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Abstract: Elastic and geometric stiffness matrices were derived using Castigliano’s first theo-

rem, for the case of torsion of restrained thin-walled bars of open constant bisymmetric cross-

section. Functions which describe the angles of torsion were adopted from the solutions of the

differential equation for restrained torsion. The exact solutions were simplified by expanding

them in a power series. Numerical examples were taken from Kujawa M 2009 Static and Sen-

sitivity Analysis of Grids. . . 97, GUT Publishing House, and Szymczak C 1978 Engineering

Transaction 26 323. Convergence of the solutions was analyzed using the matrices derived for

torsion angles, warping, bimoments and critical forces.
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1. Introduction

Elastic and geometric stiffness matrices for a thin-walled bar of a constant

open cross-section have already been derived in [1] using variational principles, and

in [2] using the principle of virtual displacement. In both of these works the torsion

angle was described by third-order polynomials. These polynomials did not result

from the solution of the differential equation of restrained torsion. In this article,

the function of the torsion angle was adopted from the solution of the differential

equation of restrained torsion of thin-walled bars of open constant bisymmetric

cross-section. Matrices were derived using Castigliano’s first theorem [3, 4]. The

analysis was performed using commercial computing packages – Mathematica [5]

and Matlab [6].
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2. Elastic stiffness matrix

Let us consider an element ik cut from a thin-walled bar of open cross-

section. The element has a length l, constant cross-section A and is made of

a homogeneous material with a Young’s modulus E. For the element ik let us

define a function of the torsion angle based on the known differential equation of

restrained torsion [7]:

d4θ

dx4
−κ2
d2θ

dx2
=0 (1)

where κ=
√

GJd/EJω is a characteristic number which depends on the ratio of

the pure torsional rigidity GJd, in the sense of the Saint-Venant theory, to the

sectoral rigidity EJω. The general solution of the Equation (1) is:

θ(x)= (eκx/κ2)C1+(e
−κx/κ2)C2+x C3+C4 (2)

By transforming function (2) from the exponential into a hyperbolic form and

by adopting new variables C1 and C2 instead of (C1+C2)/κ
2, (C1−C2)/κ

2, we

obtain the following expression for the torsion angle:

θ(x)= cosh(κx)C1+sinh(κx)C2+x C3+C4 (3)

By substituting the boundary conditions of the form:

θ= θi, θ
′= θ′i for x=0 (4)

θ= θk, θ
′= θ′k for x= l (5)

at both ends of the bar ik into Equation (3), we determine the values of the

constants C1, C2, C3, C4. Let us write the expression (3) in matrix form:

θ(x)=ΦTC q (6)

where Φ and q are vectors of the form:

Φ
T = {cosh(κx),sinh(κx),x,1} (7)

qT = {θi,θ
′

i,θk,θ
′

k} (8)

and C is a matrix of elements depending on the characteristic number κ and on

the length of the bar l. The elastic energy is given by:

U =
1

2

{

EJω

∫ l

0

[

(θ′′)2+κ2(θ′)2
]

dx

}

(9)

By substituting the previously derived expression for the torsion angle (6) into

relation (9), we obtain:

1

2

{

qTEJω

∫ l

0

[

(CTΦ′′)(Φ′′)TC +κ2(C TΦ′)(Φ′)TC
]

dx q

}

=
1

2
qTkLq (10)

where kL is an unknown elastic stiffness matrix.
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From Castigliano’s theorem we know that the derivative of a linear function

of the elastic energy of the nodal displacement vector q corresponds to the vector

of nodal forces f T = {MSi,Bi,MSk,Bk}:

∂

∂q
=
(1

2
qTkLq

)

= kLq = f (11)

where MSi and MSk denote the torsional moments at nodes ik, and Bi, Bk are

the bimoments at these nodes.

By determining the individual components of the stiffness matrix arising

from relation (10), we find the elastic stiffness matrix in the torsion form:

kL=

[

[kL,11] [kL,12]
sym. [kL,22]

]

(12)

related to the internal forces by the relation:










MSi
Bi
MSk
Bk











=

[

[kL,11] [kL,12]
sym. [kL,22]

]











θi
θ′i
θk
θ′k











(13)

where:

[kL,11] =EJω





κ3

κl−2tanh(κl2 )
κ2

κlcoth(κl2 )−2

κ2

κlcoth(κl2 )−2
κ(κlcosh(κl)−sinh(κl))
−2cosh(κl)+κlsinh(κl)+2



 (14)

[kL,12] =EJω





κ3

2tanh(κl2 )−κl
κ2

κlcoth(κl2 )−2
κ2

2−κlcoth(κl2 )
κ(sinh(κl)−κl)

−2cosh(κl)+κlsinh(κl)+2



 (15)

[kL,21] =EJω





κ3

2tanh(κl2 )−κl
κ2

2−κlcoth(κl2 )
κ2

κlcoth(κl2 )−2
κ(sinh(κl)−κl)

−2cosh(κl)+κlsinh(κl)+2



 (16)

[kL,22] =EJω





κ3

κl−2tanh(κl2 )
κ2

2−κlcoth(κl2 )

κ2

2−κlcoth(κl2 )
κ(κlcosh(κl)−sinh(κl))
−2cosh(κl)+κlsinh(κl)+2



 (17)

By expanding the hyperbolic functions in (12) in a power series in κ, we

obtain a simplified form of the stiffness matrix. In the first approximation we

truncated the expansion of the simplified stiffness matrix k2Lu at κ
2:

k2Lu=

[

[k2Lu,11] [k2Lu,12]
sym. [k2Lu,22]

]

(18)

where:

[k2Lu,11] =EJω

[

12
l3
+ 6κ

2

5l
6
l2
+ κ

2

10
6
l2
+ κ

2

10
4
l
+ 2lκ

2

15

]

(19)

[k2Lu,12] =EJω

[

− 12
l3
− 6κ

2

5l
6
l2
+ κ

2

10

− 6
l2
− κ

2

10
2
l
− lκ

2

30

]

(20)

tq116a-e/7 3I2013 BOP s.c., http://www.bop.com.pl



8 M. Kujawa

[k2Lu,21] =EJω

[

− 12
l3
− 6κ

2

5l − 6
l2
− κ

2

10
6
l2
+ κ

2

10
2
l
− lκ

2

30

]

(21)

[k2Lu,22] =EJω

[

12
l3
+ 6κ

2

5l − 6
l2
− κ

2

10

− 6
l2
− κ

2

10
4
l
+ 2lκ

2

15

]

(22)

The resulting simplified stiffness matrix (18) corresponds to the matrices

simplified and derived by Barsoum and Gallagher [1] and Meek et al. [2], where

third-order polynomials were assumed as the functions describing the torsion

angle. The elastic stiffness matrices kL (12) and k2Lu (18) derived in this article

were also consistent with the matrices derived by Szymczak [4]. We also propose

a power series approximation to fourth order. The elastic stiffness matrix (12)

simplified in this way has the form:

k4Lu=

[

[k4Lu,11] [k4Lu,12]
sym. [k4Lu,22]

]

(23)

where:

[k4Lu,11] =EJω

[

12
l3
+ 6κ

2

5l −
lκ4

700
6
l2
+ κ

2

10 −
l2κ4

1400
6
l2
+ κ

2

10 −
l2κ4

1400
4
l
+ 2lκ

2

15 −
11l3κ4

6300

]

(24)

[k4Lu,12] =EJω

[

− 12
l3
− 6κ

2

5l +
lκ4

700
6
l2
+ κ

2

10 −
l2κ4

1400

− 6
l2
− κ

2

10 +
l2κ4

1400
2
l
− lκ

2

30 +
13l3κ4

12600

]

(25)

[k4Lu,21] =EJω

[

− 12
l3
− 6κ

2

5l +
lκ4

700 −
6
l2
− κ

2

10 +
l2κ4

1400
6
l2
+ κ

2

10 −
l2κ4

1400
2
l
− lκ

2

30 +
13l3κ4

12600

]

(26)

[k4Lu,22] =EJω

[

12
l3
+ 6κ

2

5l −
lκ4

700 − 6
l2
− κ

2

10 +
l2κ4

1400

− 6
l2
− κ

2

10 +
l2κ4

1400
4
l
+ 2lκ

2

15 −
11l3κ4

6300

]

(27)

3. Geometric stiffness matrix

In a similar manner, we can determine the geometric stiffness matrix kG.

The strain εx towards the axis of the bar for a finite torsion angle θ(x) can be

calculated from the general theory of elasticity:

εx=
∂u

∂x
+
1

2

[

(∂v

∂x

)2

+
(∂w

∂x

)2
]

(28)

where u, v, w are the displacement vector components in the direction of the x, y

and z axes, respectively. Based on the linear theory of restrained torsion [7], the

first term of the expression (28) can be written as:

∂u

∂x
=u′o−ωθ

′′ (29)

where uo is the axial strain on the bar, and ω is the sectoral area. Substituting

the relation (29) into expression (28) and taking into account the relations

(cf. Figure 1):

v= zθ, w= yθ, z2+y2= r2 (30)

we obtain:

εx=u
′

o−ωθ
′′+
1

2
r2(θ′)2 (31)
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Figure 1. Bar sector ik

Thus the elastic energy of internal forces would be:

U =
1

2

{

EJo

∫ l

0

[

u′o(θ
′)2
]

dx

}

(32)

where Jo is the polar moment of inertia, relative to the center of gravity of the

cross-section, and u′o is:

u′o=
P

EA
(33)

where P is the axial force. By substituting the previously derived expression for

the angle of torsion in the matrix form (6) into relation (32), we obtain:

1

2
qTPr2

∫ l

0

[

(CTΦ′)(Φ′)TC
]

dx q =
1

2
qTkGq (34)

where r2= Jo/A denotes the squared radius of inertia of the cross-section, relative

to the origin of the coordinate system, and kG is the geometric stiffness matrix.

By determining the individual components of the matrix resulting from formula

(34), we obtain the geometric stiffness matrix:

kG=Pr
2







kG,11 kG,12 kG,13 kG,14
kG,22 kG,23 kG,24

kG,33 kG,34
sym. kG,44






(35)

related to the internal forces by the relation:










MSi
Bi
MSk
Bk











=Pr2







kG,11 kG,12 kG,13 kG,14
kG,22 kG,23 kG,24

kG,33 kG,34
sym. kG,44

















θi
θ′i
θk
θ′k











(36)

where:

[kG,11] =
κ
(

κl(cosh(κl)+2)−3sinh(κl)
)

2
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))2 (37)
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[kG,12] =
κ2l2+κlsinh(κl)−4cosh(κl)+4

4
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))2 (38)

[kG,13] =
κ
(

3sinh(κl)−κl(cosh(κl)+2)
)

2
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))2 (39)

[kG,14] =
κ2l2+κlsinh(κl)−4cosh(κl)+4

4
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))2 (40)

[kG,22] =
2
(

κ2l2+2
)

sinh(κl)−κl
(

8cosh(κl)+κl(κl−3sinh(κl))csch2
(

κl
2

)

+4
)

8κ
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))2

(41)

[kG,23] =−
κ2l2+κlsinh(κl)−4cosh(κl)+4

4
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))2 (42)

[kG,24]=−

(

κlcoth
(

κl
2

)

−2
)2((
3κ2l2−2

)

sinh(κl)−κl
(

κ2l2+6
)

cosh(κl)

8κ
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))4

−

(

κlcoth
(

κl
2

)

−2
)2(
6κl+sinh(2κl)

)

8κ
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))4

(43)

[kG,33] =
κ
(

κl(cosh(κl)+2)−3sinh(κl)
)

2
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))2 (44)

[kG,34] =−
κ2l2+κlsinh(κl)−4cosh(κl)+4

4
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))2 (45)

[kG,44] =
2(κ2l2+2)sinh(κl)−κl

(

8cosh(κl)+κl(κl−3sinh(κl))csch2
(

κl
2

)

+4
)

8κ
(

κlcosh
(

κl
2

)

−2sinh
(

κl
2

))2

(46)

By expanding the hyperbolic functions in Equation (35) in a power series

(truncating the expansion after constant terms), we obtain:

kGu=Pr
2









6
5l

1
10 − 65l

1
10

1
10

2l
15 − 110 −

l
30

− 65l −
1
10

6
5l − 110

1
10 − l30 −

1
10

2l
15









(47)

The simplified geometric matrix (47) corresponds to the matrices derived by

Barsoum and Gallager [1], Meek et al. [2] and Szymczak [4].

4. Analysis of convergence – numerical examples

The derived matrices can be used in the analysis of thin-walled rod

structures with open bisymmetric cross-sections under torque load. In this article,

the matrices were used in order to calculate the torsion angles and the forces of

critical torsional buckling for a thin-walled I-section bar. The examples were taken

from [4, 8]. The aim of the analysis is to study the convergence of solutions for

the matrices derived in this article. The matrices in the simplified form are widely
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used in engineering calculations owing to [1]. The analysis of the convergence

or divergence resulting from the adopted simplifications is necessary in order to

assess whether their application is justified. The methods for constructing the

global stiffness matrices KL, KG for the entire system, the implementation of the

boundary conditions and the manner in which numerical analysis is performed

are well known [3], therefore we will not discuss them here. In this study the

commercial computational package Matlab [6] was used.

4.1. Example 1

Let us consider an I-section cantilever (E = 70GPa, v = 0.33), which was

loaded at the free end with a torque of MS =100Nm (Figure 2).

Figure 2. Schematic diagram of the cantilever beam under the action of torsion

This example illustrates the analysis of the convergence for the simplified

elements k2Lu, k4Lu as compared with the results of the analysis of the exact

solution using element kL (12) [7]. We analyzed the convergence of the torsion

angles, the warping measured at the location of the load at point B , as well as

the values of the bimoments at point A depending on the number of elements

(the density of discretization). The results can be found in Figures 3–8.

In the case of the simplified elements k2Lu (18) and k4Lu (23), full conver-

gence of the numerical solution to the exact solution using the element kL (12)

was obtained after the bar was discretized with 4 or more elements (Figures 3,

5 and 7). The discrepancies in the solutions for the analyzed example due to

coarser discretization were insignificant. In the case of the matrix element kL,

with a very fine discretization (more than 400 elements) (cf. Figures 4, 6 and 8),

the global stiffness matrix was almost singular (degenerate). The solutions ob-

tained with a very dense discretization would be less satisfying because of the

near-singularity of the stiffness matrix of the system. In the case of simplified

matrices k2Lu (18) and k4Lu (23) the problems with the singularity of the global

stiffness matrix do not lead to diverging solutions.

tq116a-e/11 3I2013 BOP s.c., http://www.bop.com.pl
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Figure 3. Distribution of the torsion angle θ (in degrees) at the point B , depending

on the discretization density, n

Figure 4. Distribution of the torsion angle θ (in degrees) at the point B , depending

on the discretization density, n

4.2. Example 2

The second numerical example is identical to the example analyzed in [4]. It

must be emphasized that the examples analyzed in [4] are not realistic due to the

plasticization of the bar that occurs before the appearance of the first torsional

buckling.

In the case of the beam shown in Figure 9 (E = 210GPa, v = 0.3), the

results of the calculations of the critical load using the exact matrices kL (12),

kG (35) were compared with the results obtained using the simplified matrices

k2Lu (18) and kGu (47). For comparison, the exact critical force for the beam

(Figure 9) was 3343kN. The results were summarized in Table 1.
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Figure 5. Distribution of the warping θ′ (in m−1) at the point B , depending

on the discretization density, n

Figure 6. Distribution of the warping θ′ (in m−1) at the point B , depending

on the discretization density, n

The value of the critical force calculated using the derived matrices coincides

closely with the expected value. It should be noted that better convergence of the

solutions was obtained for the simplified matrices. Using the simplified matrices

can prevent the instability of the solutions resulting from a very fine discretization.

5. Summary

The study of the convergence of the solutions obtained with the matrices

derived in this article allows to assess the extent of their application to engi-

neering problems. Commonly used matrices presented in [1] perform very well

during static analysis and during stability analysis of thin-walled bars of open
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Figure 7. Distribution of the bimoment B (in Nm2) at the point A, depending

on the discretization density, n

Figure 8. Distribution the bimoment B (in Nm2) at the point A, depending

on the discretization density, n

bisymmetric cross-sections. The instability of the solutions arising when the ex-

act stiffness matrices kL (12), kG (35) (hyperbolic functions) are used, associated

with the high-density of elements covering the rod (the length of the elements)

undoubtedly constitutes a serious numerical problem. Thus, we recommend that

numerical calculations be carried out using the simplified matrices.
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