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Abstract: For one-dimensional open-channel flow modeling, the energy equation is usually

used. There exist numerous approaches using the energy equation for open-channel flow

computations, which resulted in the development of several very efficient methods for solving

this problem applied to channel networks. However, the dynamic equation can be used for this

purpose as well. This paper introduces a method for solving a system of non-linear equations

by the discretization of the one-dimensional dynamic equation for open-channel networks. The

results of the computations using the dynamic and energy equations were compared for an

arbitrarily chosen problem. Also, the reasons for the differences between the solution of the

dynamic and energy equation were investigated.
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1. Introduction

In engineering practice, we very often face the problem of steady, gradually

varied (SGV) flow in open channels. The governing equation for this kind of flow

can be derived from the Bernoulli equation [1]. To this effect, let us consider the

situation presented in Figure 1.

When considering two neighboring cross-sections one can write the following

equation of mechanical energy conservation:

z+H+
α ·U2

2g
=(z−s ·dx)+(H+dH)+

α(U+dU)2

2g
+S ·dx (1)

where:

x – space coordinate,

z – bed elevation with regard to the datum,
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Figure 1. Derivation of energy equation

H – depth,

U – average flow velocity,

s – bottom slope,

S – friction slope,

g – gravitational acceleration,

α – energy correction factor.

The squared velocity at the downstream end can be expressed using the

approximate formula:

(U+dU)2=U2+2U ·dU+(dU)2≈U2+2U ·dU (2)

By introducing this relation into Equation (1) one obtains:

s=
dH

dx
+
α

g

U ·dU

dx
+S (3)

After simple rearrangements it takes the following form:

d

dx

(

h+
α ·Q2

2g ·A2

)

=−S (4)

with:

h=H+z (5)

and

Q=U ·A (6)

where h denotes the water stage, A is the wetted cross-section area and Q is

the flow discharge. The friction slope S usually is estimated using the Manning’s

formula:

S=
Q2 ·n2

R4/3 ·A2
(7)

in which n is Manning’s roughness coefficient and R is the hydraulic radius.
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Ordinary differential Equation (4) describes the flow profile along the

channel axis, which is a solution obtained from a problem properly formulated for

this equation.

Open-channel flow can be considered to be either steady or unsteady.

Steady flow, however, can be regarded as a particular case of unsteady flow.

For this reason, Equation (4) describing SGV flow can also be obtained in other

ways. Namely, it can be derived from the Saint-Venant equations, which describe

unsteady flow in open channels. A system of Saint-Venant equations consists of

the mass conservation (continuity) equation and the momentum conservation

(dynamic) equation. When lateral inflow is neglected, these equations take the

following form:
∂A

∂t
+
∂Q

∂x
=0 (8)

∂Q

∂t
+
∂

∂x

(

β ·Q2

A

)

+g ·A ·
∂h

∂x
=−g ·A ·S (9)

where t is time, β is momentum correction factor (assumed to be constant).

A detailed derivation of the Saint-Venant equations is given by many authors

(e.g. in [2] and [3]).

If the flow parameters do not change with time, as is the case with steady

flow, the derivatives with respect to time vanish. In such a case, Equations (8)–(9)

are reduced to the following form:

dQ

dx
=0 (10)

d

dx

(

β ·Q2

A

)

+g ·A ·
dh

dx
=−g ·A ·S (11)

Since these equations give a general description of SGV flow, it seems that

they can be used directly for modeling this kind of flow. Comparing their solutions

with the solution of Equation (4) can be particularly interesting. This paper

attempts to apply Equations (10)–(11) to the modeling of SGV flow in an open-

channel network.

2. Problem statement

The problem of solving Equations (10)–(11) can be considered differently

depending on the available information about the flow discharge Q. If Q is known,

then the solution of Equation (10) is obvious: the flow discharge along the channel

axis is constant, Q=const. In such a case the flow profile is obtained by solving

Equation (11) with given initial condition:

h(x=0)=h0 (12)

In other words, the flow profile is a solution of initial value problem for the

ordinary differential equation (11).
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Figure 2. Channel connecting two reservoirs

A different approach must be applied in the case when Q is unknown. In

such a case for the system of Equations (10)–(11), a two point boundary value

problem (BVP) must be formulated.

The flow profile h(x) must satisfy the governing equations (10)–(11) as well

as the two conditions imposed at both ends of the considered channel. A typical

example of a BVP formulated for a single channel is shown in Figure 2. The

considered channel connects two reservoirs with different, but time-independent,

water levels. The flow profile in the channel and the flow rate Q can be obtained

by solving Equations (10)–(11) with the following boundary conditions:

h(x=0)=h0+
α ·Q2

2g ·A2

∣

∣

∣

∣

x=0

(13)

h(x=L)=hL (14)

A detailed description of the problem presented above can be found in [1].

As long as a single channel is considered, the boundary conditions (13)–(14) allow

us to solve Equations (10)–(11). To this effect, any method suitable for BVP can

be used [1]. Therefore, the shooting or difference method can be applied [4]. The

situation is different for SGV flow in a channel network.

Figure 3. Open-channel network

Let us consider a network shown in Figure 3. In this case, the shooting

method is rather ineffective and it can be applied only in certain cases. Alter-

natively, we can use the complete Saint-Venant equations with imposed time-

independent boundary conditions or apply the difference method to Equation (4)

or (11). Solving the complete Saint-Venant equations seems to be very inefficient
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for this purpose. Typically, the difference method is the most effective. However,

in order to obtain the solution of the SGV flow equations for an open-channel net-

work, certain conditions must be prescribed at the channel junctions, apart from

the boundary conditions imposed at the ends of the pendant channels. Namely,

for a junction such as that presented in Figure 4 we can formulate two additional

relations resulting from the energy and mass conservation principles.

Figure 4. Junction connecting three channels

Assuming that the energy lines for the channels connected at the junction

are at the same level, the following equations can be written:

hI,i+
αI,i ·Q

2
I,i

2g ·A2I,i
=hJ,j+

αJ,j ·Q
2
J,j

2g ·A2J,j
=hK,k+

αK,k ·Q
2
K,k

2g ·A2K,k
(15)

The subsequent relation results from the mass conservation principle. Assuming

that the positive flow directions coincide with the arrows in Figure 4, the relation

can be expressed as follows:

QI,i=QJ,j+QK,k (16)

In Equations (15)–(16) the subscripts I, J , K denote channel indicies whereas

the subscripts i, j, k are the cross-section indicies.

The above relations, together with the boundary conditions (13)–(14), allow

us to solve the SGV flow equations for any channel network, regardless of its type.

3. Numerical solution of SGV flow equations

To solve the BVP for the system of ordinary differential equations (10)–(11)

the finite difference method (FDM) can be used. To this order the Ith channel

which constitutes part of the network presented in Figure 3 and has the length

LI , is divided into (NI−1) segments with constant lengths ∆x, where NI denotes

the number of cross-sections. An approximation for a single interval limited by

nodes i and i+1 is assumed, as shown in Figure 5.

Figure 5. FDM discretization scheme, where P is the point of approximation
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All derivatives presented in Equation (11) are approximated using central

differences at point P , which is located in the middle of the segment. Consequently,

we obtain:
1

g ·AP

β ·Q2

∆x

(

1

Ai+1
−
1

Ai

)

+

(

hi+1−hi
∆x

)

+SP =0 (17)

where the subscript P denotes the values taken at point P . Therefore the

respective values are given by:

AP =
1

2
(Ai+Ai+1) (18)

SP =

(

|Q|Q ·n2

A2 ·R4/3

)

P

=
1

2

[

(

|Q|Q ·n2

A2 ·R4/3

)

i

+

(

|Q|Q ·n2

A2 ·R4/3

)

i+1

]

(19)

The modulus of flow rate Q was introduced into Equation (19) in order to preserve

the information about the flow direction.

Equation (17) together with Equations (18)–(19) can be rearranged to

obtain:

hi+1−hi+
2β ·Q2

g(Ai+Ai+1)

(

1

Ai+1
−
1

Ai

)

+
∆x

2

(

|Q|Q ·n2i

A2i ·R
4/3
i

+
|Q|Q ·n2i+1

A2i+1 ·R
4/3
i+1

)

=0 (20)

Since the Ith channel was divided into (NI − 1) segments, for each channel,

we can write (NI − 1) similar equations. Consequently, we obtain a system

of (NI −1) equations containing (NI +1) unknowns. The prescribed boundary

conditions (13)–(14) must be introduced in order to close this system. Using

matrix notation, the obtained system of equations is expressed as follows:

ax = b (21)

where a is the matrix of coefficients, b is the right-hand side vector, and x is the

unknown vector, defined as follows:

a =































a1,1

a2,1 a2,2 a2,NI+1

. . .
. . .

...

aNI−1,NI aNI−1,NI−1 aNI−1,NI+1

aNI ,NI

aNI+1,NI−1 aNI+1,NI aNI+1,NI+1































(22)

x =























h1
h2

...

hN
Q























, b =























h0
0

...

0
hL
0























(23)
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The vector x contains (NI +1) unknowns, i.e. NI nodal values of water stages

and the flow discharge Q in the Ith channel. The elements of the matrix a are

the coefficients resulting from Equation (20). The resulting system of equations

is non-linear. Its matrix of coefficients, with the dimensions of (NI+1)×(NI+1)

is very sparse.

In the case of a channel network, the presented approach must be repeated

for all branches. In this way, subsystems similar to Equations (22)–(23) are

obtained for each channel. The subsystems describing subsequent branches must

be assembled in order to obtain a global system for the entire network. In order

to achieve this, we must apply Equations (15)–(16) for the channel junctions.

Finally, we obtain the following global system of equations:

AX =B (24)

where A is the matrix consisting of matrices (22) obtained by applying the de-

scribed approach to each channel in the network. VectorsX andB are constructed

in a similar way. The vector of unknowns, X , is obtained by concatenating the

vectors of unknowns in each channel. Vector B contains the boundary condition

values imposed on all channels in the network. The global system of non-linear

equations with the introduced boundary conditions has the dimensions ofNG×NG
where:

NG=

M
∑

I=1

(NI+1) (25)

with M denoting the number of branches in the network. In other words the

number of unknowns NG is equal to the total number of cross-sections and

channels in the network.

The resulting global system of non-linear equations must be solved using

the iterative procedure. To this effect, we apply the Picard method with the

modification proposed by Szymkiewicz [5]. In the modified Picard method the

iterative procedure has the following form:

A∗X (m)=B (26)

with

A∗=

{

A
(

X (m)
)

for m=1

A
(

X (m)+X (m−1)

2

)

for m> 1
(27)

where superscript m denotes the iteration index.

The stop condition is the simultaneous fulfillment of the following two

criteria:
∣

∣

∣
h
(m+1)
i −h

(m)
i

∣

∣

∣
≤ εh (28)

∣

∣

∣
Q
(m+1)
j −Q

(m)
j

∣

∣

∣
≤ εQ (29)

(i=1,2, .. .,Nj ; j=1,2, .. .,M),

where M denotes number of branches, Nj is the number of cross-sections of the

jth branch, εh and εQ are water surface and discharge error tolerance respectively.
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The computer code realizing the described algorithm has been implemented

in Scilab language. The sparse system of linear equations arising at each iteration

was solved using LU decomposition.

4. Discussion of obtained results of computations

We validated the proposed method of solution on an arbitrarily chosen

channel network (cf. Figure 6), consisting of 24 rectangular channels with constant

values of bed slopes and Manning’s roughness coefficients. Spatial discretization

was carried out with a constant value of ∆x= 10m, identical for each channel.

Other characteristics of the channel network in question are given in Table 1.

Figure 6. Assumed channel network (arrows denote the assumed positive flow direction)

The initial approximation of the water stage values in each cross-section was

the sum of the bed level and of the depth imposed at its end. For the channels

with no imposed boundary conditions, the initial estimation of water surface levels

corresponded to a depth of H(0) =1.5m. The initial estimation of the discharge

values for each channel was obtained using the Manning formula, as in the case of

the calculations of steady uniform flow. The boundary conditions corresponding

to the water surface levels imposed at all pendant nodes are listed in Table 2. The

computations were performed with a tolerance εh=0.001m and εQ=0.01m
3/s.

The computed values of flow rate Q and water stages at the upstream

(hU ) and downstream (hD) end of each channel are presented in Table 3. The

computations were terminated after 14 iterations.

For comparison, the problem under study was solved using the energy

equation [5]. The same initial estimation of discharge and water stage values was

used together with the same error tolerance criteria. The comparison of discharge

values obtained using both approaches showed no significant differences. The

maximum observed difference between the values of the calculated discharge was

∆Qmax = 0.135m
3/s, corresponding to a relative error of about 2.5%. Similarly,
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Table 1. Hydraulic characteristics of the channel network

No. Bed slope Bed width Manning’s coefficient Channel

s (–) B (m) n (s/m1/3) length L (m)

1 0.0001 6.0 0.02 1000

2 0.0005 4.0 0.02 500

3 0.001 2.0 0.03 500

4 0.0005 3.5 0.02 500

5 0.001 2.0 0.03 500

6 0.0005 3.2 0.02 500

7 0.001 2.0 0.03 500

8 0.0001 3.0 0.02 1000

9 0.00015 2.0 0.025 1000

10 0.0004 2.0 0.025 1000

11 0.0003 2.0 0.025 1000

12 0.00055 2.0 0.025 1000

13 0.00045 3.0 0.025 1000

14 0.00025 2.8 0.02 2000

15 0.0001 2.5 0.02 1000

16 0.0001 3.0 0.02 1000

17 0.0001 2.0 0.02 1000

18 0.0004 2.0 0.03 1000

19 0.0003 2.0 0.025 1000

20 0.001 2.0 0.025 1000

21 −0.0018 2.0 0.02 500

22 0.001 2.0 0.03 750

23 −0.0014 2.0 0.02 500

24 0.001 2.0 0.02 750

Table 2. Boundary conditions imposed at the pendant nodes

Channel Depth

No. (m)

1 2.0

3 1.5

5 1.5

7 1.5

17 1.5

22 1.5

24 1.5
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Table 3. Calculated flow-discharge values and water levels

Channel Q hU hD

No. (m3/s) (m) (m)

1 13.566 102.00 101.42

2 6.994 101.44 101.10

3 2.183 101.13 100.65

4 4.376 101.12 100.94

5 2.400 100.95 100.40

6 2.481 100.96 100.90

7 3.018 100.88 100.15

8 3.342 101.46 101.09

9 −0.434 101.11 101.14

10 0.983 101.11 100.96

11 −0.478 100.92 100.96

12 0.368 100.92 100.90

13 0.169 100.91 100.90

14 3.230 101.46 100.89

15 1.858 101.11 100.92

16 0.502 100.92 100.90

17 −1.681 100.90 101.00

18 0.935 101.11 100.90

19 0.304 100.92 100.91

20 1.162 100.92 100.75

21 −2.014 100.75 100.89

22 2.228 100.89 100.15

23 −2.242 100.74 100.89

24 5.417 100.70 99.45

the computed flow profiles did not differ significantly either, with the greatest

difference between the computed water surface levels being ∆hmax = 0.051m

(Figure 7).

Although the difference between the solution of the dynamic and energy

equation was not significant in terms of numerical values, and although both

approaches can be deemed equivalent, the reason for the observed difference is

definitely worth investigating.

One can expect that the solution of the same problem should not be

different, regardless of whether Equation (4) or Equation (11) is used. Particularly

so, if one of these equations can be derived from the other. However, the differences

may arise from the approximation used in the applied numerical method.
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Figure 7. Computed flow profiles in channel 1: dotted line – Equation (4),

solid line – Equation (11)

Let us reconsider the discrete form of the dynamic equation (20):

(hi+1−hi)+
2β ·Q2

g(Ai+Ai+1)

(

1

Ai+1
−
1

Ai

)

+
∆x

2

(

|Q|Q ·n2i

A2i ·R
4/3
i

+
|Q|Q ·n2i+1

A2i+1 ·R
4/3
i+1

)

=0 (30)

The difference approximation of the energy equation (4) is given as follows [1, 5]:

(hi+1−hi)+
α ·Q2

2g

(

1

A2i+1
−
1

A2i

)

+
∆x

2

(

|Q|Q ·n2i

A2i ·R
4/3
i

+
|Q|Q ·n2i+1

A2i+1 ·R
4/3
i+1

)

=0 (31)

Certain terms of both difference equations are similar, but their middle terms are

different. After subtracting one equation from the other, the following relation is

obtained:

∆=
α

2

(

1

A2i+1
−
1

A2i

)

−
2β

(Ai+Ai+1)

(

1

Ai+1
−
1

Ai

)

(32)

If Equation (30) and Equation (31) are equivalent the obtained difference ∆

should vanish. However from Equation (32) it follows that ∆ 6= 0. This means

that although the ordinary differential equations (4) and (11) are equivalent (one

can be derived from the other), their difference approximations are not. The

above relation (32) shows that the discrete forms of dynamic and energy equations

differ. Consequently, slightly different results can be obtained from these difference

equations. This corresponds to the conclusions presented by Cunge et al. in [6].

When discussing the problem of the analysis of SGV flow, they suggested using

the Saint-Venant equations with imposed, time-independent boundary conditions.

However, they discovered that this approach is inconsistent with the discrete form

of the energy equation (4) when applied to SGV flow.

5. Conclusions

The analysis of steady gradually varied flow can be carried out using either

the energy equation (4) or the dynamic equation (11). Although these equations

are equivalent, and although in both cases the same modified Picard method
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was used to solve the system of non-linear equations that arises, their numerical

solutions differ. This insignificant difference results from the inconsistency of the

discrete forms of the dynamic and energy equations, obtained with the finite

difference method.
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