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Abstract: A new method developed by Stanescu and Tabacu to study the mechanics of

a particle moving along a definite curve is compared with the well-known approach applied

in calculating the Kepler’s orbital motion. A particular effect of the rate of change of the kinetic

energy of a body with respect to the change of a parameter defining the body position on the

orbit is examined as an example.

A comparison of the two methods shows only a slight numerical difference between the

results of the Stanescu-Tabacu method and the traditional formalism. The components of the

body acceleration are calculated along the orbit as an application of the new approach.

Keywords: Kepler’s orbital motion, mechanics by Stanescu and Tabacu, conventional classical

mechanics

1. Introduction

Recently Stanescu and Tabacu have proposed a new method to study the

mechanics of a particle moving along a curve without friction [1]. The main idea

is to consider the force acting on such a particle together with the constraints

imposed by the particle track. If the track is known, its shape allows us to

decompose the force
−→
F acting on the moving body into tangential (Ft), normal

(Fn) and bi-normal (Fb) components (see e.g. [2]); we have:

−→
F =Ft

−→
t +Fn−→n +Fb

−→
b (1)

Other useful parameters are the curvature radius ̺ on the track, as well as the

change of the track length s traveled by a particle in effect of the change of some
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parameter ϑ characterizing the track. For the Cartesian system of coordinates

taken as an example, the dependence of the track on ϑ implies that:

x=x(ϑ), y= y(ϑ), z= z(ϑ) (2)

are the known functions of ϑ. The knowledge of the track allows us to compare the

results of the formalism of [1] with the results of some well-established mechanical

methods in a direct way.

In the present paper we study a well-known motion of a body along the

Kepler orbit upon the action of the gravitational force considered as an example.

A planar character of the orbit reduces the force problem to two components, Ft
and Fn. Contrary to [1], where only very special cases of the orbits were chosen

for consideration, our aim is to examine the motion along a general Kepler orbit.

In terms of the Cartesian coordinates the orbit is defined by the components:

x= acosϑ, y= bsinϑ (3)

where a is a major and b is a minor semiaxis of the Kepler ellipse. In further

calculations the geometry of the track given in (3) is applied in calculating the

force acting on the moving body as well as the directional properties of the motion,

see Section 2.

In a conventional approach (see e.g. [3, 4]), chosen for comparison, the

coordinates x and y are defined in a similar way to (3), namely:

x= acosu, y= bsinu (4)

However, a special meaning of the angle between the major semiaxis and the

radius of a circle on which the point having coordinates on x and y on the ellipse

is projected in direction normal to that semiaxis is attributed for u here, see [3].

These geometrical properties of u, together with the radius of the circle equal to

a, are applied in further calculations providing us directly with the kinetic energy

of the moving body.

In effect, a comparison done in the present paper between the well-known

formalism and the formalism of Stanescu and Tabacu concerns the examination

of the kinetic energy changes of the body obtained in the course of its motion

along the orbit.

2. Kinetic energy of Kepler’s orbital motion
calculated according to [1]

Let us assume that the beginning of the motion is in the perihelion point

of the orbit.

In this case the force of [1] dependent on ϑ is:

−→
F =
GmpM

a2
(
√
1−λ2−cosϑ)

−→
i −λsinϑ

−→
j

[(
√
1−λ2−cosϑ)2+λ2 sin2ϑ]3/2

(5)

G is the gravitational constant, M is the central mass,

λ=
b

a
=
√

1−e2 (6)
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where e is the orbit eccentricity. The mass of the moving body is assumed:

mp=1 (7)

for the sake of simplicity.

In the next step, a unit vector
−→
t tangential to the orbit can be calcu-

lated [1]:

−→
t =
−sinϑ

−→
i +λcosϑ

−→
j

√

sin2ϑ+λ2 cos2ϑ
(8)

Together with the unit vector normal to
−→
t :

−→n =
−λcosϑ

−→
i −sinϑ

−→
j

√

sin2ϑ+λ2 cos2ϑ
(9)

the curvature radius on the orbit is [1]:

̺=
a

λ
(sin2ϑ+λ2 cos2ϑ)3/2 (10)

The next step is to calculate the tangential component of the attractive

force. This gives:

Ft(ϑ)=
−→
F ·
−→
t =

GmpM

a2
√

sin2ϑ+λ2 cos2ϑ
·

·(−1)
sinϑ
√
1−λ2(1−cosϑ

√
1−λ2)

[(
√
1−λ2−cosϑ)2+λ2 sin2ϑ]3/2

(11)

In this formula the printing errors of the corresponding expression in [1] are

removed.

The velocity square of the moving body at some orbit point labeled by ϑ is

given by:

v2= v20+
2

mp

∫ ϑ

0

Ft(ϑ)L(ϑ)dϑ (12)

The function L(ϑ) entering the integral in Equation (12) is:

L(ϑ)= a
√

sin2ϑ+λ2 cos2ϑ=
ds

dϑ
(13)

where s is the length of the arc traveled by the body along the orbit. In effect,

due to (7), the kinetic energy at some ϑ is given by the formula (12), on condition

that the factor of 1/2 is introduced:

Ekin=
1

2
v2=
1

2
v20+

∫ ϑ

0

Ft(ϑ)L(ϑ)dϑ (14)

3. Kinetic energy of the Kepler motion presented
as a function of the variable u [3]

According to the energy balance at any point of the orbit we have:

Ekin=
1

2
(ẋ2+ ẏ2)≡

1

2

[

(

dx

dt

)2

+

(

dy

dt

)2
]

(15)
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where the potential energy is:

Epot=−
GM

r
(16)

and the total energy is:

Etot=−
GM

2a
(17)

r in Equation (16) is the distance between the moving body and the gravitational

center.

A reference of u to r can be easily calculated [3, 4]. For the motion beginning

in the perihelion point this relation is represented by the formula:

r= a(1−ecosu) (18)

therefore the kinetic energy in Equation (15) becomes:

Ekin=Etot−Epot=−
GM

2a
+GM

1

a(1−ecosu)
(19)

4. Comparison of calculations presented

in Section 2 and Section 3

Since in Equation (19):

Ekin= f(u) (20)

with the accuracy to a constant term, a comparison of the results of [1] and [3]

can be done by differentiating Equation (14) with respect to ϑ and Equation (20)

with respect to u. We obtain:

dEkin
dϑ
=Ft(ϑ)L(ϑ)=−

GM

a
F1(ϑ) (21)

from Equation (14), and

dEkin
du
=−GM

e

a

sinu

(1−cosu)2
=−
GM

a
F2(u) (22)

from Equations (19) and (20). The results of both approaches are tabulated in

Table 1–3 for different eccentricity values e. Evidently, a considerable agreement

between the data of the methods of [1] and [3] is attained.

5. Application of the method of [1] in calculating

the dependence of the body acceleration on the orbit

The method of [1] provides us immediately with the tangential component

of acceleration of the body motion on the orbit:

at=Ft(ϑ)=−
GM

a

F1(ϑ)

L(ϑ)
=−
GM

a
F3(ϑ) (23)

due to (7).
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Table 1. Comparison of F1(ϑ) from Equation (21) with F2(u) from Equation (22)

for e=1/
√
2; angles ϑ=u are given in degrees

angles F1 F2

0 0.0000 0 0.00000
15 1.82174 1.82093
30 2.35323 2.35271
45 2.00000 1.99988
60 1.46542 1.46531
75 1.02328 1.02321
90 0.70710 0.70710
105 0.48804 0.48803
120 0.33424 0.33423
135 0.22222 0.22222
150 0.13600 0.13600
165 0.06461 0.06461
180 0.00000 0.00000

Table 2. Comparison of F1(ϑ) from Equation (21) with F2(u) from Equation (22)

for e=1/
√
3; angles ϑ=u are given in degrees

angles F1 F2

0 0.0000 0 0.00000
15 0.76389 0.76365
30 1.15483 1.15463
45 1.16589 1.16583
60 0.98823 0.98815
75 0.77086 0.77080
90 0.57735 0.57735
105 0.42212 0.42210
120 0.30108 0.30107
135 0.20586 0.20586
150 0.12831 0.12830
165 0.06158 0.06158
180 0.00000 0.00000

Table 3. Comparison of F1(ϑ) from Equation (21) with F2(u) from Equation (22)

for e=1/
√
4=1/2; angles ϑ=u are given in degrees

angles F1 F2

0 0.0000 0 0.00000
15 0.48415 0.48403
30 0.77775 0.77763
45 0.84606 0.84602
60 0.76985 0.76978
75 0.63724 0.63718
90 0.50000 0.50000
105 0.37864 0.37862
120 0.27713 0.27712
135 0.19298 0.19298
150 0.12175 0.12117
165 0.05884 0.05884
180 0.00000 0.00000
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On the other hand, the method of [3] combined with that of [1] gives the

normal component of the acceleration of the moving body on the orbit:

an=
ẋ2+ ẏ2

̺
=

GM
a

(

1
1−ecosϑ−

1
2

)

a
λ (sin

2ϑ+λ2 cos2ϑ)3/2
=
GM

a2
λF4(ϑ) (24)

Here the formula for the curvature radius of [1] (see Equation (10)) is combined

with that for the kinetic energy in Equation (19); ϑ=u.

The data for F3(ϑ) and F4(ϑ) obtained from Equations (23) and (24),

respectively, are plotted in Figures 1–2.

Figure 1. The plot of F3 entering the formula (23) for the acceleration component at
presented as a function of ϑ. The upper curve (i) is for e=1/

√
2, middle curve (ii) is for

e=1/
√
3, lower curve (iii) is for e=1/

√
4=1/2

A characteristic point is that for ϑ= π
2
the same value F4=0.5 is obtained

for any e, whereas for ϑ= 180◦ the values of F4 for all e listed in Figure 2 are

equal approximately to 0.25. Evidently, for ϑ= 180◦ and e= 0 the values of F4
rise to 0.5.

6. Conclusions

The paper concerns a comparison of a new approach to the mechanics of

a moving particle proposed recently by Stanescu and Tabacu [1] with the well-

known mechanical methods. In [1] such a comparison is limited solely to very

special points of the body motions on their tracks neglecting a general check of

the motion as a whole.

The present paper bridges this gap for the case of the body motion along

Kepler’s orbit by extending the calculations of the kinetic energy of the moving
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Figure 2. The plot of F4 entering the formula (24) for the acceleration component an
presented as a function of ϑ. The upper curve (i) is for e=1/

√
2, middle curve (ii) is for

e=1/
√
3, lower curve (iii) is for e=1/

√
4=1/2

body practically to the arbitrary points on the Kepler track. An agreement

between both approaches, that of [1] and the traditional one, is satisfactory.
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[4] Rubinowicz W and Królikowski W 2007 Mechanika Teoretyczna, 7th Edition, PWN,

Warsaw (in Polish)

tq316u-e/299 14VIII2013 BOP s.c., http://www.bop.com.pl



300 TASK QUARTERLY 16 No 3–4

tq316u-e/300 14VIII2013 BOP s.c., http://www.bop.com.pl


