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Abstract: The influence of soil heterogeneity on miscible solute transport in soil is analyzed.

The transport process is simulated numerically using the Monte-Carlo method. This paper

shows how different types of soil heterogeneity influence the process of contaminant spreading.

If independent flow paths exist in the soil, the degree of the mixing of pollutants in the outflow

from the soil profile is larger. If the preferential flow paths are shorter, the degree of mixing,

related to the heterogeneity of the velocity field, is smaller. These effects can be captured using

the Monte-Carlo method.
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1. Introduction

The transport of substances dissolved in water flowing through a heteroge-

neous and unsaturated soil medium is termed hydrodynamic dispersion (depend-

ing on the scale, either microdispersion or macrodispersion). The migration of

pollutants through a soil medium involves different transport mechanisms (convec-

tion, hydrodynamic dispersion). Each mechanism depends on the type and struc-

ture of the soil, as well as on a group of physical and physicochemical phenomena,

like non-uniform velocity field, molecular diffusion, reactions between dissolved

substances; and can lead to spatial and temporal variations of the concentration

of a solute substance in groundwater. Hydrodynamic dispersion is mainly of im-

portance in the case of highly permeable porous media, while molecular diffusion

occurs at low pore velocity, typical of semi-permeable formations.
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2. Basic equation of contaminant transport

in soil medium

Hydrodynamic dispersion phenomena are typically described by advection-

diffusion models [1, 2]. To describe the process of solute transport in a soil

profile, it is assumed that the solute particles are moving at the average speed

of the solvent (averaged over an elementary, representative surface or volume).

Therefore, to each particle we must apply the mass conservation principle, which

can be written in the form of a continuity equation:

∂ρ

∂t
=− ∂qi
∂xi
+s (1)

where:

qi – total mass flux of a substance dissolved in groundwater,

ρ=Cθ – solute density in groundwater,

θ – volumetric water content,

C– concentration,

s – sink term,

xi – spatial coordinate,

t – time.

The total mass flux qi can be written as a superposition of the dispersive

contribution qdi and the advective contribution qi:

qi= q
d
i +qi (2)

The advective flux can be written as:

qi=Cθvi (3)

The dispersive flux is proportional to the concentration gradient [3]:

qdi =−Dijθ
∂C

∂xj
(4)

where Dij – components of the hydrodynamic dispersion tensor, thus Equation

(2) can be written in the form:

qi=−Dijθ
∂C

∂xj
+Cθvi (5)

The components of the hydrodynamic dispersion tensor depend on the

groundwater flow velocity, as well as on the molecular diffusion coefficient in the

soil and can by defined as:

D11=DL
v2
1

|v|2 +DT
v2
2

|v|2 +Dd (6)

D12=D21=(DL−DT )
v1v2

|v|2 (7)

D22=DL
v2
2

|v|2 +DT
v2
1

|v|2 +Dd (8)

where:

DL – longitudinal dispersion coefficient,
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DT – transverse dispersion coefficient,

Dd – molecular diffusion coefficient,

vi, vj – components of average linear groundwater velocity in their respective

directions.

The advection-dispersion equation, describing the transport of a substance

dissolved in groundwater, can be obtained by introducing Equation (5) into

Equation (1):
∂(Cθ)

∂t
=
∂

∂xi

(

Dijθ
∂C

∂xj

)

− ∂(Cθvi)
∂xi

+s (9)

3. Numerical solution

The advection-dispersion equation can be solved using a variety of methods,

such as the finite difference method, the finite element method or the finite volume

method. In this work, the transport equation is solved with the Monte-Carlo

method [4–6]. In contrast to the finite element and finite difference methods,

the Monte-Carlo method does not generate numerical dispersion. This method

involves a numerical solution for virtual particles of the dissolved substance.

It is based on stochastic process theory [7–9]. An algorithm for the computer

simulation of random variables was described in detail by Maciejewski and

Gorczewska-Langner [10]. The Monte-Carlo method consists in developing an

equivalent formulation of the advection-dispersion equation in terms of the

Kolmogorov equation and the Ito stochastic equation. The Kolmogorov equation

is written as [11, 12]:

∂f

∂t
+
∂

∂xi
(mif)=

1

2

∂2

∂xi∂xj
(bijf) (10)

and the corresponding Ito stochastic equation is:

dxi=midt+σikdBk (11)

where:

dxi – displacement,

f – probability density,

mi, bij – coefficients,

Bk – Wiener process, which is the theoretical model of Brownian motion,

xi, xj – spatial coordinates,

t – time.

The relationship between matrices b and σ is given by:

bij =σikσjk (12)

The advection-dispersion equation for a solute dissolved in groundwater (9)

with the omission of the sink term, can be transformed into the Kolmogorov

equation in the following way:

∂(Cθ)

∂t
+
∂

∂xi

[(

vi+
∂Dij

∂xj
+
Dij

θ

∂θ

∂xj

)

Cθ

]

=
1

2

∂2

∂xi∂xj
(2DijCθ) (13)
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By comparing the above relations, we obtain:

2Dij =σikσjk (14)

From the Ito stochastic equation (11) and the Kolmogorov equation (13) it

follows that the coordinates of the vector m can be written as:

mi= vi+
∂Dij

∂xj
+
Dij

θ

∂θ

∂xj
(15)

The difference approximation of Equation (11) can be written as follows:

∆xi=mi∆t+σikVk
√
∆t (16)

where:

Vk – normal random variable,

∆t – time step.

4. Simulation examples

In this work we focus on the numerical simulation of stochastic processes

described by the Ito stochastic equation, which enables us to solve the flow and

transport problems in a soil profile, as shown in Figure1.

Figure 1. Flow zone of a solute dissolved in groundwater

The concentration profile of the solute injection on the profile surface can

be simulated assuming that the total massM is divided into n particles. Based on

the position of particles at time t, we can calculate their position for t+∆t. Zero

concentration was assumed as the initial condition for the transport equation.

The upper boundary is permeable for the tracer particles entering the domain,

but impermeable for those particles which are inside the domain. The horizontal

boundaries are impermeable.
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C(x1,x2,0)= 0

C(x1,L,0)=C0

q1(x1,0,t)= 0

q1(x1,L,t)= 0























(17)

Based on the distribution of particle positions, we can estimate the concen-

tration field of substances dissolved in groundwater:

C(x2,t)=
M ·
∑

n(x2)

x1 ·∆x2 ·θ
(18)

where:

M – total mass of tracer,

Σn(x2) – number of particles corresponding to the mass of tracer dissolved in soil

water,

θ – average volumetric water content in the domain.

The number of particles in the domain is proportional to the density of

dissolved substances. For a given density and water content in the soil medium,

the distribution of the concentration of the pollutant in the soil profile can be

calculated for each time step using a numerical simulation program. Moreover,

the total amount of the pollutant which flowed out from the soil medium in

a given time can be found. The total amount of the pollutant is used to define

the distribution of the solute concentration CF at the outflow:

CF (t)=
1

Sρ0qw
dM(t)

dt
(19)

where:

M(t) – total mass of the solute flowing out from the soil medium between t=0

and t,

qw – outflow flux,

S – outflow surface,

̺0 – water density (̺0=1g/cm3).

The concentration CF represents an average value measured at the outflow,

which is in general different from the point values measured at various locations

in the porous domain.

Numerical simulations were performed for five different cases (Figure 2).

These cases reflect the heterogeneity of the soil. The simulation results are shown

below as the distribution of the solute concentration in the soil profile and in the

outflow from the soil profile. In each case, the flow problem can be represented as

a one-dimensional problem. It was solved for a soil profile of length L= 120cm

and width W =50cm.

Each of the subdomains was assigned a random value of the hydraulic

conductivity. The values were generated as random Gaussian variables, assuming

the same average value of 1 cm/d and the standard deviation of 10% in every test

problem. In each case, the solutions were obtained for a constant longitudinal
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Figure 2. Division of a random field for the 5 cases considered

dispersion coefficient DL of either 0 cm
2/d or 0.1 cm2/d. The transverse dispersion

coefficientDT , as well as the molecular diffusion coefficientDd, were assumed to be

zero. Assuming DL=0cm
2/d allowed us to observe the effect of soil heterogeneity

on the flow and transport processes. Eliminating dispersion in this way prevents

exchange between individual flow paths, making it possible to study only flow

processes depending on the types of soil heterogeneity. In each problem, the

average value of the groundwater flow velocity was equal to 1 cm/d.

The solute concentration in the soil profile for an arbitrary instant of

time for case 5 is presented in Figure 3. The simulation was performed for 3
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Figure 3. Solute concentration in the soil profile for case 5, DL=0.1cm
2/d

Figure 4. Concentration in the outflow from the soil profile, DL=0.1cm
2/d

intermediate times of the solute flow: t=10d, t=40d and t=80d. The maximum

concentration of the tracer decreased with the increase in depth.

Figure 4 presents the concentration distribution of the tracer in the outflow

as a function of time for 24000 virtual particles. An increase in the number of flow

paths triggers an increase in the maximum value of the concentration, while the

curves become increasingly steeper.
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Figure 5 presents the total mass of pollutants flowing out from the soil as

a function of time for all five cases. As can be easily seen, for the first case the

tracer outflow begins at the earliest, and takes the longest time. For case 5, it

was observed that the mass outflow is the most delayed and the total mass of

the pollutant flows out very quickly in a short period of time. In comparison, for

case 1, the total mass of pollutants flowed out after 66.5d; for case 5, the total

amount of pollutants flowed out after 8.5d. Thus, we believe that the random

field compaction reduces the time the pollutants reside in the soil medium.

Figure 6 presents the standard deviation of the concentration for each

case. The numerical simulations show that the standard deviation is smaller for

Figure 5. Mass of the solute flowing out from the soil medium, (a) DL=0cm
2/d,

(b) DL=0.1cm
2/d

Figure 6. Standard deviation of the concentration for each case, (a) DL=0cm
2/d,

(b) DL=0.1cm
2/d
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a condensed random field. For case 1, a standard deviation of 0.091 is obtained,

whereas for case 5, the deviation was almost 7.5 times smaller (equal to 0.013).

5. Conclusions

A classical advection-dispersion model was applied to the simulation of

solute transport in heterogeneous and porous soil medium. The heterogeneity of

the medium can have different characteristics. The properties of the soil, such

as hydraulic conductivity, are described by an isotropic random field. In the soil

medium, there can also exist numerous flow paths with random hydrodynamic

conductivities. The influence of heterogeneity on the mixing of the liquid during

transport in soil was analyzed. We showed how different types of soil heterogeneity

influence the mixing of contaminants flowing through a porous soil medium.

Where independent flow paths exist in the soil, the degree of mixing in the

outflow from the soil profile is larger. For shorter preferential flow paths, the

degree of mixing, related to the heterogeneity of the velocity field, is smaller.

In the simulations, the dispersivity values approaching zero were assumed, so

that the degree of mixing depended on the characteristic velocity fluctuations

of groundwater flow determined by the soil heterogeneity on the macro scale.

The presented calculations demonstrate that the disappearance of flow paths

(cf. case 5), leads to a decrease in the influence of local velocity fluctuations on the
process of mixing. Further simulations are necessary to evaluate the performance

of the approach used in this paper for more complex soil heterogeneity patterns.

Also, further laboratory experiments are needed to validate the model.
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