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Abstract: An elastic stiffness matrix was derived in the case of distortion of a restrained thin-

walled I-section beam using the minimum total stationary elastic energy condition (Przemie-

niecki J S 1968 Theory of Matrix Structural Analysis, McGraw-Hill, NY). The function describ-

ing the angle of distortion was adopted form the solution of differential equation in the case

of restrained distortion. The example presented in the paper helps to assess the correctness of

the proposed solution. The proposed elastic stiffness matrix is applicable for solving distortion

problems of bar structures composed of thin-walled members.
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1. Introduction

The most common elements in engineering structures are bars which are

generally defined as having one dimension (length) significantly large in com-

parison with other, i.e. cross-sectional dimensions. One of the basic assumptions

of any theory of bars and bar systems is the assumption of invariance (non-

deformability) of the cross-section which is repeated in theories of bending and

torsional strength as well as in the related theories of stability and dynamics. The

state of deformation is usually described with four independent quantities, namely

the three components of displacement and the angle of rotation (twisting) of the

cross-section.

This assumption is satisfactory when applied to full-or thick-walled bars,

while accepting it in the case of thin-walled bars can lead to serious inaccuracies.

This arises from the fact that not all cross-sectional dimensions are comparable:

the wall thickness is in fact very small compared to the rest of its dimensions. As

a result, this creates additional strains that develop primarily in the direction of
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the least resistance, i.e., distortions of the thin wall cross-section in the plane of

section.

It may be presumed that the phenomenon is sufficiently well known, both

from a theoretical and practical point of view, in examining the stability of various

important types of thin-walled bars of open and closed sections. However, so far,

not enough attention has been paid to the static analysis of thin-walled structures

with additional degrees of freedom resulting from the deformation of the bar in

the plane of cross-section. The warp effect has already been widely taken into

account, as the seventh degree of freedom [1–3], but as yet, the deformation in

the plane of cross-section has usually been ignored. However, the distortion is

a phenomenon which takes place at torsion of thin-walled bar systems and one

should not forget about it during the analysis. Such a special type of deformation

of the cross-section, quite important in the engineering practice, is discussed in

this paper.

2. Distortional elastic stiffness matrix

Let us consider an element ik cut from a thin-walled I-beam. The element

has length l, constant cross-section A and is made of a homogeneous material with

Young’s module E and Poisson’s ratio ν. The resistance of distortion of I-section

members is due principally to the torsional rigidity of the flanges, and to the

flexural rigidity of the web which is bent in single curvature. It was assumed that

the deformation of flanges in the plane of the cross-section was negligible compared

to the deformation of the web. The cross-sectional deformation, resulting from the

above assumptions is shown in Figure 1.

For the element ik let us define the function of the distortion angle from

the differential equation [4]:

GJdf
d2ψ

dx2
+Dw

(∂2w

∂z2
+ν

∂2w

∂x2

)

=0 (1)

Figure 1. Distortion of member
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An approximate solution of (1) can be obtained by assuming that the web

deflection is given by:

w(x,z)=
hψ

4
(1−
4z2

h2
) (2)

In this case Equation (1) reduces to:

d2ψ

dx2
−κ2ψψ=0 (3)

where κψ =
√

2Dw/hGJdf is a characteristic number which depends on the ratio

of the pure torsional rigidity of one flange GJdf , understood in the sense of Sait-

Venant’s theory, and Dw =
Et3

12(1−ν2) is the bending stiffness of the web in which t

is the thickness of the beam web. The general solution of Equation (3) is:

ψ(x)=C1e
κψx+C2e

−κψx (4)

Transforming function (4) from exponential to hyperbolic and adopting the new

variables, C1 and C2, instead of (C1+C2), (C1−C2), we obtain the final form of

the equation of the angle of distortion:

ψ(x)=C1 cosh(κψx)+C2 sinh(κψx) (5)

Substituting the boundary conditions of the form:

ψ=ψi,for x=0

ψ=ψk,for x= l

we set the constants C1, C2 and obtain:

ψ(x)= sinh(κψx)[ψkκψ csch(κψl)−ψi coth(κψl)]+ψi cosh(κψx) (6)

Let us write the equation of the angle of distortion beam (6) in a matrix form:

ψ(x)=ΨTC q (7)

where Ψ and q are vectors of the form:

Ψ
T = {cosh(κψx),sinh(κψx)}

qT = {ψi,ψk}

and C is a matrix of elements dependent on the characteristic number κψ and

the length of the beam l.

The elastic energy is given by [5]:

U =
1

2

{
∫ l

0

[1

2
GJdf (ψ

′)2+
Dw

h
ψ2
]

dx

}

(8)

Substituting the previously derived equation of the angle of distortion in the

matrix form (7) into relation (8) we obtain:

1

2

{

qT
∫ l

0

[1

2
GJdf (C

T
Ψ
′)(Ψ ′)TC +

Dw

h
(C T
Ψ)(Ψ)TC

]

dx q

}

=
1

2
qTkLΨq (9)

where kLΨ is the unknown elastic stiffness matrix.
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It is known from Castigliano’s theorem that the derivative of a linear

function of the elastic energy of the nodal displacement vector q corresponds

to the vector of nodal forces f T = {Mdi ,Mdk} (Figure 1):

∂

∂q

(1

2
qTkLΨq−f

Tq
)

=0→ kLΨq = f (10)

where Mdi , Mdk denote the distorsional moments at the ik nodes. Equation (10)

determines the total potential energy of the system where fT q is the potential

energy of external forces, and the first part of the formula is the energy of elastic

internal forces. By implementing the operations to set the individual components

of the stiffness matrix arising from the relation (9), we find the elastic stiffness

matrix in the distortion form:

kLΨ=

[

[kLΨ,11] [kLΨ,12]
sym. [kLΨ,22]

]

(11)

related to the internal forces according to the relation:
{

Mdi

Mdk

}

=

[

[kLΨ,11] [kLΨ,12]
sym. [kLΨ,22]

]{

ψi
ψk

}

(12)

where:

[kLΨ,11] =
Dw coth(κψl)

hκψ
[kLΨ,12] =−

Dw csch(κψl)
hκψ

[kLΨ,22] =
Dw coth(κψl)

hκψ
.

Thus, the distortional stiffness can be expressed as:

Md

ψ
=
Dw coth(κψl)

hκψ
=
1

2
GJdfκψ coth(κψl) (13)

The proposed solution (12)–(13) corresponds to the theory proposed by Vachara-

jittiphan and Trahair [4] and it can be approximated by:

Md

ψ
=
Dw

hκψ
=
1

2

√

2DwGJdf
h

(14)

with an error of less than 10%, while κψl > 1.5 (Table 1). This approximation was

also used by Tong et al. [5].

3. Analysis of convergence – numerical example

Let us consider the I-section cantilever (E = 70 GPa, ν = 0.3) which was

loaded by two equal and opposite distortion moments on the free end of a value of

Md=50 Nm (Figure 2). These moments caused the web to deflect and the flanges

to rotate (Figure 1). The comparison for the rotation ψ along one of the flanges

was done by the finite element method using 6144 fully integrated finite-strain

square (6 dof and 4 nodes) shell elements for general-purpose stress/displacement

analysis and the proposed theoretical approximation using 10 and 100 beam finite

elements (12) shown in Figure 3. The commercial computational packageMATLAB

[6] was used in the study.
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Figure 2. Geometrical data for distortion analysis

Figure 3. Comparison of solutions for distortional angle along one of the flanges

Table 1. Comparison of solutions for distortional stiffness

Md

ψ
(difference %)

L [m] 1.2
Method

shell model 442.1

proposed theory (13) 473.9 (7.19%)

approximated solution (14) 474.1 (7.24%)

The solutions for the distortional stiffness, Md

ψ
, of the beam shown in

Figure 2 are compared in Table 1. The results of analytical solutions were

compared to the finite element method – shell model. The difference did not

exceed 10%.
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The differences between solutions result from the adopted approxima-

tions (2).

4. Summary

The effect of the distortional deformation described in the paper is partic-

ularly important in the analysis of bars and spatial bar structures subjected to

torsion. The distortion of one member in the node is restrained by the resistance

of another member to warping [4]. It is recommended that the stiffness matrix of

thin-walled bars should be extended not only with the cross-section warping but

its distortion as well. It should be remembered that the proposed theory is an ap-

proximate solution due to the adopted web deflection function (2). Nevertheless,

the proposed theory coincides very well with the numerical solution for the shell

model. Moreover, it should be noted that the angle of the distortion deformation

does not extend to the entire length of the bar, but only to 3 times the value of h,

where h is the I bar cross-section height (Figure 1). Hence, for bars or elements

more than 3 of the section in length, the meshgrid should be concentrated. The

correct solution was obtained when the bar was divided into 10 finite elements

(Figure 3).
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