determination of the values of functions and their derivatives

in mesh nodes,

• small number of known values in the formula for the unknowns (thus the

final formulas are relatively simple);

• global and local flux conservation (in space-time), and thus automatic

enforcement of mass conservation;

• no ad hoc formulas for the approximation of flux;

• conditional stability (Cr≤ 1);

• dispersion and dissipation of the scheme, depending on the value of ε: no

numerical diffusion for ε=0; for 0<ε≤ 1 numerical diffusion results from

the presence of terms with derivatives of the fourth order in the modified

equation;

• second-order accuracy; the order of accuracy depends on the number of

nodes taking part in the approximation (higher-order accuracy can be

obtained by using higher-order approximations of f ∗ and G∗).

The STC method has numerous advantages. However, it does have certain

disadvantages, such as conditional stability. All in all, the analysis of its dissipative
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and dispersive properties allows us to claim that it can be a good alternative to

traditional methods (see e.g. [17]). The obtained solution suffers from very small

numerical errors, and mass conservation is obeyed. This is important in many

practical applications. In the case of a water hammer, this issue is essential,

since it was proved that numerical errors can be a significant obstacle to the

proper interpretation of the results and assessment of agreement between the

measurements and calculations.

4. Numerical test

The properties of the scheme can be illustrated with a classical numerical

example. Let us consider a typical case of a single steel pipeline of constant

diameter fed from a large pressure reservoir, in which the constant value of

pressure during the experiment was enforced. The sudden closure of the valve

at the downstream end of the pipeline causes rapidly varied unsteady water flow.

The water hammer pressure characteristics were measured in the vicinity of the

valve cross-section and calculations of pressure changes for this cross-section were

performed. Here, let us consider the pipeline presented by Wichowski [22] and

Weinerowska-Bords [23], for which the solutions obtained with other schemes are

known. The pipeline length L is 41m, the internal diameter D=42mm, the wall

thickness e=3mm, the constant pressure head in the tank cross-section is 50m,

the rate of steady-state discharge Q0=0.453dm
3/s (velocity v0=0.327m/s) and

the water temperature is 4.5◦C. The results of the measurements and calculations

for this pipeline are presented in Figures 4–7.

Figures 4 and 5 show the influence of the two parameters, ω and ε, on the

obtained numerical solution. Both parameters cause the damping of oscillations

and strongly influence the period of the oscillations. Although, in general, the

STC method is characterized by high accuracy, the modification of the numerical

parameters can significantly change the numerical solution, since numerical errors,

which introduce artificial dissipation and dispersion into the solutions, are inherent

in all numerical modelling.

Figure 6 presents the measured pressure characteristics for the analyzed

case [22]. Figure 7 presents the calculated results of the pressure in the cross-

section close to the valve. The solution was obtained for ω=1, ε=0.55 and a time

step ∆t= 0.00032 s (Cr = 0.295). For lower values of ω and ε and higher values

of ∆t, the calculated results did not agree with measurements – the damping of

the oscillations was too low and their frequency was either too high or too low

(depending on the values of the parameters). Taking into account the relatively

high accuracy of the scheme, a relatively high magnitude of the numerical error

was required to yield good agreement between the calculations and measurements.

However, even in such a case, the comparison between Figures 6 and 7 shows

that the pressure characteristics is not satisfactorily represented. The measured

pressure characteristic is smoother, while the calculated pressure characteristic

is more peaked, even if the values of the local maxima and minima and the
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frequency of the oscillations are similar. This confirms that the system of equations

describing a water hammer does not accurately describe the phenomenon [14].

The system of equations lacks the term that would represent the mechanism of

diffusion observed during the measurements.

Figure 4. Influence of the value of ω on the solution of the water hammer problem

(ε=0.5, Cr=0.7)

Figure 5. Influence of the value of ε on the solution of the water hammer problem

(ω=1, Cr=0.7)

5. Conclusions and final remarks

The presented numerical scheme can be an interesting alternative to more

commonly used schemes (e.g. the method of characteristics, finite difference

schemes, the finite volume method) used in many applications (direct and inverse

problems described with a system of hyperbolic partial differential equations),

including the water hammer problem. Since in its pure form the method exhibits

desired numerical features (third-order accuracy in the general case, and higher

orders in particular cases), it can help recognize numerical artifacts in the solution.

Although a certain level of numerical dissipation is often desirable (as it can
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Figure 6. Measured changes in the pressure during the water hammer

Figure 7. Calculated changes in the pressure during the water hammer (STC method, ω=1,

ε=0.55, Cr=0.295)

improve a solution suffering from unphysical oscillations caused by numerical

dispersion), too high a level of dissipation distorts the calculated results, making

their interpretation very difficult.

The water hammer problem described by the system of equations (2) or (3)

solved with a highly accurate scheme leads to results that do not agree well with

observations. However, a solution in sufficiently good agreement with observations

can be obtained by modifying the numerical parameters (ω, ε and Cr). This, in

fact, means that the agreement between the calculations and observations results

from numerical errors incurred by the method.
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