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Abstract: In this paper, an approach using the finite volume method (FVM) for the solution

of two-dimensional shallow water equations is described. Such equations are frequently used to

simulate dam-break and dike-break induced flows. The applied numerical algorithm of the FVM

is based on a wave-propagation algorithm, which ensures a stable solution and, simultaneously,

minimizes numerical errors. Dimensional decomposition according to the coordinate directions

was used to split two-dimensional shallow water equations into one-dimensional equations.

Additionally, splitting was also applied with respect to the physical processes. The applied

dimensional and physical splitting, together with the wave-propagation algorithm led to an

effective algorithm and ensured proper incorporation of source terms into the scheme of the finite

volume method. A detailed description of an approximation for numerical fluxes and source terms

is presented. The obtained numerical results are compared with analytical solutions, laboratory

experiments and other results available in the literature.

Keywords: finite volume method, shallow water equations, approximate Riemann solver, dam-

break, dike-break, wave-propagation method

1. Introduction

Unsteady flow in rivers, shallow reservoirs and flood plains can be simulated

by means of the shallow water equations (SWEs). In order to solve these equations,

the finite difference or finite element methods are frequently used [1–3]. These

methods give highly accurate solutions for gradually varied flow. However, the

use of standard numerical methods leads to inaccurate and unstable solutions for

flows with a discontinuity, which can arise during dam-break or dike-break induced

flows. In such a case, unphysical oscillations or significant attenuation of the

wave are observed in the numerical solution. These unphysical effects result from

numerical dispersion and diffusion, which are introduced into the solution. In order
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to overcome these problems, the shallow water equations should be written in their

appropriate conservative form and solved by means of finite volume methods.

Numerical schemes for finite volume methods are based on the wave structure of

the approximate solution of the Riemann problem. These methods were originally

used in gas dynamics for the Euler equations [4, 5]. Such an approach has been

also applied in hydrodynamics to the solution of the shallow water equations in

order to simulate dam-break problems for one-dimensional flow [6, 7] and two-

dimensional flow [8–10], as well as to simulate dike-break induced flow [11–13].

In this paper, the solutions of one- and two-dimensional shallow water

equations are presented. The numerical algorithm of the finite volume method was

based on the wave-propagation algorithm proposed by LeVeque [5, 14]. In order

to obtain an efficient algorithm, directional decomposition of a two-dimensional

system was used. As a result, the solution of the two-dimensional problem was

reduced to the solution of a sequence of one-dimensional problems.

Correct approximation of the source terms, which represent both variable

bottom slope and friction, is crucial when solving the shallow water equations

by the finite volume method. For the approximation of the bottom source term,

flux-based wave decomposition [15] was used, whereas for the friction source term,

splitting with respect to the physical processes is proposed. This type of splitting

algorithm, presented by Szymkiewicz [16] in accordance with the solution of the

SWEs by the finite difference method, seems to be suitable for the considered

problem. In this paper, this method of approximating the friction source term

was adopted for the wave-propagation algorithm.

The paper is organized as follows. First, the one-dimensional problem for

a homogeneous system of equations without a source term is considered. Then,

a system which incorporates the source term associated with a variable bottom

and a source term due to friction are analyzed. A detailed description of an

approximation for each term is presented. The method was applied to the two-

dimensional shallow water equations for dam-break and dike-break problems. For

the one-dimensional case, the numerical results were compared with the existing

analytical solution. The numerical solutions of the two-dimensional dam-break

and dike-break induced flow were compared with the numerical and laboratory

experiments available in the literature.

2. Shallow water equations

The shallow water equations are comprised of the continuity and dynamic

equations, which are derived from the conservation laws of mass and momentum,

respectively [2]. The two-dimensional depth-integrated shallow water equations in

the conservation form can be written as:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
=S0x+S0y+Sfx+Sfy (1)
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with:

U =





h
u ·h
v ·h



, F =





u ·h
u2h+0.5g ·h2
u ·v ·h



, G =





v ·h
u ·v ·h

v2h+0.5g ·h2



 (2)

S0x=





0
−g ·h ∂z∂x
0



, S0y =





0
0

−g ·h ∂z∂y



, Sfx=





0
Sfx
0



, Sfy =





0
0
Sfy



 (3)

where U is the vector of conserved variables; F and G are the flux vectors in

the x and y directions, respectively; h is the flow depth; u and v are the depth-

averaged velocity components in the x and y directions, respectively; S0x and S0y
are the bottom slopes; z is the bottom elevation; Sfx and Sfy are the friction

slopes; g is the acceleration due to gravity; t is time. The friction slope is usually

expressed using the Manning formula:

Sfx=
n2u

h4/3

√

u2+v2, Sfy =
n2v

h4/3

√

u2+v2 (4)

where n is the Manning roughness coefficient.

The set (1) can be also rewritten in the quasi-linear form without the source

term [5]:

∂U

∂t
+A
∂U

∂x
+B
∂U

∂y
=0 (5)

The matrices A and B are the Jacobians of the flux vectors F and G,

respectively:

A=
∂F

∂U
=





0 1 0
c2−u2 2u 0
−v ·u v u



, B =
∂G

∂U
=





0 0 1
−u ·v v u
c2−v2 0 2v



 (6)

where c=
√
g ·h is the wave celerity.

In the set (5), the matrices A and B have three eigenvalues each, given by

the relations:

λ1=u ·nx+v ·ny−c, λ2=u ·nx+v ·ny, λ3=u ·nx+v ·ny+c (7)

and three corresponding eigenvectors:

r1=





1
u−c ·nx
v−c ·ny



, r2=





0
−ny
nx



, r3=





1
u+c ·nx
v+c ·ny



 (8)

where nx and ny are the components of the unit vector n =(nx,ny)
T .

The existence of real eigenvalues, λ, means that the shallow water equations

are hyperbolic partial differential equations [2, 3]. These equations describe wave

propagation with the eigenvalues λ corresponding to the characteristic velocities

of the propagating waves.
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3. Splitting algorithm for two-dimensional

shallow water equations

Two-dimensional shallow water equations can be split according to the

coordinate directions, since two-dimensional flow is the sum of flows in the x and y

directions [16]. As a result, the solution of the two-dimensional problem is reduced

to solving a sequence of one-dimensional problems. The splitting method can be

also used with respect to physical processes [3, 16]. According to this method,

the shallow water equations are split into two subproblems, thereby describing

separately the advection-propagation process and the friction process.

Let us consider the set of equations (1), which can be rewritten in the form:

∂U

∂t
=Y (9)

where the vector Y represents all the terms of the set (1), except for the time

derivatives. The solution of Equations (9) is obtained by integrating over time, in

the range [t,t+∆t]:

U n+1=U n+

t+∆t
∫

t

Y dt (10)

whereU n andU n+1 are the vectors at time t and t+∆t, respectively. Taking into

account the dimensional and physical splitting, the vector Y can be expressed as

a sum of three vectors:

Y =Y (1)+Y (2)+Y (3) (11)

where:

Y (1)=−∂F
∂x
+S0x, Y

(2)=−∂G
∂y
+S0y, Y

(3)=Sfx+Sfy (12)

The vector Y (3) contains only the friction term, whereas the vectors Y (1)

and Y (2) contain all the remaining terms, which correspond to the x and y

direction, respectively. Substituting (11) and (12) into (9) we obtain a set of

the following form:
∂U

∂t
=Y (1)+Y (2)+Y (3) (13)

Thus, the SWEs are decomposed into three separate sets and the solution

algorithm proceeds in three stages for each time step ∆t. In the first stage, we

solve a set of one-dimensional equations in the x direction:

∂U (1)

∂t
=Y (1) (14)

with the initial condition U (1)t =U t. Subsequently, the solution U (1)t+∆t of

Equation (14) is taken in the second stage as the initial conditionU (2)t=U (1)t+∆t

for the set of one-dimensional equations in the y direction:

∂U (2)

∂t
=Y (2) (15)
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Then, in the third stage, we solve the equation containing only the friction

term:

∂U (3)

∂t
=Y (3) (16)

with the initial condition U (3)t =U (2)t+∆t. The integration of Equation (16)

finally gives the solution U t+∆t=U (3)t+∆t at time t= t+∆t.

The use of the dimensional splitting leads to a more effective algorithm

compared to the standard method of approximation. Additionally, the splitting

with regard to the physical processes (friction) ensures proper incorporation of

the friction source term into the algorithm of finite volume methods.

The accuracy and stability of the presented splitting algorithm depend on

the method used for the solution of each subproblem described by Equations (14)–

(16). During the decomposition of the non-linear equations, a splitting error is

introduced into the solution. In this case, the splitting error depends on the time

step ∆t and it is therefore possible to minimize this error by reducing the time

step ∆t [5].

4. Finite volume method

The finite volume method is based on the integral form of the governing

equations written for an elementary finite volume (cell). Let us consider a single

finite volume in a two-dimensional rectangular grid (Figure 1). The area of a cell

is bounded by its edges, where ∆x=xi+ 1
2
,j−xi− 1

2
,j and ∆y= yi,j+ 1

2
−yi,j− 1

2
.

Figure 1. Finite volume cell in two dimensions, the vector Ui,j represents a cell average,

the vectors Fi− 1
2
,j , Fi+ 1

2
,j and Gi,j− 1

2
, Gi,j+ 1

2
represent the numerical fluxes at the cell edges

in the x and y directions, respectively
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Taking a constant length of the cell edges (∆x=∆y=const) and integrating

the system (1) without the source term over the cell volume and over time, a fully

discrete form of the two-dimensional shallow water equations is obtained:

U t+∆ti,j =U ti,j−
∆t

∆x

[

F ti− 1
2
,j−F

t
i+ 1
2
,j

]

− ∆t
∆y

[

Gti,j− 1
2

−Gti,j+ 1
2

]

(17)

The vector Ui,j approximates a cell average over the grid cell (i,j) at time t:

Ui,j ≈
1

∆x ·∆y

y
i+1
2

∫

y
i− 1
2

x
i+1
2

∫

x
i− 1
2

U (x,y,t)dxdy (18)

and the vectors Fi− 1
2
,j and Gi,j− 1

2
are the numerical fluxes through the edges

of the cell in the x and y directions, respectively. The value of the flux in the

corresponding direction (x or y) is based on the values of U n in the adjacent

cells.

Let us consider a rectangular spatial grid with M columns and N rows.

According to the splitting algorithm, in the first step the set of one-dimensional

equations (14) in the x direction can be solved for each row of cells with fixed j

(j=1,2, . .. ,N). As a result, the following equation is obtained:

U
(1)t+∆t
i,j =U

(1)t
i,j −

∆t

∆x

[

F
(1)t

i− 1
2
,j
−F (1)t
i+ 1
2
,j

]

with U (1)t=U t (19)

Similarly, during the second stage, the one-dimensional set (15) in the y

direction for columns of cells with i fixed (i=1,2,. . .,M) is computed as follows:

U
(2)t+∆t
i,j =U

(2)t
i,j −

∆t

∆y

[

G
(2)t

i,j− 1
2

−G(2)t
i,j+ 1

2

]

with U (2)t=U (1)t+∆t (20)

where Fi− 1
2
,j and Gi,j− 1

2
are the numerical fluxes at the cell edge for one-

dimensional problems in the x and y directions, respectively.

4.1. Determination of the numerical flux

The properties (stability and accuracy) of a numerical scheme depend on

how the numerical flux at the cell edges is determined. In the finite volume method,

the Roe algorithm [17], based on the approximate solution of the Riemann problem

is the most popular algorithm for the computation of the numerical flux. The

standard solution of the one-dimensional Riemann problem between states Ui
and Ui−1 in cells i and i−1 can be determined by decomposing the increment of
the dependent variables ∆U =Ui−Ui−1 into a linear combination of eigenvectors
rk of the matrix A [14]:

∆U =Ui−Ui−1=
m
∑

k=1

αki− 1
2

rki− 1
2

(21)

In this case, the solution of the Riemann problem consists of m waves

propagating at a speed associated with eigenvalue λk. Each wave is proportional

to the eigenvector rk (where αk is the proportionality coefficient). An alternative
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approach was presented by Bale et al. [15], where instead of decomposing ∆U in

terms of dependent variables U , the splitting into eigenvectors rk was performed

for the increment of the flux ∆F (U ) as follows:

∆F (U )=Fi(Ui)−Fi−1(Ui−1)=
m
∑

k=1

βki− 1
2

rki− 1
2

=

m
∑

k=1

Z ki− 1
2

(22)

where vector Z k is termed an f-wave and carries the increment in F , across the

wave propagating with a celerity λk. In the case of the two-dimensional shallow

water equations, a set of three waves (k = 1,2,3) and the coefficient β1− 1
2
are

determined by the following formula:

βi− 1
2
=R−1

i− 1
2

(Fi(Ui)−Fi−1(Ui−1)) (23)

where R1− 1
2
is the matrix of eigenvectors r .

The application of the Roe method to the two-dimensional shallow water

equations leads to an average value of the flow parameters at the cell edge between

the states Ui and Ui−1. These parameters are determined as follows [4]:

h̄i−1
2
=
hi+hi−1
2

(24)

ūi−1
2
=
ui
√
hi+ui−1

√

hi−1√
hi+

√

hi−1
(25)

v̄i−1
2
=
vi
√
hi+vi−1

√

hi−1√
hi+

√

hi−1
(26)

where the water depth h̄i− 1
2
and the velocities ūi− 1

2
, v̄i− 1

2
are the Roe averages

used for the computation of average values of the coefficient β̄ (Equation (23))

and the f-waves. Z is calculated according to Equation (22).

Using Equation (22) in Equations (20) according to the Roe method yields

the wave-propagation algorithm for the x direction:

U
(1)t+∆t
i,j =U

(1)t
i,j −

∆t

∆x





m
∑

k=1,λ<0

Z ki+ 1
2
,j+

m
∑

k=1,λ>0

Z ki− 1
2
,j



 (27)

A similar procedure is used for the y direction, leading to:

U
(2)t+∆t
i,j =U

(2)t
i,j −

∆t

∆x





m
∑

k=1,λ<0

Z ki,j+ 1
2

+
m
∑

k=1,λ>0

Z ki,j− 1
2



 (28)

According to the presented algorithm, a one-dimensional Riemann problem

is solved for each stage in the corresponding direction. Moreover, from Equa-

tion (27), it follows that the cell average Ui,j in the x direction is affected by

all the left-going f-waves from xi+ 1
2
,j and all right-going f-waves from xi− 1

2
,j . In

a similar way, the average Ui,j is influenced by all waves in the y direction.

The presented scheme belongs to the class of Godunov-type schemes and

is only first-order accurate in space as well as in time. In order to improve the
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accuracy, the numerical flux is suitably modified by introducing an additional

correction term. The form of this term is based on the well-known Lax-Wendroff

scheme [5, 18]. Thus, high-resolution corrections and dimensional splitting applied

to the wave-propagation algorithm produce a two-stage numerical scheme in the x

direction:

U
(1)t+∆t
i,j =U

(1)t
i,j −

∆t

∆x





m
∑

k=1,λ<0

Z ki+1
2
,j+

m
∑

k=1,λ>0

Z ki−1
2
,j



− ∆t
∆x

[

FCi+1
2
,j−F

C
i−1
2
,j

]

(29)

and in the y direction:

U
(2)t+∆t
i,j =U

(2)t
i,j −

∆t

∆x





m
∑

k=1,λ<0

Z ki,j+1
2

+
m
∑

k=1,λ>0

Z ki,j−1
2



− ∆t
∆y

[

GCi,j+1
2

−GCi,j−1
2

]

(30)

where the correction fluxes FC
i− 1
2
,j
and GC

i,j− 1
2

are computed from:

FCi− 1
2
,j =
1

2

m
∑

k=1

(

I − ∆t
∆x
sgn(λki− 1

2
,j)

)

Z ki− 1
2
,jφi− 12 ,j (31)

GCi,j− 1
2

=
1

2

m
∑

k=1

(

I − ∆t
∆x
sgn(λki,j− 1

2

)

)

Z ki,j− 1
2

φi,j− 1
2

(32)

The function φ is the flux-limiter function assuming values from [0;1].

This function changes the value of the correction flux according to the numerical

solution. For φ=1, the scheme is second-order accurate for a smooth solution and

is consistent with the Lax-Wendroff scheme. For a solution with a discontinuity or

steep gradient, a lower-order scheme must be applied in order to damp the non-

physical oscillations. The attenuation of these oscillations is caused by numerical

diffusion in the solution. Maximum numerical diffusion is obtained for φ=0, and

then the resulting scheme is upwind with a first-order accuracy. In practical cases,

numerical diffusion is introduced in a controlled way, by a proper choice of the

flux-limiter function φ, which minimizes numerical diffusion for a smooth solution

or eliminates unphysical oscillations for a discontinuity solution. A review of flux-

limiter functions can be found in Toro [4] and Leveque [5]. In this study, the Van

Leer function is assumed, which is given by the formula:

φ(θ)=
θ+ |θ|
1+ |θ| (33)

where θ is the smoothness of the solution at xi− 1
2
. The value of the smoothness

is obtained by comparing the corresponding waves W k =Z k/λk in neighboring

cells, as follows:

∣

∣

∣
θi− 1

2

∣

∣

∣
=

∥

∥

∥
W k
I− 1

2

∥

∥

∥

∥

∥

∥
W k
i− 1
2

∥

∥

∥

, I =

{

i−1 for λk > 0
i+1 for λk < 0

(34)
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The presented algorithm is second-order accurate for a smooth solution and

is a variant of the Lax-Wendroff method. This algorithm gives a stable solution,

if the following condition is satisfied [14]:

Cr=max

(

λx
∆t

∆x
,λy
∆t

∆y

)

(35)

where Cr is the Courant number, and λx and λy are the maximum wave speeds

in the x and y direction, respectively.

The solution of the SWEs for the Riemann problem consists of both shock

and rarefaction waves. Unfortunately, the Roe method leads to an approximate

solution, which correctly reproduces only the shock wave, while the rarefaction

wave is not taken into account. This leads to the violation of the entropy

condition [5] and, as a result, unphysical effects are observed in the numerical

solution. In this case, a modification of the approximate Riemann solver is required

in order to obtain the correct solution satisfying the entropy condition. In this

paper, the method proposed by Harten and Hyman was applied [5]. This approach

is based on a modification of the eigenvalues. If a transonic rarefaction wave

appears in the numerical solution, i.e.:

λk(Ui−1)< 0<λ
k(Ui) (k=1,2,3) (36)

is satisfied, then the eigenvalues are corrected as follows:

(λ̄k)−=
λki − λ̄k
λki −λki−1

λki−1, (λ̄
k)+=

(

1− λ
k
i − λ̄k
λki −λki−1

)

λki (37)

where λ̄k are the Roe average eigenvalues.

4.2. Approximation of source terms

Improper treatment of the source terms in the algorithm of the finite volume

method can cause significant complications, leading to inaccurate solutions. This

problem is particularly evident in the case of the bottom source term, which must

be incorporated into the flow occurring over a bottom with a variable slope [19, 20].

Another difficulty arises from the improper treatment of the friction source term

during the simulation of supercritical flow with a very small depth and high speeds.

In such a case, the inaccurate approximation of the bottom and friction source

terms can cause non-physical oscillations, which may then lead to a breakdown

of the calculations.

It is possible to obtain a suitable approximation of the bottom source term

by using the flux-based wave decomposition expressed by Equation (22) [15].

To this effect, the source term S0 is approximated at the cell edges and then

incorporated into the flux differences F (U ) in the following way:

Fi,j(Ui,j)−Fi−1,j(Ui−1,j)−∆x ·S0xi− 1
2
,j =

m
∑

k=1

βki− 1
2
,jr
k
i− 1
2
,j =

m
∑

k=1

Z ki− 1
2
,j (38)
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where the source term S0xi− 1
2
,j in the x direction is approximated at the cell edge

x1− 1
2
, as follows:

S0xi− 1
2
,j =





0
−g (hi−1,j+hi,j)2

(zi,j−zi−1,j)
∆x

0



 (39)

In this case, the coefficient β is computed using the following formula:

βi− 1
2
=R−1

i− 1
2

(

Fi(Ui)−Fi−1(Ui−1)−∆xS0xi− 1
2
,j

)

(40)

In a similar way, the discretization of the source term in the y direction

gives the relation:

S0yi,j− 1
2
=





0
0

−g (hi,j−1+hi,j)2
(zi,j−zi,j−1)

∆y



 (41)

In order to overcome the problem of approximation of the friction source

term Sf , the splitting method with respect to physical processes was applied. As

a result, in the third stage of splitting, we obtained Equation (16), containing

only the friction term:
∂U (3)

∂t
=Y (3) (42)

The solution of Equation (42) corresponds to the integration in time of two

simplified dynamic equations:

∂(u ·h)
∂t

=Sfx,
∂(v ·h)
∂t
=Sfy (43)

Application of the implicit method for Equations (43) gives a set of two non-

linear algebraic equations, which can be solved by means of the Newton method.

5. Numerical tests

5.1. One-dimensional dam-break problem

In this numerical test, the one-dimensional dam-break problem is considered

for a rectangular frictionless channel 500m long and 1m wide, with a bottom slope

equal to 0. The dam is located at x=250m and divides the domain into two areas

with different depths, hL and hR. The initial condition at time t=0 corresponds

to the water being at rest with the following depths:

h(x,0)=

{

hL=10m for x≤ 250m
hR=2m for x≥ 250m

At the upstream end of the boundary, x = 0, the velocity uL(t) = 0 is

imposed and at the downstream boundary, x = 500m, a constant water depth

hR(t) = 2m is imposed. It was assumed that at the initial time, the dam is

instantaneously broken, which leads to a discontinuity. Consequently, a shock wave

propagates downstream and, at the same time, a rarefaction wave propagates

upstream (Figure 2, panel (a)). The computations were carried out for ∆x =
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Figure 2. Comparison of analytical and numerical solution at time t=15s for:

(a) depth and (b) velocity

0.5m and ∆t = 0.015 s. For the assumed initial-boundary conditions, the one-

dimensional shallow water equations have an analytical solution [21, 22]. The

results of numerical simulations and the analytical solution for depth h and

velocity u are presented in Figure 2, which shows good agreement between the

corresponding solutions.

5.2. Two-dimensional dam-break problem

This numerical test demonstrates a two-dimensional dam-break study using

a homogeneous system of the SWEs (frictionless and flat-bottom). The spatial

domain, 200m long and 200m wide, was covered by a rectangular grid with

∆x=∆y=5m. The dam breach of the length D=75m is situated at x=100m

(Figure 3). At the initial time t=0, the water body is at rest with water depths

hL=10 m in the upstream and hR=5m in the downstream part of the reservoir,

respectively. Moreover, at x=200m, an open boundary is imposed in the form of

a constant water depth h(x=200,y,t≥ 0)=hR=5m. Closed boundary conditions
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Figure 3. Domain of the two-dimensional dam-break problem

with a normal unit discharge qn=0 are also imposed. The calculations were carried

out with a time step of ∆t=0.1 s.

Figure 4 presents a numerical simulation, after a dam-break at time t=7.2 s,

in the form of the water surface. Additionally, Figure 5 shows the velocity field

for the same time. Figure 4 demonstrates that after the dam failure, a shock wave

propagates downstream through a breach and a rarefaction wave propagates in the

upstream part of the reservoir. Unfortunately, there is no analytical solution for

the two-dimensional problem. The obtained numerical results show that the two-

dimensional flow is adequately simulated and these results are in good agreement

with the results presented in [9, 12, 23].

5.3. Two-dimensional dike-break problem

This numerical test simulation was carried out for a dike-break problem. In

this case, the upstream reservoir is replaced by an open channel, where steady flow

conditions are assumed. The spatial domain consists of a rectangular channel of

the length L=500m, width B=50m, with a bottom slope s=0.0005 and a flood

plain of the dimensions 200×500m with a zero bottom slope (Figure 6). The
channel was separated from the floodplain by a dike of the thickness d=5m. In

the channel, as well as in the flood plain, a constant Manning roughness coefficient

n=0.025m−1/3s was assumed.

At the initial time, steady flow was assumed in the channel, with a depth

of hp = 5m and unit discharge qy = 13m
2/s in the y direction and a zero

unit discharge in the x direction (qx = 0). In the flood plain, water is at rest

(qx = qy = 0) with a constant depth h= 0.0001m, which corresponds to the so-

called dry-state conditions. At the upstream boundary of the channel, a constant

unit discharge equal to the initial inflow was imposed, whereas at the downstream

end, the depth remains equal to the initial state until the dike-break. It is assumed

that in an infinitely short time, the dike is broken at a length of 40m. After
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Figure 4. Water surface at t=7.2 s after the dam-break

Figure 5. Velocity field at t=7.2 s after the dam-break

this time, the disturbances in the form of rarefaction waves propagate in the

channel. Moreover, a certain fraction of the water volume outflows through the

breach during the simulation. Thus, at the downstream boundary of the channel,
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Figure 6. Domain for the two-dimensional dike-break problem

depth and discharge are usually unknown functions, which vary in time. In order

to determine the downstream boundary condition, a zero gradient of depth was

applied. In such a case, it is also possible to apply the relationship in the form

of the Riemann invariant [1, 5, 10]. However, these simplifications may introduce

a significant error into the numerical solution.

At the open boundaries of the flood plain, a constant water depth hR(t)=

0.0001m was imposed before the shock wave reached the open boundary. Subse-

quently, no condition was implemented due to supercritical flow. At the closed

boundary, the unit discharge in the normal direction was set to zero (qn = 0).

The spatial domain was covered by a square grid with ∆x=∆y = 5m and the

calculations were carried out with a time step of ∆t = 0.1 s for the simulation

time t=40s. Additionally, the same domain was used to compute the dam-break

induced flow and to compare it with the results obtained during the dike-break

simulation. For this purpose, the discharge in the channel was set to zero. The

remaining initial-boundary conditions were the same as for the dike-break test.

Figure 7 presents the results of numerical solutions in the form of the water

surface. Here, (cf. Figure 7, panel (a)) the propagating rarefaction waves in the

channel are asymmetrical, unlike in the case with the initial discharge in channel

set to zero (Figure 7, panel (b)).

An asymmetric wave propagation for the dike-break simulation results from

the inflow through the upper edge of the channel. This effect is clearly visible in

Figure 8, where the results are presented in the form of depth isolines. For the

dam-break simulation, zero discharge in the upstream part of the reservoir was

assumed. Consequently, after a certain time, the upper reservoir is completely
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Figure 7. Water surface at t=40s after the dike-break: (a) with the initial flow

in the channel qp=13m
2/s; (b) without the initial flow in the channel qp=0m

emptied due to water outflowing through the breach. This situation does not take

place in the case of the dike-break where the imposed flow at the upper end of the

channel causes a continuous flow into the channel as well as into the flood plain

during the entire simulation period.

5.4. Comparison of numerical results and physical experiments

5.4.1. Two-dimensional dike-break problem

The physical experiment was conducted by Aureli and Mignosa [11] in

a hydraulic laboratory at the University of Parma, Italy. The data were obtained

during tests in a rectangular channel of the length L=5.55m, width B =0.3m,

and with a constant bed slope s = 0.001. The channel was connected to the

flood plain through a movable wall of the width b = 0.28m. The geometry of

the hydraulic model and the deployment of the gauges measuring the depths

are shown in Figure 9. For the channel and the flood plain, a constant value of

n=0.01m−1/3s was assumed for the Manning roughness coefficient. At the initial
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Figure 8. Depths at time t=40s after the dike-break: (a) with the initial flow

in the channel, qp=13m
2/s; (b) without the initial flow, qp=0

time, steady flow in the channel was induced with a discharge Qp = 0.01m
3/s

and depth hp = 0.0794m. At the same time, dry state was maintained in the

flood plain.

The laboratory experiment was reproduced using a presented numerical

model. It was assumed that in an infinitely short time, the dike was broken over

a length of b= 0.28m. The calculations were carried out for a rectangular mesh

∆x=∆y=0.02m with a time step of ∆t=0.002 s. Figure 10 shows a comparison

between the numerical calculations and the results of physical experiments for

selected points. The results in the form of time series for the specified depths

show good agreement with numerical solutions at points P1 and P2. However,

such agreement was not obtained for points P3 and P4. These discrepancies can

be caused by the complex structure of the flow and the significant curvatures of

the surface near the breach. This serves to illustrate that real, three-dimensional

flow is difficult to simulate by means of a two-dimensional depth-averaged model.

Moreover, the authors of the laboratory experiment [11] suggested that the

reflections at the boundaries of small disturbances are very hard to measure in

real fluids.

5.4.2. Two-dimensional dam-break problem with an obstacle

The second experiment involved a dam-break induced flow around an

obstacle representing a building. The physical experiment was conducted by
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Figure 9. Geometry of the hydraulic model (Aureli and Mignosa [11])

Figure 10. Comparison of measured and calculated depths at point P1, P2, P3 and P4
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Szydłowski [24] in a hydraulic laboratory at the Gdansk University of Technology,

Poland. The geometry of the hydraulic model is shown in Figure 11. The

upstream reservoir, 3.0m long and 3.0m wide, was separated from the flood plain

(3.75×3.0m) by a dam of thickness d= 0.12m. The obstacle and four selected
gauges, which measured depths (at P1, P2, P3, P4), were located in the flood

plain. Water can flow into the floodplain through a movable wall with a width of

D=0.5m.

Figure 11. Geometry of the hydraulic model; deployment of the gauges P1 (4.15;1.40),

P2 (4.55;1.30), P3 (4.75;1.30), P4 (5.40;1.50) (Szydłowski [24])

A constant value of the Manning roughness coefficient n=0.018m−1/3s and

zero bottom slope were assumed for the entire domain. At the initial time, the

water body is at rest with the water depth h=0.21m in the upstream reservoir

and a dry state with h=0.001m in the flood plain. At the closed boundary (the

dam and obstacle), the unit discharge in the normal direction was set to zero. The

laboratory experiment was reproduced using a numerical model. The calculations

were carried out for a rectangular mesh ∆x=∆y = 0.05m with a time step of

∆t=0.01 s. The numerical solution in the form of depths is presented in Figure 12.

Water levels before the obstacle are significantly increased and, at the same

time, a hydrodynamic shadow characterized by small depths appeared behind the

obstacle. Figure 13 shows a comparison between results of physical experiments

and numerical calculations in the form of time series of depths. At points P1, P2

and P4, we obtained satisfactory agreement with numerical solutions, whereas in

the vicinity of the obstacle (point P3), a significant discrepancy was observed.

6. Summary

We present the solution of the shallow water equations employed to simulate

dam-break and dike-break induced flow. The numerical scheme of the finite volume

method was based on the wave-propagation algorithm proposed by LeVeque [5].

In this approach, the numerical flux was computed by an approximate solution of
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Figure 12. Depths at time t=2s after the dam-break

Figure 13. Comparison of measured and calculated depths at points P1, P2, P3 and P4
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the Riemann problem, using the Roe method. The numerical scheme is second-

order accurate in time as well as in space for a smooth solution. A stable solution

without oscillations near the discontinuity (the front of the shock wave) was

obtained by means of an appropriate correction of the numerical flux using the

Van Leer limiter functions. The applied dimensional splitting according to the

directions (x and y) leads to an effective algorithm, and, together with the wave-

propagation algorithm, ensures the proper incorporation of the bottom source

term into the scheme of the finite volume method. The splitting with regard to

the friction processes additionally ensures a suitable approximation of the friction

term during the simulation of supercritical flow.

The presented algorithm was validated on a number of numerical test

cases. The obtained numerical results showed good agreement with the analytical

solution of the one-dimensional case, and the physical experiments confirmed that

the simulation of flows was accurate in the case of the two-dimensional dam-break

and dike-break problems.
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