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Abstract: This paper presents a numerical algorithm for solving the equation describing
variably saturated flow in porous media. The algorithm is based on a control volume finite
element approach and can be applied to two-dimensional unstructured meshes consisting of
triangular elements. Two methods of defining the dual control volume grid are discussed. We
also demonstrate that the method of calculating the average permeability at the control volume
face significantly influences numerical results.
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1. Introduction

The motion of water in the uppermost layer of the Earth’s crust is of
interest to civil and environmental engineers, hydrologists, hydrogeologists and
agronomists. This process is characterized by a strongly varying degree of water
saturation in porous soils or rocks. The governing equation for flow in variably
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340 K. Burzyński and A. Szymkiewicz

saturated porous media is based on the mass conservation principle, which for
a case without sources and sinks, can be written as follows:

∂

∂ t
(ρφS)+∇·(ρv) = 0 (1)

where ρ is the water density, φ is the medium porosity, S is the water saturation,
and v is the volumetric water flux (seepage velocity) defined according to the
Darcy’s law as:

v =−
k

µ
(∇p−ρg) (2)

where k is the permeability tensor, µ is the water viscosity, p is the water pressure,
and g is the gravitational acceleration vector. The values of water pressure are
typically given with respect to atmospheric pressure, i.e. p= 0 at the groundwater
table, p< 0 in the unsaturated zone, and p> 0 in the saturated zone. In this paper,
we consider isotropic media, for which the permeability can be written as:

k = kskr(S)I (3)

where ks is the intrinsic permeability depending on the pore space geometry,
kr(S) is the relative permeability depending on the water saturation, and I is the
unit tensor. In a fully water-saturated medium, relative permeability is equal to
one, while under unsaturated conditions it decreases nonlinearly with a decrease
in saturation. Moreover, in the unsaturated zone, negative water pressure is
nonlinearly related to water saturation. Thus, Equation (1) represents a parabolic
partial differential equation with p as the primary variable.

Equation (1) can be solved by a variety of numerical methods, including
finite difference e.g. [1, 2], Galerkin finite element e.g. [3–5], mixed finite element
e.g. [6, 7] and finite volume e.g. [8–11] approaches. While the finite difference
method is often the preferred choice for one-dimensional problems, its application
to multiple dimensions is limited to the domains of regular shape, which can
be covered by rectangular grids. Many engineering applications, e.g. related to
slope stability or seepage through earth dams and embankments, involve two-
dimensional domains of complex shape, which can be efficiently discretized by
triangulation. The obtained numerical grid can be used as a basis for either finite
element or finite volume schemes. The latter group of methods is particularly
appealing in view of their inherent conservative properties. Moreover, it has been
shown that the finite element method with a consistent approximation of the mass
storage term leads to oscillatory solutions [12]. In order to avoid this problem,
diagonalization (lumping) of the mass matrix is commonly applied [4, 12], leading
to discrete schemes similar to those resulting from the finite volume method.

In this paper, we present the application of the control volume finite
element method to solving Equation (1). This method combines the features of
the finite element and finite volume approaches e.g. [11, 13, 14]. We focus on
two-dimensional problems with spatial domains discretized using unstructured
triangular meshes.
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2. Mesh generator

A two-dimensional unstructured mesh generator NetGen, developed by
Burzyński, is based on the Delaunay triangulation algorithm e.g. [15]. It follows
the implementations described in [16–18], but includes certain modifications,
which allow to create anisotropic meshes. The triangulation is performed for a set
of points in a plane, which define the outer boundary of the solution domain. It
is possible to define disconnected domains or domains containing hollow spaces.
Grid refinement is enforced by specifying the minimum length of the sides of the
triangles adjacent to the boundary, as well as by introducing internal nodes, which
remain fixed during the generation process.

The major modification with respect to the afore-mentioned mesh gener-
ators consists in introducing two weighting parameters in order to enable grid
anisotropy. This is achieved by relaxing the criterion for checking the internal
angles of triangular elements, i.e. certain obtuse triangles are permitted. More-
over, when a new point is inserted at a specified edge, its position is computed
as a weighted average of the edge endpoints, and not as an arithmetic average,
as commonly used. The values of the two weighting parameters w1 and w2 are
specified by the user (e.g. w1= 0.700 and w2= 0.577 correspond to the standard
algorithm producing almost equilateral triangles). The influence of these param-
eters on the resulting grid is shown in Example 3. However, large differences in
node spacing or distorted element shapes may significantly influence the stability
and accuracy of the numerical solution.

The mesh generator was dedicated to the problems of surface and subsurface
water flow. Therefore, it is capable of local mesh refining, and of including spatially
variable material properties (e.g. permeability in the case of flow in a porous
medium). The NetGen generator was used in several applications e.g. [19, 20].
A graphic interface NetView allows to view and modify the mesh created by
NetGen. Additionally, the Voronoi diagram can be generated for the obtained
Delaunay triangulation.

3. Finite volume formulation

Unstructured grids generated by the above algorithm can be used as a basis
for either cell-centred or vertex-centred finite volume schemes. In the first case,
the discrete form of the conservation law is applied to control (finite) volumes
corresponding to the elements of the primary grid [20, 21], with computational
nodes located at their geometric centres. Since the line segment connecting the
centres of two adjacent triangles is, in general, not orthogonal to their common
edge (control volume face), estimation of the potential gradient using a finite-
difference formula involving only the values from the two centres of neighbouring
cells is usually inaccurate. The accuracy can be increased if the values from the
endpoints of the edge (grid vertices) are taken into account. Since these values
are not explicitly represented in the solution, they must be interpolated from the
cell-centred values in all neighbouring cells using an appropriate reconstruction
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procedure. This significantly adds to the overall complexity of the numerical
algorithm.

In this work, we focus on an alternative approach, i.e. a vertex-centred
scheme, where the conservation principle is enforced on a dual grid of polygonal
control volumes built around the vertices of the primary triangular grid. A popular
method of defining the control volumes is to join the midpoint of each edge of
the primary grid with the barycentres of adjacent elements, cf. Figure 1. This
method is often termed the median-dual method (MD). Another option is to use
the Voronoi diagram (VD). In this case, the division points of the dual grid are
the circumcentres of the respective elements (centres of circles circumscribed to
the triangles). A useful property of the Voronoi diagram is that the segment
which joins the circumcentres of two adjacent triangles is perpendicular to their
common edge and crosses this edge at the midpoint. On the other hand, neither of
the angles in the primary grid triangle should be obtuse, or else the circumcentre
would be located outside the triangle.

Figure 1. Finite volume dual grid constructed from a primary triangular grid according to
the median-dual method (a) and the Voronoi diagram (b)

The starting point for the development of a finite volume scheme is the
governing Equation (1) written in the integral conservative form for an arbitrary
control volume Vi, enclosed by its boundary Γi:

∂

∂t

∫

Vi

(φSρ)dV +
∫

Γi

(ρv ·n)ds= 0 (4)

where n is the unit vector normal to the control volume boundary and directed
outwards. The storage term is approximated using the values of the unknown
functions at the vertex inside the control volume:

∂

∂t

∫

Vi

(φSρ)dV ≈ |Vi|
∂

∂t
(φiSiρi) =

∂Mi
∂t

(5)

where φi, Si and ρi depend in general on pi, andMi is the mass of water stored in
the control volume. The boundary integral is equal to the sum of integrals taken
over each control volume face Fl belonging to the boundary Γi:

∫

Γi

(ρv ·n)ds=
∑

Fl∈Γi

∫

Fl

(

ρv ·n (l,i)
)

ds (6)
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The integral of the mass flux over a specific face can be, in turn, approximated
as:

∫

Fl

(

ρv ·n (l,i)
)

ds≈−|Fl| ρ
(l) k

(l)
s k

(l)
r

µ

(

∇p(l)−ρ(l)g
)

·n (l,i)=Q(l,i) (7)

where the superscript l denotes the variables evaluated at the considered face.
Their computation will be presented on the example of face l located in the
primary grid element ijk and adjacent to the primary grid edge ij (Figure 1).

The water pressure within the triangular element ijk is approximated using
the finite element approach with linear shape functions. This results in a uniform
value of the pressure gradient given by the following formulae:

∇xp
(l)=B(i)x p

(i)+B(j)x p
(j)+B(k)x p

(k) (8)

∇z p
(l)=B(i)z p

(i)+B(j)z p
(j)+B(k)z p

(k) (9)

where B(m)ξ are geometry dependent coefficients, defined as follows:

B(i)x =
z(j)−z(k)

2A(ijk)
B(i)z =

x(k)−x(j)

2A(ijk)
(10)

B(j)x =
z(k)−z(i)

2A(ijk)
B(j)z =

x(i)−x(k)

2A(ijk)
(11)

B(k)x =
z(i)−z(j)

2A(ijk)
B(k)z =

x(j)−x(i)

2A(ijk)
(12)

where A(ijk) is the area of the element. Since we assume scalar permeability
of the porous medium, the water flux normal to the face can be expressed as
a product of a scalar transfer coefficient and the normal component of the gradient
(for anisotropic medium, the tangential component of the gradient would be also
required):

∇p(l) ·n (l,i)=C(i)p(i)+C(j)p(j)+C(k)p(k) (13)

where

C(i)=B(i)x n
(l,i)
x +B(i)z n

(l,i)
z (14)

C(j)=B(j)x n
(l,i)
x +B(j)z n

(l,i)
z (15)

C(k)=B(k)x n
(l,i)
x +B(k)z n

(l,i)
z (16)

For the Voronoi dual grid, the expression for the normal gradient component
reduces to a simple finite difference formula, because the face is perpendicular to
the edge:

∇p(l) ·n (l,i)=−
p(i)

L(ij)
+
p(j)

L(ij)
(17)

where L(ij) is the length of the edge. Therefore, the flux at each face depends
only on two unknowns corresponding to the endpoints of the adjacent edge. In
the median-dual approach, all three vertices of the triangle are involved in the
approximating formula. In the special case of an equilateral triangle, the two
schemes become identical.
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The intrinsic permeability k(l) is constant within each element, while the
relative permeability k(l)r is variable and its average value must be computed. An
intuitive (and common) approach is to take the arithmetic average of the values
from all three nodes of the element [5, 3]:

k(l)r =
1
3

(

k(i)r +k(j)r +k(k)r
)

(18)

Alternatively, we can take the arithmetic average of the values from the endpoints
of the edge adjacent to the considered face:

k(l)r =
1
2

(

k(i)r +k(j)r
)

(19)

The second formula is a natural choice for a VD scheme, since it retains the
dependence of the flux on two points only, however, it can also be used with
an MD discretisation. Apart from the arithmetic mean, there exist other two-
point permeability approximations, which can be used with both MD and VD
discretisations. A popular choice is the upwind (upstream) mean defined as follows
[8, 11]:

k(l)r =

{

k
(i)
r if

(

∇p(l)−ρ(l)g
)

·n (l,i)≤ 0

k
(j)
r if

(

∇p(l)−ρ(l)g
)

·n (l,i)> 0
(20)

The use of an upstream average is necessary when advection (gravity) forces
dominate over diffusion (capillary) forces at the scale of a single grid cell. This
occurs, for instance, when modelling infiltration into dry soil on a coarse grid [8].
Upwinding is also necessary in two-phase flow simulations [22]. If arithmetic av-
eraging is used instead of upwinding, unphysical oscillations arise in the resulting
pressure distribution. On the other hand, the upwind average is less accurate
than the arithmetic average on finer grids. This problem was studied extensively
for the case of one-dimensional unsaturated flow, and more accurate schemes
have been proposed, e.g. [23]. Their evaluation for unstructured grids is beyond
the scope of this paper and is the subject of ongoing work. Here, we focus on
four approaches: MD-ARIT (median-dual grid with permeability evaluated ac-
cording to Equation (18)), MD-UPW (median-dual grid with permeability up-
winding), VD-ARIT (Voronoi dual grid with permeability given by Equation (19))
and VD-UPW (Voronoi dual grid with permeability upwinding).

Spatial discretization results in a system of differential equations with
respect to time. The integration in time is performed with a fully implicit Euler
scheme, i.e. the flux terms are evaluated using the unknown pressure values from
the next time level:

M t+∆ti −M ti
∆t

+
∑

Fl∈∂Vi

Qt+∆tl,i = 0 (21)

The obtained system of nonlinear algebraic equations is solved using the Newton
iterative method with line search. The entries of the Jacobian matrix are obtained
by numerical differentiation. The iterations are stopped when the changes in the
value of water saturation at the unsaturated nodes are smaller than 1.0 ·10−4 and
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the changes in the value of water pressure at the saturated nodes are smaller than
1 Pa. The time step is adjusted during the solution in order to keep the required
number of iterations for each time step in the range of 3 to 7.

The algorithm described here can be easily extended to the case of axisym-
metric flow in the coordinate system r–z. In such a case, it is only necessary to
replace the two-dimensional volume Vi with the volume of a three-dimensional
figure obtained by rotation about the z axis. Similarly, the length of the face Fl
should be replaced with the area of the corresponding surface of revolution.

4. Examples

4.1. Example 1: Comparison with analytical solution

In the first example, the results of numerical simulations are compared with
the analytical solution developed by Tracy [24]. The solution domain is a square
of the dimensions of X = 1 m by Z = 1 m (Figure 2). The fluid is assumed to be
incompressible (ρ = 103 kg m−3, µ = 10−3Pa s) and the porous medium is rigid
(φ= 0.45, ks= 1.0194 ·10−12m2). The hydraulic functions have exponential form:

S=Sr+(1−Sr) exp(−αp) (22)

kr = exp(−αp) (23)

with Sr = 1
3 and α= 2.5484 ·10−5Pa−1. Uniform distribution of water pressure

p0 =−9.81 ·105Pa was assumed as the initial condition and this value was kept
constant throughout the simulation along the bottom and the vertical sides of the
domain. At the top boundary a sinusoidal distribution of pressure was imposed:

p(x,z=Lz,t) =
1
α

ln
(

exp(αp0)+(1−exp(αp0)) sin
(πx

X

))

(24)

Under the above assumptions, the value of water pressure for a given spatial point
(x,z) and time t can be calculated analytically as [24]:

p(x,z,t) =
1
α

ln

{

exp(αp0)+ p̄ sin
(

πx

Lx

)

exp(α(Z−z)/2)

[

sinh(βz)
sinh(βZ)

+
2
Zc

∞
∑

n=1

(−1)n
λn
γ

sin(λnz) exp(−γ t)

]} (25)

where c = αφ(1−Sr)
ks

, γ = (β2+ λ2n)/c, β =
√

α2

4 +
(

π
X

)2
, p̄ = 1− exp(αp0) and

λn= nπ
Z .
Three spatial grids were considered, with the node spacing along the

boundary equal to 25 cm, 10 cm and 2 cm, respectively. The simulation time was
180 s, while the time step was allowed to vary between 10−3 s and 1 s according
to the performance of the iterative solver.

The spatial distribution of water pressure at the end of the simulation
is shown in Figure 3 for the MD-ARIT and MD-UPW schemes and the medium
grid size. It can be seen that the MD-ARIT method produced results closer to the
analytical solution, while the MD-UPW scheme led to a slightly faster propagation
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Figure 2. Geometry and boundary conditions for Example 1 and 2

Figure 3. Example 1, distribution of water pressure according to the analytical solution
and the MD-ARIT and MD-UPW solutions on the medium grid

of the infiltration front. In this case, the upwinding of relative permeabilities
leads to larger values of permeability at the control volume face than arithmetic
averaging. This is confirmed by Figure 4, which shows the profile of water pressure
along the vertical symmetry axis of the solution domain for the final time t= 180 s.
Schemes based on arithmetic averaging are more accurate than schemes based
on upwinding. On the other hand, if the same method is used for permeability
averaging, the differences between the schemes based on the median-dual grid and
Voronoi dual grid are very small.

The accuracy of various schemes can be evaluated in terms of the root mean
square error (RMSE) of the pressure head:

R=

√

√

√

√

1
N

N
∑

1

(pnum−pref )2 (26)

where N is the number of internal nodes in the domain, pnum is the final
water pressure at a specific node from the numerical solution, and pref is the
corresponding pressure value from the analytical solution. The values of the RMSE
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Figure 4. Example 1, water pressure profile along the vertical symmetry axis, according
to the analytical solution and the MD-ARIT and MD-UPW solutions on the medium grid

Table 1. Root mean square error for various discretization schemes used in Example 1

∆x(m) MD-ARIT VD-ARIT MD-UP VD-UP

0.25 2061 2600 7413 7342

0.1 742.6 813.2 4082 4040

0.02 47.68 49.20 903.5 900.1

are listed in Table 1. The upwind schemes are less accurate than arithmetic
averaging for the entire range of discretization. Nevertheless, all schemes are
convergent, i.e. the error decreases with a decrease in the size of grid cells.

4.2. Example 2: Infiltration in uniformly grained sand

The second example concerns downward infiltration in sand with a pre-
scribed infiltration flux on a part of the soil surface (Figure 2). The soil is char-
acterized by the Brooks-Corey-Burdine hydraulic functions of the following form:

S=Sr+(1−Sr)Se (27)

Se=
{

(p/pe)−λ if p<pe
1 if p≥ pe

(28)

kr =S3+2/λ (29)

where Se is the effective (normalized) water saturation, Sr = 0.096 is the residual
water saturation, pe=−696 Pa is the air entry pressure, and λ= 2.5 is a parameter
related to the uniformity of grain size. The assumed value of λ corresponds to
a medium with a relatively uniform pore-size distribution and leads to a rapid
decrease in the values of water saturation in the pressure range slightly above pe,
which in turn produces a very steep infiltration front. The infiltrating mass flux
is slightly smaller than the soil infiltration capacity so that ponding of water on
the surface is avoided. The compressibility of water and of the porous medium is
neglected.
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Figure 5. Example 2, distribution of water saturation for different grids
and permeability averaging schemes

Figure 6. Example 2, water saturation profiles along x= 0 for different grids
and permeability averaging schemes

Numerical results are presented for two grids – a fine grid with a node
spacing of 0.02 m along the boundaries, and a coarse grid with a node spacing
of 0.2 m. Figure 5 shows the distribution of water saturation in the domain after
4 hours of infiltration. The fine-grid solution shows a very steep infiltration front
with a rapid transition between the dry and wet zones. In contrast, the coarse
grid solutions are characterized by more diffuse wetting fronts. This is particularly
visible for the MD-UPW solution. In the MD-ARIT solution, the wetting front
is less diffused and the shape of the wet zone corresponds better to the fine
grid solution. However, the use of arithmetic averaging leads to non-physical
oscillations in the pressure and saturation profiles. This can be seen in Figure 6,
which presents the saturation profiles along x= 0. On the coarse grid, the ARIT
and UPW schemes lead to qualitatively very different results. The UPW schemes
produce smoothed and oscillation-free fronts, overestimate the infiltration velocity
in the horizontal direction and significantly underestimate the velocity in the
vertical direction. On the other hand, the ARIT schemes are more accurate with
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regard to the position of the wetting front, but show significant oscillations. In
a way, these two schemes can be thought of as equivalents of the upwind and
central difference schemes for the advection equation. It is well known e.g. [25]
that the centred scheme is characterized by numerical dispersion, which leads to
oscillations, while the upwind scheme introduces strong numerical diffusion, which
leads to a smoothing of the wetting front and damps any oscillations. Figure 6
shows that these numerical errors decrease as the grid is refined. Similarly to the
previous example, if the same permeability averaging method is used, both the
MD and VD schemes produce similar results.

4.3. Example 3: Seepage through a dike

Here, we consider flow in a dike and in the surrounding soil caused by
a rapid increase in water level in a river due to a flood wave. The geometry of
the domain is shown in Figure 7. Hydrostatic distribution of water pressure is
assumed as the initial condition, with the groundwater table (p= 0) located 5 m
above the bottom of the domain. The water level on the left-hand side of the
embankment is rapidly raised up to 1 m below the top of the embankment, and is
maintained constant during the simulation. On the right-hand slope of the dike
and at the soil surface behind it, a seepage face boundary condition is imposed.
This means that the water can flow out freely when the water pressure in the
porous medium reaches 0. Technically, this is achieved by specifying a Neumann
boundary condition v ·n = 0, as long as the soil remains unsaturated (p < 0).
When the pressure reaches 0, the condition is changed to the Dirichlet boundary
condition, and p= 0 is maintained, thus preventing a build-up of positive pressure
values in the porous medium.

Figure 7. Geometry and boundary conditions for Example 3

The solution domain consists of three different soils, characterized by the
van Genuchten-Mualem hydraulic functions of the following form:

S=Sr+(1−Sr)Se (30)

Se=
{

(

1+(p/pg)1/(1−m)
)−m

if p< 0
1 if p≥ 0

(31)

kr =S1/2e
(

1−(1−S1/me )m
)2

(32)
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The values of the parameters are listed in Table 2. The domain was discretized
using NetGen, with three sets of parameters w1 and w2. In each case, the spacing
of the nodes at the boundaries was identical, however, the total number of nodes in
the domain differed significantly (see Table 3 and Figures 8–9). Grid 1 consists of
elements similar to equilateral triangles, while the triangles composing Grid 3 are
considerably stretched in the vertical direction. The simulations were performed
using only the MD-ARIT approach.

Table 2. Soil parameters used in Example 3

soil φ (–) Sr (–) pg (Pa) m (–) ks (m2)

sand 0.43 0.105 −680 0.627 8.25 ·10−12

loamy sand 0.41 0.139 −794 0.561 4.05 ·10−12

sandy clay 0.38 0.263 −3636 0.187 3.33 ·10−14

Table 3. Grid parameters used in Example 3

grid w1 w2 nodes elements edges

1 (fine) 0.700 0.577 1518 2859 4376

2 (medium) 1.500 0.577 733 1289 2021

3 (coarse) 2.000 2.000 365 545 905

Figure 8. Example 3, water pressure distribution at t= 27.8 h. The solid white line
represents the groundwater table (p= 0 isoline)
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Figure 9. Example 3, water pressure distribution at t= 111.1 h. The solid white line
represents the groundwater table (p= 0 isoline)

Figures 8 and 9 show the distribution of the water pressure at time t= 27.8 h
and t = 111.1 h, respectively. The position of the groundwater table is denoted
with a solid white line. Due to the presence of a weakly permeable clay screen
on the outward slope of the dike, water enters the main body of the dike mainly
from the underlying sand layer, Figure 8. With time, the groundwater level in the
sand layer and in the dike rises and approaches the soil surface in the vicinity
of the base of the right-hand slope of the dike. According to the medium and
fine grid simulations, at t = 111.1 h water begins to flow out at this location,
while the coarse grid simulation predicts a somewhat delayed outflow, at about
t= 120 h. This difference is caused by the fact that the coarse grid solution leads
to a higher saturation in the main body of the dike due to overestimated upward
infiltration. The differences in the results between the medium and fine grid are
less pronounced. As can be expected from the number of nodes, the computational
times differ significantly. For the fine grid, the calculations took 4717 s, whereas
for the medium grid – 808 s, and for the coarse grid 288 s.

5. Conclusions

We presented a numerical algorithm for solving the equation describing two-
dimensional flow in a variably saturated porous medium. The algorithm is based
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on a primary triangular mesh, from which a dual control volume mesh is created.
The algorithm enables several choices with respect to the approximation of the
average relative permeability at the control volume faces. Numerical experiments
showed that the method used for permeability averaging significantly affects the
results. On the other hand, the differences between the dual grids obtained by
the median-dual method and by the Voronoi method were rather small, when the
same permeability averaging scheme was employed.
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