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Abstract: This paper is devoted to the modeling of hydraulic losses during transient flow of

liquids in pressure lines. Unsteady pipe wall shear stress is presented in the form of a convolution

integral of liquid acceleration and a weighting function. The weighting function depends on the

dimensionless time and the Reynolds number. In its first revision (Zielke W 1968 J. ASME

90 109) it had a complex and inefficient mathematical structure (featured power growth of

computational time). Therefore, further work aimed at developing the so-called efficient models

for correct estimation of hydraulic resistance with simultaneous linear loading of the computer’s

operating memory was needed. The work compared the methods of numerical solving of the

convolution integral known from the literature (classic by Zielke W 1968 J. ASME 90 109 and

Vardy A E and Brown J M B 2010 J. Hydraul. Eng. 136 (7) 453 and efficient by Trikha A K

1975 J. Fluids Eng. p. 97, Kagawa T et al. 1983 Trans. Jpn. Soc. Mech. Eng. 49 (447) 2638 and

Schohl G A 1993 J. Fluids Eng. 115 420). The comparison highlighted the level of usefulness

of the analyzed models in simulating the water hammer and revealed the demand for further

research for the improvement of efficiency of the solutions.

Keywords: numerical fluid mechanics, transient flow, hydraulic resistance, convolution integral

1. Introduction

Many studies of unsteady flows of liquids through pressure lines assume

that hydraulic losses are quasi-steady. The models provide correct results only

for low frequencies or the slow velocity variation, i.e., for quasi-steady flows. The

approach seen in many contemporary works is that the instantaneous pipe wall
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278 K. Urbanowicz and Z. Zarzycki

shear stress τ can be presented in the form of a sum of quasi-steady quantities τq
and quantity τu [1–20] variable in time:

τ = τq+τu (1)

Quantity τq is determined based on the transformed Darcy-Weisbach for-

mula:

τq =
1

8
λρv|v| (2)

where: λ – friction factor, ρ – liquid density, v – instantaneous flow velocity.

It is known that during a laminar flow liquid, molecules fill porous pipe

cavities, creating a smooth “sliding surface”. Many experiments have confirmed

this liquid behavior. In this scenario it is assumed that hydraulic resistance is

independent of the pipeline wall porosity and depends on the value of the Reynolds

number only. The flow remains laminar until the critical Reynolds number value

(approx. 2320) is exceeded. The friction factor in laminar flow is calculated using

the Hagen-Poiseuille law:

λ=
64

Re
(3)

Once the critical value of the Reynolds number is exceeded, the flow be-

comes turbulent and the friction loss coefficient for coarse pipes can be computed

from the Colebrook-White dependence:

1√
λ
=−2lg

(
2.51

Re
√
λ
+
ε

3.7D

)

(4)

where: ε/D – relative roughness of internal pipe walls.

For hydraulically smooth pipes the friction loss coefficient can be computed

from the Prandtl-Karman equation:

1√
λ
=2lg

(

Re
√
λ
)

−0.8 (5)

Experimental results have shown that the foregoing equation (5) features

fit very well for a single-phase flow for any large Reynolds number.

2. Modeling pipe wall shear stress

Zielke [20] has presented an analytical solution enabling determination of

unsteady fiction losses (instantaneous pipe wall shear stress in the form of the

convolution integral from local acceleration of liquid and a weighting function)

for laminar flow. Zielke’s model can be easily used in equations describing a 1D

unsteady flow, including specifically the popular method of characteristics (MOC).

In his deliberations, Zielke has referred to the dependence presented in the

paper by Brown [21], describing the impedance of a hydraulic line as a function

of frequency:

Z0(s)=
ρs
πR2

1− 2J1(jR
√
s
ν )

jR
√
s
ν
·J0(jR

√
s
ν )

(6)
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Convolution Integral in Transient Pipe Flow 279

where: s – Laplace transformation operator; ν – kinematic viscosity coefficient;

J0 and J1 – Bessel functions of the first type of orders 0 and 1; j – imaginary

unit; R – internal pipe radius.

By reversing the Laplace transformation, Zielke has obtained the fol-

lowing dependence for the instantaneous pipe wall shear stress for laminar

flow [20]:

τ(t)=
4µ

R
v

︸︷︷︸

τq

+
2µ

R

t∫

0

w(t−u) · ∂v
∂t
(u)du

︸ ︷︷ ︸

τu

(7)

where: w(t) – weighting function, µ – dynamic viscosity coefficient.

The first expression, τq, of the foregoing equation (7) represents a quasi-

steady quantity (being a result of inserting the expression for linear resistance

rate (3) in Equation (2) for laminar flow).

The second expression, τu, describes the effect of the flow unsteadiness

on the wall shear stress. It is the convolution integral from instantaneous liquid

acceleration and a weighting function:

w(t̂)=
6∑

i=1

mit̂
(i−2)/2, for t̂≤ 0.2 (8)

w(t̂)=
5∑

i=1

e−ni ·̂t, for t̂ > 0.02 (9)

where: t̂ = (ν/R2) · t – the dimensionless time and m1 = 0.282095; m2 = −1.25;
m3 = 1.057855; m4 = 0.9375; m5 = 0.396696; m6 = −0.351563; n1 = 26.3744;
n2=70.8493; n3=135.0198; n4=218.9216; n5=322.5544.

The component of the instantaneous pipe wall shear stress, τu, which is

variable in time, can be computed numerically using the differential approximation

of the first order [20]:

τu=
2µ

R

n−2∑

j=1,3,...

(vi,j+2−vi,j) ·w
(
(n−1−j)∆t̂

)

=
2µ

R

n−2∑

j=1,3,...

(vi,n−j+1−vi,n−j−1) ·w(j∆t̂)
(10)

where: i – the number of the subsequent computational pressure pipe cross-section

changing from 1 to h; j – the number of the computational time step changing

with the increment of 2 from 1 to n for n≥3; ∆t̂=
(
v/R2
)
·∆t; ∆t – the time step

in numerical analysis.
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In the method of characteristics based on a rectangular grid the foregoing

equation (10) can be written as follows [3]:

τu=
2µ

R

n−1∑

j=1

(vi,j+1−vi,j) ·w
(

(n−j)∆t̂−∆t̂
2

)

=
2µ

R

n−1∑

j=1

(vi,n−j+1−vi,n−j) ·w
(

j∆t̂−∆t̂
2

)
(11)

where: j – the number of the computational time step changing with the increment

of 1 from 1 to n for n≥2.
An analysis of the two last equations explains why the solution of the

convolution integral by Zielke is inefficient. This is because the number of

expressions representing the instantaneous value of the wall shear stress increases

as part of the numerical process with each successive time step “j”.

In time, it has been demonstrated [10–14, 18, 19] that the dependence (7)

can be also used for transient turbulent flows. However, the weighting function

in turbulent flow has no fixed pattern, as for the laminar flow. Its shape varies

depending on the conditions: namely the value of the Reynolds number.

Based on the 2D (axial-symmetric) Reynolds equation, the Boussinesq

hypothesis and experimental data (concerning the turbulent viscosity coefficient

in the pipe cross-section), Vardy-Brown and Zarzycki have proposed their own

weighting functions for turbulent flow:

• Vardy-Brown model [12]

w(t̂,Re)=
A∗e−B

∗ t̂

√
t̂

(12)

where: A∗=
√

1/4π and B∗=Reκ/12.86; κ= log10(15.29/Re
0.0567);

• Zarzycki model [19]

w(t̂,Re)=C
1√
t̂
Ren (13)

where: C =0.299635; n=−0.005535.

The foregoing dependences (12) and (13) for the weighting function can be

used within the 2000≤Re≤ 108 range of the Reynolds number.
Vardy and Brown [9] have proposed an adjustment to the classic solution

by Zielke (11) consisting in computing the integral from the weighting function.

This approach having been adopted, numerical simulations begin to reflect the

actual change of the wall shear stress more accurately (inter alia, they avoid the

error in determining hydraulic resistance for the accelerated flow; see [9]).
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The integral derived from Equation (8) for dimensionless time t̂ is:

I1=

(
R2

v

)[

2m1· t̂0.5+m2· t̂1+
2

3
m3· t̂1.5+

1

2
m4· t̂2+

2

5
m5· t̂2.5+

1

3
m6· t̂3

]

(14)

Whereas, for Equation (9), the integral is:

I2=

(
R2

v

) 5∑

i=1

(

− 1
ni

)

eni ·̂t (15)

A modified solution proposed by Vardy-Brown:

τu=
2µ

R

n−1∑

j=1

(vi,j+1−vi,j)
∆t

·I|(n−j)·∆t̂
(n−j−1)·∆t̂

(16)

where: I = I1 when (n−j)∆t̂≤ 0.02 and I = I2 when (n−j)∆t̂ > 0.02.

3. Efficient solution of convolution integral

Trikha [5] was the first to present an efficient numerical solution of the

convolution integral (second expression in Equation (7)) in 1975:

τu(t+∆t)≈
2µ

R

j
∑

i=1

[

yi(t) ·e−ni·
ν

R2
·∆t+mi · [v(t+∆t)−vt]

]

︸ ︷︷ ︸

yi(t+∆t)

(17)

To obtain the foregoing solution, it was necessary to write the weighting

function in the form of a finite sum of exponential expressions:

w(t̂)=

j
∑

i=1

mie
−ni ·̂t where: i=1,2, . .. ,j (18)

this is because only this form of the function allows an efficient solution of the

convolution integral to be achieved.

As Trikha has made too many simplifications while deriving his equations

for the efficient solution of convolution integral (17) and (18), Kagawa et al. [2],

and then Schohl [4], have proposed more accurate solutions.

Schohl’s solution is slightly different from the solution proposed by Kagawa

et al. See the following for derivation of the solutions:

τu(t)=
2µ

R

t∫

0

wapr(t−u) ·
∂v

∂u
(u)du=

2µ

R

t∫

0

j
∑

i=1

wi(t−u) ·
∂v

∂u
(u)du

=
2µ

R

j
∑

i=1

t∫

0

wi(t−u) ·
∂v

∂u
(u)du

(19)

τu(t)=
2µ

R

j
∑

i=1

yi(t) (20)
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yi(t)=

t∫

0

wi(t−u) ·
∂v

∂u
(u)du=

t∫

0

mi ·e−ni·
ν

R2
·(t−u) · ∂v

∂u
(u)du

yi(t)=mi ·e−ni·
ν

R2
·t ·

t∫

0

eni·
ν

R2
·u · ∂v
∂u
(u)du

(21)

Using the method of characteristics to solve the system of partial differential

equations describing a transient flow requires that the computation is performed

for certain predefined time steps ∆t. The notation for the subsequent time step

can be as follows:

yi(t+∆t)=

t+∆t∫

0

wi(t+∆t−u) ·
∂v

∂u
(u)du=

=

t∫

0

wi(t+∆t−u) ·
∂v

∂u
(u)du+

t+∆t∫

t

wi(t+∆t−u) ·
∂v

∂u
(u)du=

=

t∫

0

mi ·e−ni·
ν

R2
·(t+∆t−u) · ∂v

∂u
(u)du+

t+∆t∫

t

mi ·e−ni·
ν

R2
·(t+∆t−u) · ∂v

∂u
(u)du=

= e−ni·
ν

R2
·∆t ·

t∫

0

mi ·e−ni·
ν

R2
·(t−u) · ∂v

∂u
(u)du

︸ ︷︷ ︸

yi(t)

+

+mi ·e−ni·
ν

R2
·(t+∆t) ·

t+∆t∫

t

eni·
ν

R2
·u · ∂v
∂u
(u)du

︸ ︷︷ ︸

∆yi(t)

(22)

Ultimately:

yi(t+∆t)= yi(t) ·e−ni·
ν

R2
·∆t+∆yi(t) (23)

where:

∆yi(t)=mi ·e−ni·
ν

R2
·(t+∆t) ·

t+∆t∫

t

eni·
ν

R2
·u · ∂v
∂u
(u)du (24)

Assuming for the foregoing expression that function v(u) is linear function

[v(u)= au+b] within the range 〈t,t+∆t〉, its derivative after time ∂v(u)/∂u can
be considered as a constant, the value of which is computed as follows:

[v(t+∆t)−vt]
∆t

(25)
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Given this assumption, ∆yi(t) can be written as follows, as in Schohl [4]:

∆yi(t)≈mi ·e−ni·
ν

R2
·(t+∆t) · [v(t+∆t)−vt]

∆t
·
t+∆t∫

t

eni·
ν

R2
·udu=

=mi ·e−ni·
ν

R2
·(t+∆t) · [v(t+∆t)−vt]

∆t
· R
2

niν
·
[

eni·
ν

R2
·(t+∆t)−eni· νR2 ·t

]

=
miR

2

∆tniν
·
[

1−e−ni· νR2 ·∆t
]

· [v(t+∆t)−vt]

(26)

Or as follows, as in Kagawa et al. [2]:

∆yi(t)≈mi ·e−ni·
ν

R2
·(t+∆t) ·

[
v(t+∆t)−vt

]

∆t
·
t+∆t∫

t

eni·
ν

R2
·udu=

=mi ·e−ni·
ν

R2
·(t+∆t) ·

[
v(t+∆t)−vt

]

∆t
·eni· νR2 ·(t+∆t 2) ·

t+∆t∫

t

du=

=mi ·e−ni·
ν

R2
·(∆t2 ) ·

[
v(t+∆t)−vt

]

∆t
·(t+∆t− t)=

=mi ·e−ni·
ν

R2
·(∆t2 ) ·

[
v(t+∆t)−vt

]

(27)

The final efficient numerical solution of the convolution integral by Schohl

is as follows:

τu(t+∆t)≈
2µ

R
·
j
∑

i=1

[

yi(t) ·e−ni·
ν

R2
·∆t+

miR
2

∆tniν
·
[

1−e−ni· νR2 ·∆t
]

· [v(t+∆t)−vt]
]

︸ ︷︷ ︸

yi(t+∆t)

(28)

While the solution by Kagawa et al. is the following:

τu(t+∆t)≈
2µ

R
·
j
∑

i=1

[

yi(t) ·e−ni·
ν

R2
·∆t+mi ·e−ni·

ν

R2
·(∆t2 ) · [v(t+∆t)−vt]

]

︸ ︷︷ ︸

yi(t+∆t)

(29)

As the simulation starts from the steady flow (v = const.), the wall shear

stress parameter, τu, occurring during the transient flow and the values of all

components yi(t) is equal to 0 in the first computational time step. In each

subsequent time step the values of components change according to Equation (23).

4. Simulation results

The following section presents the results of illustrative simulations of

fluctuations of parameter τu using the solutions of the convolution integral (3

efficient and 2 inefficient ones) discussed in the two preceding sections. The

simulation results were obtained for a known experimental pattern (Figure 1) of

variation of the mean liquid velocity (occurring during simple water hammering

in the center of the cross-section of a pressure pipe – Re= 1111, vo =0.066m/s,
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Figure 1. Mean velocity profile – pipe midpoint

L=98.11m, R=0.008m, ν=9.493·10−7m2/s i c=1305m/s [1]). The experiment
consisted in a sudden closure of the terminal valve of a pipe transporting liquid

from a constant pressure tank.

As can be seen in Figure 1, the work analyzed the effect of the velocity

variation on the pattern of parameter τu only for the first two water hammer

effect periods (within t=0.644 s from the occurrence of the transient state).

The simulation tested the following:

1) The effect of the number of time steps “n” (zero-dimensional time step ∆t̂)

on the pattern of parameter τu. Three cases were analyzed:

– CASE I (n1=96 time steps, ∆t̂=1 ·10−4)
– CASE II (n2=266 time steps, ∆t̂=3.6 ·10−5)
– CASE III (n3=2561 time steps, ∆t̂=3.7 ·10−6)

2) The effect of the quantity of the exponential terms describing the efficient

weighting function on the pattern of parameter τu. Also three cases were

analyzed (Figure 2):

– Function consisting of 18 exponential terms

– Function consisting of 22 exponential terms

– Function consisting of 26 exponential terms

See paper [7] for details of coefficients used in the weighting function.

3) The quality of matching the results obtained using efficient solutions of

a convolution integral [derived] compared to the fit of results obtained using

classic (or inefficient) solutions.

4.1. CASE I (n1=96 time steps, ∆t̂=1 ·10−4)
The foregoing diagrams show clearly what errors can result from using

the efficient solution of the convolution integral by Trikha (17) for modeling an

unsteady flow. This is because unsteady wall shear stresses, τu, simulated using the

solution depend mostly on the adopted weighting function. The more expressions

the ultimate form of the function contains, the worse the results are. A good visual

example is comparing the results shown in Figure 3a (28) with those in Figure 3g
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Figure 2. Weighting function

(Zielke-Vardy-Brown solution). It is clear that the results of the simulation using

the solution by Trikha are approx. 500 times larger than the results provided by

the exact adjusted classic solution by Zielke-Vardy-Brown (16). Therefore, using

the solution of the convolution integral by Trikha should be avoided in numerical

computations of unsteady hydraulic resistance. Similarly wrong results have been

obtained for this solution in the next two cases (CASE II and CASE III). Due to

its incompatibility with the classic solutions, the solution by Trikha will not be

compared or considered in the following sections of this work.

Figure 3d (zoom) shows that the efficient solution by Schohl (28) is slightly

dependent on the quantity of exponential expressions making up the weighting

function. The larger the quantity of exponential expressions, the higher the

consistency with the results provided by the classic adjusted solution by Zielke-

Vardy-Brown (16).

On the other hand, the effect of the quantity of the exponential expressions

making up the weighting function is not observed for the efficient solution by

Kagawa et al. (Figure 3e).

Figure 3g shows that the results of simulated parameter τu are understated

for the classic solution by Zielke (11). This means that simulated hydraulic

resistance is understated if this solution is used.

4.2. CASE II (n2=266 time steps, ∆t̂=3.6 ·10−5)
A review of the results shown in Figure 4a has confirmed the trend noted

for the results obtained for the previous case (CASE I). The more expressions

the efficient weighting function contains, the more accurate the simulation for

the solution by Schohl is (this is related to the fact that the efficient function

containing more expressions is matched to the classic weighting function by

Zielke (8)–(9) within a broader range of dimensionless time).

Again, the number of expressions did not affect the results obtained using

the solution by Kagawa et al. (Figure 4c).

Figure 4e shows the same dependence that was observed for the previous

case (CASE I): the results obtained using the classic solution by Zielke (11) were
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Figure 3. CASE I – results of simulated τu transient shear stress parameter runs using:

(a), (b) Trikha efficient solution [5], (c), (d) Schohl efficient solution [4], (e), (f) Kagawa et al.

efficient solution [2], (g), (h) Zielke [20] and Zielke-Vardy-Brown [9] inefficient solution

(right panels are zoom of peak from left panels)
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Figure 4. CASE II – results of simulated τu transient shear stress parameter runs using:

(a), (b) Schohl efficient solution [4], (c), (d) Kagawa et al. efficient solution [2],

(e), (f) Zielke [20] and Zielke-Vardy-Brown [9] inefficient solution

(right panels are zoom of peak from left panels)

understated vs. the results provided by the corrected model by Zielke-Vardy-

Brown (16).

4.3. CASE III (n3=2561 time steps, ∆t̂=3.7 ·10−6)
The foregoing illustrative comparisons (for all cases: CASE I, II and III)

show clearly that the efficient solution of the convolution integral by Kagawa

et al. (29) corresponds to the classic solution by Zielke (11). However, as Vardy

and Brown [9] have correctly noted, the classic solution by Zielke is unable to

provide a correct simulation (as shown by Vardy and Brown in the example of
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Figure 5. CASE III – results of simulated τu transient shear stress parameter runs using:

(a), (b) Schohl efficient solution [4], (c), (d) Kagawa et al. efficient solution [2],

(e), (f) Zielke [20] and Zielke-Vardy-Brown [9] inefficient solution

(right panels are zoom of peak from left panels)

an accelerated flow) due to the simplification consisting in not computing the

integral from the weighting function.

The solution by Schohl (28) is an efficient solution that computes the

integral from the weighting function. And, as shown by the qualitative analysis

of the foregoing results, the solution corresponds to the adjusted classic solution

by Zielke-Vardy-Brown (16) with good fit.

Also, the analysis of all the results has answered the question concerning

the effect of the time step on the simulation results. Namely, it is clear that the

maximum values of peaks occurring in the patterns of parameter τu grow as the
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value of the dimensionless time step ∆t̂ decreases. It is a regularity justified by

the fact that the values of the weighting function are the larger, the smaller the

time step in numerical computations is. This means that velocity increments are

multiplied by larger values (the solution by Trikha was a marked exception as it

was the only solution that displayed different behavior, which is an argument for

a definitive need for avoiding this solution in simulations).

4.4. Quantitative analysis

Apart from a standard qualitative analysis, the paper contains a quantita-

tive one. The qualitative analysis demonstrates clearly that the efficient solution

by Schohl conforms to the adjusted classic solution by Zielke-Vardy-Brown and

that the efficient solution by Kagawa et al. conforms to the classic solution by

Zielke (until recently considered to be the most accurate solution). Therefore, in

the following sections the results of the simulation performed using the solution

by Kagawa et al. are compared with those provided by the classic solution by

Zielke and the results provided by the efficient solution by Schohl are compared

with those provided by the classic solution adjusted by Zielke-Vardy-Brown.

It was only the absolute percentage errors of the maximum and minimum

values occurring in the simulated patterns of parameter τu that were analyzed

(marked with circles in the following Figure 6).

Figure 6. Analyzed shear stress peaks

Eight errors from the stimulated patterns having been calculated, the errors

were used to estimate a single parameter, “E”, representing the arithmetic mean

of all the errors, using the following equation:

E=

∑8
i=1

∣
∣
∣
τieff.(max,min)−τiineff.(max,min)

τiineff.(max,min)

∣
∣
∣ ·100%

8
(30)
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where: τieff.(max,min) – maximum and minimum values of effective runs (Kagawa

and Schohl solution); τiineff.(max,min) – maximum and minimum values of ineffec-

tive runs (Zielke and Zielke-Vardy-Brown solution)

Table 1 shows the results of the proposed quantitative analysis.

Table 1. Mean absolute error of actual results

Error parameter E (%)
Case

Kagawa vs. Zielke Schohl vs. Zielke-Vardy-Brown

CASE I 0.0051 0.075

CASE II 0.0015 0.118

CASE III 0.0019 0.230

It follows clearly from the foregoing table that the fit of the results obtained

using the efficient solution by Kagawa is very good and this is why the solution

used to be the most popular one. However, the one-way tendency to improvement

of the fit as the time step in the numerical becomes smaller is missed. A reverse

trend (where the time step reduction deteriorates the results) can be observed for

the fit of the results obtained using the efficient solution by Schohl. Without

doubt, this behavior relates to the incorrect result of integration using the

weighting function for the last time step. Even the first drawing shows that

the efficient weighting function approaches a certain fixed value (namely) rather

than infinity for the dimensionless time approaching zero. Without doubt, the

incorrect calculation of the integral using the weighting function for the last time

step is the source of the error (as the last change of velocity is multiplied by

the result of integration calculated using the weighting function within the 0

to range), which could possibly be eliminated by adjusting the efficient solution

by Schohl.

5. Conclusion

The paper analyzes three solutions of the convolution integral known from

the literature: Trikha [5], Kagawa et al. [2] and Schohl [4]. The results of the

research show that Trikha’s simplifications are responsible for significant errors

and this model should be ruled out as a tool for simulating hydraulic resistance.

Also, the results show that the efficient solution by Kagawa et al. (often used

in the past by the authors of the paper) features very good correspondence to the

classic solution by Zielke. As recently demonstrated [9], the solution is not error-

free as it underestimates unsteady hydraulic resistance. Further, comparisons show

that the adjusted solution of the convolution integral used to calculate the exact

integral using the weighting function has its efficient counterpart: the solution by

Schohl.

The qualitative analysis of the results provided by the efficient solution by

Schohl demonstrates also that increasing the number of expressions describing the
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weighting function improves slightly the fit of the simulation results compared to

the results obtained using the accurate classic solution by Zielke-Vardy-Brown.

It should be also noted that the quantitative results signal a slight problem

that has not been solved to date: the computation of the integral using the

weighting function for the last time step in the efficient solutions generates an

error that increases as the time step in the numerical analysis is smaller (Table 1).

This problem should be eliminated and this will be the subject of our next

paper.
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