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Abstract: The work presents an application of Large-Eddy Simulation (LES) for turbulent

two-phase flows with dispersed particles. For the simulations of the continuous phase (fluid),

an academic, finite volume LES solver was applied and customised. For comparison purposes,

also a spectral solver was considered. The LES of fluid was used together with a Lagrangian

module for the dispersed phase in the point-particle approximation, including the two-way

momentum coupling between the phases. The particle solver has been further developed for

parallel computations. The simulations of turbulent, particle-laden round jets were performed.

The results for fluid and particle statistics were compared with available reference data.
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1. Introduction

With the advent of Computational Fluid Dynamics (CFD) in the 1960s

and a continual increase in available computing power, it has become feasible

to apply numerical methods also for the exploration of turbulent flows with the

dispersed particles (solid inclusions, liquid droplets, or bubbles). Since particle-

laden turbulent flows are often governed by unsteady, vortical structures, the

Large-Eddy Simulation (LES) approach seems to be particularly well suited for

the purpose, better than the statistical turbulence models [1]. On the other hand,

because of its smaller computational cost, LES is a good alternative to the full

solution of the flow, i.e., the Direct Numerical Simulations (DNS). Yet, the LES

method is still in development, and the more so for physically-complex situations,

such as multiphase turbulence.

The present work is concerned with turbulent, two-phase jets. A significant

progress in flow simulations has made it possible nowadays to use this tool

for design and analysis purposes in the energy industry, chemical and process

engineering, etc. Jet flows with the dispersed phase commonly occur in many
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devices and systems, including sprays in combustion chambers of gas turbines

and pulverised coal burners, spray cooling, spray dryers, etc. Typical geometrical

configurations often involve coaxial jets (a central jet surrounded by one or more

annular jets, particle-laden), and the LES studies are well justified both in “cold”

(particle dispersion) [2] as well as “hot” (reactive flow) cases [3]. Despite some

similarity features in the far field, the solutions of jet flows are, in general,

sensitive to the geometrical configuration, inlet parameters, and the choice of

other boundary conditions (outlet, side boundaries) [4]. For the sake of simplicity,

and also because of computational cost, in the present study we deal with cold,

single axisymmetric (rather than coaxial) jet flows.

The numerical studies of turbulent polydispersed flows have predominantly

been based on RANS for fluid, in particular for industrial applications, because

of the computational efficiency of the approach. Some recent developments and

limitations of the statistical models are discussed in [5]. As far as statistical

(RANS) simulations of jets are concerned, the Eulerian-Lagrangian approach with

a stochastic particle dispersion model is often used. For example, Fan et al. [6]

described the continuous phase (gas) with the k− ǫ turbulence model, and the

particles were tracked using the mean fluid velocity and turbulent fluctuation

statistics. In particular, the mean dispersion and velocity were obtained by

averaging over a statistically significant number of particle trajectories.

Regarding the Eulerian-Lagrangian LES computations, Sbrizzai et al. [7]

considered the dispersion of particles of different diameters and identified the

flow structures which formed a three-dimensional, turbulent confined round jet.

They completed the experimental evidence by other researchers [8] who observed

particle clustering between vortex ring structures. In another LES study of

particle-laden, axisymmetric turbulent jet, Almeida and Jaberi [9] investigated

the effects of particle size, mass-loading ratio, and other flow/particle parameters

on the statistics of both phases.

In the present work, we describe the computational approach, account-

ing also for the two-way momentum coupling between the phases, and report

numerical results for turbulent jet flow with the dispersed particles. A hybrid

Eulerian/Lagrangian approach was applied, with a CFD code for fluid LES cou-

pled to the particle tracking module. A major part of the study involved parallel

computations with the use of the MPI library, because of considerable CPU times

required, in particular for multiple runs with some of the parameters varied.

2. Governing equations

2.1. Large Eddy Simulation of fluid flow

Regarding the carrier fluid, we consider an incompressible viscous flow in

the absence of gravity. It is governed by the Navier-Stokes equations that in LES
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are spatially-smoothed with a filter G of length scale ∆̄ and become the filtered

equations for the resolved scales, or large eddies [1]:

∂Ūi
∂t

+ Ūj
∂Ūi
∂xj

=−
1

ρ

∂p̄

∂xi
+ν∇2Ūi−

∂τij
∂xj

+
Fi
ρ

(1)

According to the idea of LES, flow variables are decomposed into resolved (large-

scale) and residual (subgrid-scale) part: U = Ū +u ′, p = p̄+ p′, etc., where

a symbol (̄·) stands for spatial filtering (smoothing), being a convolution: Ū =

G∗U . In the filtered field, the flow scales smaller than a certain cut-off length

(related to ∆̄) are eliminated. In Equation (1), τij is the residual (subgrid-scale)

stress tensor, τij = UiUj − ŪiŪj . The divergence of τij represents the effect of

small-scale velocity on the resolved flow. In the LES method, only larger scales of

the motion are resolved, and smaller structures are represented by the so-called

subgrid-scale model (SGS) that simulates their impact on the large-scale field.

Typically, large flow structures transfer more energy than the small ones and are

more susceptible to the influence of boundary conditions. The accuracy of LES

predictions depends on the sound modelling of subgrid-scale interactions between

phases and the correct representation of the initial/boundary conditions for all

phases. Last, F on the right-hand side of Equation (1) refers to the force exerted

by particles on the fluid (when applicable, cf. Section 2.3).

As seen from Equation (1), the large-eddy fluid dynamics is closed once

a suitable model for the residual stress tensor is provided. For the present

computation, the dynamic SGS model of Germano and Lilly (cf. [1]) has been

applied. The deviatoric part of the residual stress tensor, τdij = τij− τkkδij/3, is

modelled as:

τdij =−2νrS̄ij (2)

where S̄ij is the resolved strain rate (the symmetric part of the velocity gradient

tensor). The residual, or sub-grid scale, viscosity νr is determined as νr =CG∆̄2|S̄|

where |S̄| = (2S̄ijS̄ij)
1/2 is the scale of the resolved strain rate. The dynamic

procedure is applied for the Germano model coefficient CG, computed from double

filtering and subsequently averaged over the flow homogeneity directions.

2.2. Dispersed phase in the point-particle approximation

Point particle approximation is currently the most common and practi-

cally useful approach for particle-laden flows. Like in the Lagrange description,

particle is treated as a mathematical point of mass, energy and momentum with

independent velocity and location. Particle dynamics calculations are based on the

Basset-Boussinesq-Oseen equations that assume large particle-fluid density ratio

(over 103), no particle collisions and quite small particle diameter in relation to

characteristic eddy length [10].

Generally, there are three regimes of coupling the dispersed phase with

the continuous phase. First one, the simplest in implementation, is one-way

momentum coupling (1-W), where the particle gets momentum from fluid with
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no impact on fluid momentum. Second one, two-way momentum coupling (2-

W), that takes into account the changes of fluid momentum because of particles.

The last one, called four-way momentum coupling (4-W), includes also particle-

particle interactions, in particular collisions. The choice of the appropriate regime

depends on particle mass load and volume fraction, and on the kind of phenomena

under consideration. The limits of applicability for each of the regimes (one-way,

two-way, or four-way coupling) are illustrated in Figure 1 for the case typical of

water drops in air, ρp/ρ∼ 103; the particle mass load in the flow is defined as

αM =
∑

mp/m and the volume fraction of the particulate phase is αV =
∑

Vp/V .

Figure 1. Applicability range of the one-way (1-W), two-way (2-W), and four-way (4-W)

fluid-particle coupling regimes depending on the mass and volume fractions

In the following, the dispersed phase is treated as dilute, with the exception

of Sections 2.3 and 4.3. For the dilute regime, the total particle mass load is

relatively low so as not to affect the carrier fluid, and the one-way momentum

coupling (fluid to particles only) is adequate. Also, because of the low particle

volume fraction assumed, no particle-particle interactions are accounted for. The

particle tracking approach is followed with a simplified particle equation of motion

where only the drag term is retained [11]. This is generally accepted for the case

of heavy particles, ρp≫ ρ. The drag force is based on the particle velocity V np ,

n= 1, . .. ,Np, and the fluid velocity along particle trajectory, U nf (t) = Ū (xnp ,t). In

the computation, U nf is interpolated from the large-eddy fluid velocity Ū known

at mesh points; trilinear interpolation is applied here. So, for the present case the

equations of particle evolution are [11]:

dxnp
dt

=V np ,
dV np
dt

= cnd
U nf −V

n
p

τp

The particle momentum relaxation time is defined as τp = (ρp/ρ)(d
2
p/18ν); cnd =

1 + 0.15(Renp )0.687 is the empirical drag correction factor; in this expression,

Renp = dp|U
n
f −V

n
p |/ν is the particle Reynolds number (based on the particle

diameter dp, the relative particle velocity, and the kinematic viscosity of the carrier

fluid, ν). For the jet flow considered, the fluid convective time scale is Tf =DJ/UJ ,

and we introduce the Stokes number St (the particle inertia parameter) as the

particle momentum relaxation time normalised with Tf , St = τp/Tf . In the two-

way coupled regime, for a given particle number density, the higher St, the more

the fluid motion is affected by the dispersed phase. Moreover, all flow results

tq116e-e/36 3I2013 BOP s.c., http://www.bop.com.pl



Large-Eddy Simulations of Particle-laden Turbulent Jets 37

in the following will be shown at time instants non-dimensionalised in this way:

t+ = t/Tf . In the present computation, particles are removed from the system

upon the wall collision.

Although the LES of particle-laden flows is well-suited to simulate the gross

features of the flow, specially for cases where the large flow scales control the

particle motion, there is an ongoing debate as to the importance of the SGS

fluid flow field on the dynamics of the particulate phase, cf. [12–14]. With the

account of SGS fluid motions, the velocity “seen” by the particles would be taken

as U nf +unf , with the residual velocity “seen”, unf , suitably modelled to account

for the impact of the subfilter flow on the dispersed phase motion. In the present

work, the SGS particle dispersion modelling is not considered.

2.3. Two-way momentum coupling

Implementation of the two-way momentum coupling starts with considering

a momentum source term in the Navier-Stokes equation, Equation (1). The force

per unit volume exerted by the particles on the fluid, F , can be represented as the

superposition of point forces at xnp = xnp (t) (the Dirac deltas), with summation

over all Np particles [11]:

F (x ,t) =

Np
∑

n=1

f nd (xnp )δ(x −xnp ) (3)

The individual particle contributions f nd will be the same (with the opposite

sign) as the right-hand side terms in the particle equations of motion. The force

that comes from a single particle drag contribution can be expressed as:

f nd =mp(V
n
p −U

n
p )
cnd
τp

(4)

where mp is the particle mass. Now, coming to fluid, we apply the force definition

in the N-S source term with appropriate smoothing of the delta contributions.

For the sake of simplicity, we present the actual formula in 2D. In the case

considered in the paper, the mesh surfaces in the streamwise (mean flow) direction

are perpendicular to the jet axis, so interpolation of the particle source term in

the third direction is straightforward. The force term becomes thus:

F (xij) =

Np
∑

n=1

αnij

[

(V np −U
n(xp))

cndmp
τp

]

(5)

where αnij are the weight factors of particle source term with respect to the point

xij (cell centre) where it enters the discretised fluid momentum equation.

In the simplest setting (zeroth order interpolation), the particle source term

affects only the fluid in the very cell where the particle is located at a given

time step. However, a more accurate technique (first order interpolation) is to

redistribute the source terms over the neighboring centres of fluid cells. For the

case of regular (cubicoidal) cells, this is just a tri-linear interpolation. However,

for general, hexahedral cells, another method is proposed here, as illustrated in
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Figure 2. There, the point P represents the particle location, xP , and the points

A–D stand for the centres of fluid cells next to P . In particular, let xij be the

coordinates of point A, i.e., the centre of (i,j) cell from a given block of the mesh.

Then, the weight factor of particle n with respect to A will be computed as the

ratio of the area of the hatched quadrilateral in Figure 2 to the area of ABCD:

αnij =
1

2

(SPBC+SPCD)

SABCB

Analogous formulae are used for the remaining weight factors in Equation (5);

they are relatively straightforward to compute and not very costly in terms of

CPU (the eight weight factors are needed for each particle at each time step).

Figure 2. Schematic picture (2D) of particle source term distributed back to fluid; first order

interpolation: particle P affects the 4 nearest cell centres

3. Numerical solution

3.1. Implementation issues

To compute the fluid flow, we mostly used a finite volume, academic solver

of second-order accuracy (FASTEST3D code from TU Darmstadt, Germany). Some

results were also compared to those obtained with another LES solver (spectral

code SAILOR from the Częstochowa University of Technology). Since jets are

open-type flows (with inflow and outflow), a pretty difficult part of the work was

a reasonable choice of the computational domain together with suitable boundary

conditions.

Next, the in-house Lagrangian particle solver PTSOLV, created for the chan-

nel flow case, was further developed and modified for dispersed jet flows. Several

numerical issues were encountered and solved during these developments, includ-

ing fast interpolation of the fluid velocity at particle locations on a non-Cartesian

finite volume mesh, as well as efficient implementation of particles’ exchange be-

tween blocks and processors in a multi-block, multi-processor computational set-

ting. For example, interpolation in the outer blocks (uniform polar meshes) was

straightforward (except in the cells next to the blocks’ limits). Yet, for the central

block whose mesh is not uniform (neither in Cartesian nor in the cylindrical co-
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ordinates), another interpolation technique was conceived, with a pretabulation

of fluid variables on a finer regular mesh at each time step.

Joined together, FASTEST3D and PTSOLV become a segregated solver for

two-phase flows with one-way momentum coupling. To extend PTSOLV to the

two-way coupling regime, the pt2fluid procedure was written to calculate the

force source term for a particular fluid cell, depending on velocities and positions

of particles, Equation (5). Values of source terms for fluid, kept in a global array,

are applied at each iteration step of fluid solver through FASTEST3D procedure

caluvw, dedicated to compute fluid velocity field. An analogy of buoyancy forces

implementation has been used there.

Moreover, some parallelisation efficiency tests were performed. For the

available parallel server and the problem at hand, it was found that the optimal

number of processors was relatively low and, consequently, most of the runs were

performed in the setup of 8 or 12 processors.

3.2. Geometry and grids

As to the choice of a suitable computational domain for round jet flows,

the geometry (mesh) is either created in the Cartesian coordinates (x, y, z) or

in the cylindrical system (r, θ, z); in both cases, z corresponds to the main flow

direction. The Cartesian meshes have been used, e.g., in [15–17]. As for the latter

choice, the flow domain can be a cylinder [7, 18] or a truncated cone [19]. In the

cylindrical geometry, the inlet section is sometimes added upstream of the jet

orifice.

In view of our earlier experience with FASTEST3D code for fluid LES [20],

the numerical mesh for single round jet was generated based on the cylindrical

coordinate system. The computational domain in the radial direction r extended

up to Rmax= 3.5DJ where DJ = 2RJ was the jet diameter at the inlet. The size

of the domain in the streamwise (axial) direction z was 0≤ z ≤ 21DJ , including

a buffer zone of 3DJ close to the outlet. In the annular region RJ ≤ r≤Rmax, the

mesh distribution in the radial and circumferential directions was uniform. In the

streamwise direction, the mesh was uniform up to 18DJ and became gradually

coarser in the outlet buffer zone as shown in Figure 3(a), resulting in 130 planes

of finite volumes (FV). The mesh is of the block-structural type with the “O-grid”

structure in r–θ plane. It is composed of the central block (0≤ r≤RJ , 0≤ θ≤ 2π)

surrounded by four “H-grid” blocks, RJ ≤ r ≤Rmax, i= 1, . .. ,4, uniform in the

polar coordinate system: (i−1)π
2
≤ θ≤ iπ

2
. Part of the mesh in the annular region

possessed 60 FV in θ-direction and 20 FV in r-direction. The cross-section of the

resulting computational mesh in r–θ plane is presented in Figure 3(b) and (c).

Altogether, the mesh consists of 10 blocks: 1+4 in the proper solution domain,

0≤ z≤ 18DJ , and the same in the outlet buffer zone.

On the other hand, the spectral code SAILOR for fluid LES used a single-

block, Cartesian mesh [15]. For those simulations, the computational domain was:

−3.5DJ ≤ x ≤ 3.5DJ , −3.5DJ ≤ y ≤ 3.5DJ , and 0 ≤ z ≤ 21DJ . The mesh was
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Figure 3. Block-structured mesh generated for the axisymmetric jet: (a) streamwise

cross-section, (b) cross-stream section, (c) central part of the jet (zoom-in of (b))

uniform in all directions and consisted of 60×60×140 nodes. Resulting size of

a single FV was ∆x= ∆y= ∆≈ 0.12DJ and ∆z≈ 0.15DJ .

3.3. Boundary conditions

The flow Reynolds number, ReJ =UJDJ/ν, was defined with the inlet jet

diameter DJ and the characteristic velocity of the jet at the inlet, UJ . For the

flow of air (otherwise incompressible) with UJ = 4.1 m/s and RJ = 0.05 m, this

resulted in ReJ = 27500.

The inlet velocity distribution of the jet was set with the hyperbolic tangent

profile:

Uz(r,z=0) =
UJ
2

(

1+tanh

[

7.5

(

1−
r

RJ

)])

(6)

In the inlet plane beyond the jet inlet, RJ <R<Rmax, and at the outer radial

limit of the computational domain, r=Rmax, the wall boundary conditions were

assumed. This resulted in the jet being confined with consequent repercussions

for the flow picture, as shown later in the paper.

In the flow outlet plane, z= 21DJ , the convective outlet boundary condition

was applied:
∂Uz
∂t

+Uc
∂Uz
∂z

= 0 (7)

where Uc is the bulk velocity at the outlet. In the course of simulations we found

that the convective boundary condition was sensitive to size of the computational

domain in the axial direction. For one of the preliminary meshes constructed,

with the total length of the domain of zmax = 14DJ (out of that, 2DJ was

the length of the buffer zone), in the outlet flow region the convective b.c.

generated considerable gradients of fluid velocity components perpendicular to
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the streamwise direction. As a result, close to the outer radial boundary, r=Rmax,

a recirculating flow region appeared with Uz < 0. An increase of the domain up

to zmax = 21DJ allowed the convective outlet b.c. to work correctly (with no

backflow).

For the spectral LES solver SAILOR, the boundary conditions were slightly

different. At the inlet, the mean velocity profile (6) was superposed with the

fluctuating velocity of intensity at the level of 1% of UJ . On the side limits of

the computational domain, for x=±3.5DJ and y=±3.5DJ , periodic boundary

conditions were applied. In the inlet plane beyond the jet inlet area, the coflow

velocity of 0.05UJ was assumed. At the outlet, the convective b.c. (7) was applied.

4. Results for single axisymmetric jet

4.1. One-way coupling: results for fluid

Calculations were performed up to t+= 3690 with the time step of ∆t+=

0.0123 (which translates to about 300000 iterations). The statistically-steady state

was reached at t+= 2460 and since that time instant the averages (cf. below) were

gathered. A typical picture of the instantaneous flow field is presented in Figure 4

as the color map of the streamwise velocity component resulting from both fluid

LES codes used.

Figure 4. Instantaneous flow field of the single jet – a map of the streamwise velocity

component. Velocity snapshots at the end of the simulation, in the axial cross-section:

(a) the finite volume LES solver FASTEST3D; (b) the spectral LES solver SAILOR

Next, to collect statistics of velocity, the averaging procedure was adopted,

as follows. For any hydrodynamic variable Qcart(x,y,z,t) =Qcyl(r,θ,z,t), ensem-

ble averages in a statistically steady state become independent of the angular
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coordinate (because of the axial symmetry of the statistical one-point moments of

the flow variables), 〈Q〉= 〈Q〉(r,z), and are approximated by the time averages:

〈Q〉(r,z)≈
1

2π∆tavg

∫ t+∆tavg

t

dt

∫ 2π

0

dθQ(r,θ,z,t) (8)

In practical terms, the averaging time was taken as ∆t+avg = 615 for the present

case. The averages, defined and computed in the above way, have been determined

as radial profiles for a a few axial coordinates z, i.e., at selected downstream

stations of the round jet.

Obviously, both for flow variables and for the particle data (shown in

the next subsection), their values are known only at some, discrete set of

radial coordinates r. Therefore, to produce mean radial profiles, the method

of discretising (“binning”) the r–interval had to be conceived. Actually, three

different variants were proposed to discretise the interval 0 ≤ r ≤ Rmax where

Rmax = 3.5DJ was the size of “the computational cylinder”. The first variant,

called “avg1”, consisted in selecting the limits of consecutive r–bins so that

approximately the same number N of points (either the centres of FV, for fluid

averages, or particles) was found in each bin. Alternatively, the second variant

(“avg2”) used equal bin sizes, and in the last one (“avg3”) the limits of r–bins

were determined to produce approximately equal areas of individual cross-sections

(the central circle and consecutive annuli).

The computed histograms of the distribution of nodal points (xi,yi) being,

again, either the centres of FV or particles, are shown in Figure 5 for all three

variants of binning applied. As readily seen, the simplest way of defining bins

of equal size (“avg2”) results in a different number of samples in each sub-

interval and, consequently, produces a radially-varying level of the statistical error,

which is undesirable, whereas the remaining two variants produce a roughly equal

number of samples in each sub-interval. This is obviously the consequence of the

nodal locations being statistically uniformly distributed in the cross-section. The

situation will become more difficult to manage for the non-uniform distribution of

points (either the FV centres or particles); this will be reflected in the statistical

error level of radial profiles, as illustrated in the next subsection. Moreover, the

statistical noise level of the computed profiles will decrease with the decreasing

number of bins. However, this will occur at the expense of spatial resolution and

a compromise has to be worked out on a per-case basis.

Next, important information about the jet flow can be gathered by identi-

fying the so-called potential core (PC) of the jet. This is the region close to the

inlet where the axisymmetric mixing layer at RJ has not yet developed (down

in r) to reach the jet centerline (CL). The length of the potential core, zPC , as

measured from the jet inlet plane z= 0, is defined by the mean velocity at the jet

centerline, UCL(z), in a way analogous to the usual definition of the boundary (or

mixing) layer thickness:

UCL(z)≡ Ūz(r=0,z) = 0.95UJ (9)
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This quantity can be readily determined from the mean axial velocity at the

symmetry axis, as shown in Figure 6. The potential core length for the finite

volume LES code is zPC ≈ 3.5DJ and for the spectral code zPC ≈ 8.4DJ which

compares better with the experimental data of Crow and Champagne [21] that

predict zPC ≈ 6DJ . A possible explanation of this discrepancy may be twofold:

a better accuracy of the spectral solver, but also a different specification of the

flow boundary condition at the outer radial boundary (the wall b.c. as opposed

to the periodic b.c. with co-flow). In the former case, secondary flows appear in

the vicinity of the side boundary and may reduce the length of the core jet.

Figure 5. The histograms of the number of “realisations”, i.e., the number of nodal values

occurring in the discretisation for averaging along the r-direction: (a) for 20 bins (subintervals

in r), (b) for 40 bins. Discretisation variants of the radial coordinate: ‘avg1’ – equal number

of realisations that fall into each bin; ‘avg2’ – equal-size bins; ‘avg3’ – equal-area

cross-sections (annuli)

Figure 6. The mean axial velocity vs. the streamwise coordinate; fv – finite-volume LES

solver (FASTEST3D), sp – spectral LES solver (SAILOR)

Figure 7 shows the radial profiles of the mean axial velocity component,

Ūz(r/RJ), normalised with the jet inlet bulk velocity. The profiles are given at

four downstream stations, of z equal to DJ , 6DJ , 12DJ , and 18DJ . As before,

cf. also (8), the velocity component was averaged in time and over the angular
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Figure 7. The radial profiles of the mean axial velocity at selected streamwise stations

coordinate. A gradual decrease of the jet centerline velocity, and the increase of

the jet width are readily noticed.

An often invoked hypothesis about jets (and other free-shear flows) is that

of self-similarity. To check whether the LES computation yields self-similar mean

velocity profiles (except in the near field where the details of the jet inlet play

a predominant role), we first determined the jet half-width R12, defined from:

Ūz(r=R12,z) =
1

2
Ūz(r=0,z) =

1

2
UCL(z) (10)

As illustrated in Figure 8, the radial profiles of the mean axial velocity, normalised

with the relevant velocity scale, UCL(z), indeed exhibit the self-similarity feature

and compare favourably with the experimental data of Panchapakesan & Lumley

[22]. Negative values of Ūz at larger r are due to the secondary, recirculating flow

close to the outer radial boundary (with the wall b.c. assumed there).

Next, we computed second-order velocity moments. For example, the in-

tensity, or r.m.s., of the fluctuating axial velocity component is found from:

u′z,r.m.s.= 〈(Uz−〈Uz〉)
2〉1/2 (11)

Figure 8. Self-similar character of the mean axial velocity profiles
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where the averaging operator 〈·〉 has already been defined in Equation (8).

Figure 9 shows the radial profiles of the fluctuating axial velocity r.m.s.,

normalised with the self-similarity variables. The profiles are computed for both

LES codes at several stations downstream of the jet inlet. Here, the results show

considerable scatter but, once again, the agreement of the spectral code predic-

tions with the experiment [22] is better. The increase of the normalised turbulent

kinetic energy with distance downstream is readily noticed. Unfortunately, the

experimental reference data are too scarce to more accurately validate the com-

putations of the second-order velocity statistics.

Figure 9. The radial profiles of the r.m.s. fluctuating axial fluid velocity at several

downstream stations of the single jet. The results for two LES solvers:

finite volume (fv) and spectral (sp)

4.2. One-way coupling: results for particles

Once a statistically-steady fluid flow field had been obtained, heavy par-

ticles were added to the flow, at a rate of 10 particles per time step, uniformly

distributed over the jet inlet area. Particle initial velocity is set equal to the instan-

taneous fluid velocity at the jet inlet. The particle evolution equations, presented

in Section 2, contained the drag term only (no lift force, no subfilter dispersion

modelling for the time being). The particle to fluid density ratio was ρp/ρf = 769,

corresponding to water drops in air. The particle diameters were chosen so that

four classes of monodispersed particles were tracked in separate runs. The par-

ticle Stokes numbers St were taken equal to 1, 5, 25, and 125. This resulted in

the particle inertia parameters ranging from small ones (behaving close to fluid

particles), up to inert ones (hardly responding to the flow).

The evolution of the total particle number in the computational domain

for all St and for the two LES solvers is shown in Figure 10. It is readily noticed

that the total particle number depends on the particle inertia parameter (St),

with smaller particles prone to accumulate in the domain. Also, the accumulation

of particles depends considerably on the kind of boundary condition applied at
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Figure 10. Temporal evolution of the total particle number in the computational domain.

Effect of the boundary condition at the domain side: (a) wall b.c. for FASTEST3D solver,

(b) periodic b.c. with co-flow for SAILOR solver

the side boundary of the domain: either wall b.c. at r=Rmax for the cylindrical

domain used in FASTEST3D, or periodic b.c. with co-flow at |x|= |y|= 3.5DJ for

the square domain in SAILOR. Consequently, the type of the side b.c. influences

not only the fluid velocity statistics (with recirculating regions present for the

side wall b.c.), but also heavily impacts on the particle flow picture for smaller-

inertia particles. In the particle-laden flow computed with FASTEST3D fluid

velocity and side wall b.c., the small inertia particles hardly attain a steady-

state number in the flow domain, since they tend to increasingly accumulate in

the recirculation region and slowly migrate upstream, next to the outer radial

boundary.

This feature is better seen on the radial profiles of instantaneous particle

concentration, Figure 11(a). For three cross-sections, perpendicular to the jet axis,

the concentration exhibits a decreasing maximum at the centerline (naturally due

to the inlet b.c.), but also local maxima close to the radial outer boundary, because

Figure 11. Radial profiles of particle concentration, effect of the flow boundary condition

at the side boundary in LES: (a) wall boundary condition at the outer radial surface

(finite-volume solver); (b) periodic boundary condition with co-flow at the side boundaries

(spectral solver). C0 stands for the mean particle number density (concentration)

in a given cross-section
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of the particle accumulation in the near-wall region. This can also be observed on

the plots of instantaneous particle locations in the jet, Figure 12, where the axial

cross-sections of the jet are shown next to the cross-stream section at the jet outlet.

It is visible from the pairs of plots that the larger particles tend to stay focused

close to the jet centerline whereas the smaller ones get more easily dispersed in

the flow domain and, because of the side wall b.c., even migrate upstream. For

the particle motion, the deposition condition is applied at the walls, but (because

of the fluid velocity being small there), the particles tend to stay longer next to

the walls.

The situation is different for the spectral LES simulations (SAILOR solver)

with co-flow condition at the side boundaries. There, the concentration profiles

are monotonic, with a single maximum at the jet centerline, cf. Figure 11(b).

Figure 12. Particle snapshots in single axisymmetric jet. Left plots: axial cross-sections

of the jet, right plots: cross-sections perpendicular to the jet axis, located at the jet outlet

(z/DJ = 18). Plot pairs, from the top to the bottom: particles of St = 1, 5, 25, and 125

tq116e-e/47 3I2013 BOP s.c., http://www.bop.com.pl



48 M. Łuniewski et al.

Figure 13. Particle velocity statistics in single axisymmetric jet: (a) normalised mean axial

velocity; (b) normalised r.m.s. fluctuating axial velocity. Radial profiles at z/DJ = 10

Particle velocity statistics, and specially their radial profiles, have been

computed in the same way as done (and explained) for fluid, i.e., using the r-

bins. Yet, here the problem arises because the particle concentration (contrary to

the distribution of FV centres for fluid statistics) is far from uniform, specially for

larger-inertia particles and at the locations closer to the jet inlet. Therefore, the

particle statistics will exhibit considerable unphysical scatter at larger r-stations,

unless specific measures are adopted.

The resulting particle velocity statistics: the mean axial velocity and the

r.m.s. fluctuating axial velocity at z/DJ = 10 are plotted in Figure 13. The results

are compared with available experimental data of Hishida et al. [23]. NB: the

experiment was performed for particle St numbers differing from ours, but the

fluid flow data were kept close to each other. The lack of comprehensive, relevant

reference data set makes a full comparative analysis more difficult.

4.3. Results for two-way coupling

In this simulation variant, particle initial velocities were set to zero at the jet

inlet. The influence of the particle source term is made visible by analyzing fluid

velocity profiles taken at the jet axis. Figure 14 shows the difference between the

velocity field of turbulent flow non-disturbed by dispersed phase (1-way coupling)

and the velocity fields with momentum coupling for two orders of interpolation.

For middle-size particles (St = 25), the particle mass load was αM = 0.31 (mean

value in the flow domain), whereas for larger ones (St = 125), it was αM = 2.72.

One can notice that momentum is taken from the fluid upstream, near the inlet

zone, and is returned to fluid in the downstream region, where the non-affected

fluid slows down. Also, some systematic difference between zeroth- and first-order

interpolation results in two-way coupled case is seen, specially for larger particle

mass load. These results are in line with a recently published, comprehensive

analysis of a cold combustion chamber flow [24] where also the 4-way coupling

effects (interparticle collisions) are studied.
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(a) (b)

Figure 14. Impact of the dispersed phase on the mean fluid velocity along the jet centerline:

(a) St = 25, (b) St = 125. Differences between interpolation schemes;

heavy particles with zero inlet velocity

5. Concluding remarks

In the present work, detailed LES studies of the particle-laden, turbulent

jets were performed. The LES of round jets were mostly carried out with the finite

volume discretisation of flow equations on a 10-block mesh. Some computations

were also done with the spectral method. In the resulting fluid velocity field,

the equations governing the motion of the dispersed phase were integrated.

A substantial difficulty was the coupling of both LES codes for fluid with our

own Lagrangian module for particle tracking, worked out for channel flows and

further developed here for jet flows. The difficulties were mainly due to certain

aspects of parallel computations with the multiblock solver, and, in some measure,

also with the efficient interpolation routines for the carrier phase (fluid) quantities

at the particle locations.

An extensive collection of LES results was produced for single-phase and

dispersed jets. Presented results, in particular the statistics for the carrier phase,

indicate the existence of strong secondary flows near the wall. Those secondary

flows are likely due to the choice of the limited computational domain for the

considered turbulent jet. Results for the dispersed phase in a simple axisymmetric

jet were compared against available reference data. Although the quantitative

results are not perfect, acquired experience for particle-laden jets allowed us to

work out some hints for this class of flows, regarding the choice of the mesh,

boundary conditions, time of computations and statistical averaging of results.

The recommendations may also prove useful for LES of coaxial jets and, ultimately,

the two-phase combustion (liquid fuel spray, pulverised coal) in jet configurations

occurring in combustion chambers of gas turbines and industrial boilers.

We have studied the particle-laden flow with one-way and two-way mo-

mentum coupling between the phases. For the latter variant, we have also shown

the influence of first-order (quasi-linear) interpolation of the source term over

fluid cells. The results convincingly show the impact of the two-way coupling for

sufficiently high particle mass load.
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The LES studies of single jets have revealed to be quite demanding (specially

in terms of the CPU time). Also, the side boundary of the jet appears to play

a considerable role. We have documented this feature by running two solvers for

fluid LES: one with the side wall b.c., and the other one with the periodic co-flow

boundary. Boersma et al. [4] report the successful use of another kind of b.c.,

called there “traction free” condition. It seems to be a worthwhile (although not

evident) endeavour to implement this kind of b.c. in (one of) the fluid LES codes

used here.
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[18] Wang P, Fröhlich J, Michelassi V and Rodi W 2008 Int. J. Heat Fluid Flow 29 654

[19] Boersma B J 2005 Theoret. Comput. Fluids Dynamics 19 161

tq116e-e/50 3I2013 BOP s.c., http://www.bop.com.pl



Large-Eddy Simulations of Particle-laden Turbulent Jets 51

[20] Pozorski J, Wac lawczyk T and  Luniewski M 2007 J. Theor. Appl. Mech. 45 643

[21] Crow S C and Champagne F H 1971 J. Fluid Mech. 48 547

[22] Panchapakesan N R and Lumley J L 1993 J. Fluid Mech. 246 197

[23] Hishida K, Takemoto K and Maeda M 1987 Jap. J. Multiphase Flow 1 56

[24] Breuer M and Alletto M 2012 Int. J. Heat Fluid Flow 35 2

tq116e-e/51 3I2013 BOP s.c., http://www.bop.com.pl



52 TASK QUARTERLY 16 No 1

tq116e-e/52 3I2013 BOP s.c., http://www.bop.com.pl


