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Abstract: A very important problem in the transient liquid pipe flow analysis is accurate and
effective modeling of hydraulic resistance. The so called integral convolution of the mean local
acceleration of liquid and a weighting function need to be solved in a numerical way in order to
simulate unsteady resistance. A necessary condition in effective numerical calculations is that the
weighting function needs to be defined as a finite sum of exponential terms. The function keeps
a constant shape in a laminar flow, in a turbulent flow, its shape changes and it is dependent on
the instantaneous Reynolds number. In this article an easy method is presented to determine
a proper weighting function in a very straightforward manner in a quick time. A comparison
of the determined functions and function prototypes in a frequency domain will be presented
as well.
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1. Introduction

It is important to model the hydraulic resistance occurring during a tran-
sient flow of liquids through pressure lines. Failing to consider the maximum or
minimum possible pressure in a hydraulic system at the design phase can lead
to major system damage or even injuries in case of long transmission pipelines.
The Joukowski relationship is a simple dependence for ordinary water hammer
phenomena without cavitation which is helpful in determining the maximum pres-
sures. On the other hand, if cavitation is present, the pressure fluctuation can be
significantly larger, which calls for numerical modeling of such systems.
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264 K. Urbanowicz

It has been known for some time that the wall shear stress exerted on the
pipe wall is a sum of the quasi-steady component 7, and the component 7, related
to the flow unsteadiness:

T="Tg+Ty (1)

This approach was pioneered by Zielke [1] who has demonstrated that,
component 7, for a laminar flow can be correctly described analytically in the
form of a convolution integral of the product of the momentary liquid velocity
variation and a weighting function (that has a fixed shape in the case of a laminar
flow):

t
Tu:% w(t—u)@(u)du (2)

ot
0

where: 1 — dynamic viscosity; R — inner radius of pipe; v — instantaneous mean
flow velocity; ¢ — time; u — time, used in convolution integral; w(t) — weighting
function.

Similarly, formula (2) can be also used for determining the component 7, for
the turbulent flow, which has been demonstrated in the works by Zarzycki [2—4]
and Vardy and Brown [5-10], but with one difference: the weighting function
dedicated to the turbulent flow should be used, where the shape of the function
depends on the momentary value of the Reynolds number.

The literature offers two methods for resolving the convolution integral (2):
the classic (inefficient) method presented by Zielke [1] (slightly improved by Vardy-
Brown [11] in 2010) and the efficient method presented by Trikha [12] (later
improved by Kagawa et al. [13] and Schohl [14]). The efficient solutions require
that the weighting function is written in the form of a finite sum of exponential
expressions:

k
> omiem (3)
=1

where: # =v-t/R?* — dimensionless time, m; and n; — coefficients of weighting
function

Approximating the classical weighting functions (Zielke [1] for the laminar
flow and Vardy and Brown [7] or Zarzycki [3] for the turbulent flow) is not easy
to accomplish. The last four decades have brought many works the authors of
which have dealt with estimating coefficients of efficient weighting functions both
for laminar and turbulent flows. In time, as computerization has progressed, the
number of exponential expressions making an efficient function has been increasing
in cycles (with the exception of the weighting function by Kagawa et al. that was
recalled after many years, as the Japanese original article remained unknown to
the world for long) which can be seen in Table 1.

In 2004, Vardy and Brown [9] presented a certain numerical method for
estimating coefficients of the efficient weighting functions. However, since this
method is used to determine the sought values of coefficients based on a system
of equations, the number of which depends on the number of the exponential
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Weighting Function Approzimation in Transient Pipe Flow 265

Table 1. Matrix of works concerning efficient weighting functions for laminar and turbulent

flows
LAMINAR FLOW
Trikha Schohl Vardy and Kagawa Vitkovsky | Urbano-
Author: [12] [14] Brown [9] et al. [13] et al. [15] | wicz [16]
1975 1993 2004 1983 2004 2009
Number of
exponential 3 5 9 10 10 26
terms:
TURBULENT FLOW
Vitkovsky | Urbano- | Vardy and | Zarzycki and | KudZzma Urbano-
Author: et al. [15] | wicz [16] | Brown [10] | KudZma [4] [17] wicz [16]
2004 2009 2007 2004 2005 2009
basing on classic Vardy and Brown [7] basing on classic Zarzycki [3]
weighting function weighting function
Number of
exponential 10 16 17 6 8 22
terms:

expressions sought, the method is inefficient and complex. The following work
will present another method providing a possibility of much simpler estimation of
coefficients m; and n; representing efficient weighting functions.

2. Unsteady wall shear stress component

2.1. Conwvolution integral

The major shortcoming in the classic numerical solution of the convolution
integral presented by Zielke (2) is the fact that the sought component 7, is
computed from a longer sum in each time step (since the sum takes account
all the velocity fluctuations from the beginning of the transient state) [1]:

2

Tu =

=S]EN

k—1 R
BPSAY

Z (Ui7k—j+1 —Ui,k—j)-w (jAt— 7) (4)

j=1

_ _L
- f~c;22
increase, L — length of the pressure line, f — number of analyzed cross pipe section,

— dimensionless time

where: k — current numerical time step, At = Atz

¢ — pressure wave velocity.

According to the foregoing equation (4), the last velocity change, that is
multiplied by the value of the weighting function determined for the smallest
dimensionless time w(A#/2), has the strongest effect on the component 7,. As
is known, the weighting function takes large values for small dimensionless times
and small values for relatively larger times (Figure 1).

Trikha [12] was the first to present a certain efficient numerical solution
of the convolution integral in 1975, however, Kagawa et al. [13] published the
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Figure 1. Pattern of laminar weighting functions

improved solution in 1983 as it had been based on too many simplifying assump-

tions:
2/1' . —n; At *ni'ATi
=g ;:1 (yi(t)'e A tmye [u(t+At) —v(t)D ()

yi (t+At)
where: y;(t) — parameter computed for the previous time step (during the oc-
currence of the transient state, i.e., for the first time step of numerical analysis
y:(0)=0).
Still another efficient form of a convolution integral solution was proposed
by Schohl [14] in 1993:

m; (1 — e niAt

k
Z yi(t)- e Aty nAtA) [u(t+At) —v(t)] (6)

2

Tu =

S1ES

yi (t+AL)

The foregoing efficient solutions (5) and (6) require that the weighting
function is written in the form of a finite sum of exponential expressions.

2.2. Classic forms of the weighting function

In addition to presenting the classic convolution integral solutions (2)
and (4), Zielke proposed a correct form of the weighting function for a laminar
flow in his work of 1968 [1]:

6
w(t) =" m;i =272 for £ <0.02 (7)
i=1
w(t) = Ze*"i'z, for > 0.02 (8)
i=1

where: m; = 0.282095; mo = —1.25; m3 = 1.057855; my4 = 0.9375; ms5 = 0.396696;
mg = —0.351563; ny = 26.3744; ny = 70.8493; ng = 135.0198; ny = 218.9216;
ns = 322.5544.
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The literature offers two weighting function models for a turbulent flow:
e Vardy and Brown [7]

N A*e~ Bt
w(t,Re) = ——— (9)
Vi
where: A* = /1/4m and B* =Re"/12.86; k =log,(15.29/Re”"%7);
o Zarzycki [3]
- C
w(t,Re) = — -Re" (10)
Vi
where: C'=0.299635; n =—0.005535.

2.3. Simple method of approximating the weighting function

A single exponential expression will not provide for correct mapping of the
classic weighting function onto the required range of dimensionless time. This
means that a function approximating the classic weighting function should be
a finite sum of such expressions:

k
Wape. () =D _mie "t (11)
1=1

The process of computing the coefficients m; and n; describing subsequent
exponential expressions is not as easy as it could seem. This is demonstrated, last
but not least, by the first efficient weighting functions proposed in the literature,
which feature great simplicity (few exponential expressions) but poor mapping
of the approximated function (consider, for instance, the weighting function
proposed by Trikha [12] and Schohl [14] for the laminar flow or by Zarzycki-
Kudzma [4] for the turbulent flow).

The authors of many functions have made ancillary use of complex statis-
tical and fine-tuning procedures [4, 13—15] while computing their coefficients:

e Schohl [14] has applied a fine-tuning procedure based on the least squares
method (so he has managed to match 5 exponential expressions to 136
points describing the pattern of the classic weighting function by Zielke).
Vitkovsky et al. [15], KudZzma and Zarzycki [4] and others have estimated
their functions similarly.

e Kagawa et al. [13] have followed the classic function by Zielke (from the
smallest values on the right) and fitted in new exponential expressions
in real time. Vardy [9] has appreciated the potential of this approach by
concluding that this method could be used for determining the smallest
number of expressions required for the approximation while preserving
a predefined level of accuracy. Urbanowicz [16] has used a similar method
in his work.

e Vardy and Brown [9] have proposed a numerical procedure in which
parameter n; values are adopted for known dimensionless times and then an
appropriate system of equations is construed and resolved to find individual
coefficients m;.
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The following article presents a simple alternative method based on the
determination of subsequent exponential expressions in steps (as in Kagawa et al.)
and adjusting the weighting function so that the trace should cross certain points
selected using the classic weighting function (as in Vardy-Brown).

The range of applicability of efficient weighting functions should be suffi-
cient enough to ensure correct simulation of actual turbulent flows. Vardy and
Brown suggest [9] that the range of applicability of the new functions should de-
pend on the time step (1072A7;103A#) adopted for the numerical analysis. And
this remark seems to be right because it implies that the range of applicability of
the function should indeed depend on the tested hydraulic system.

For an approximation of a turbulent classic weighting function, it is best
to perform the approximation for as small the Reynolds number as possible (for
instance Re = 2-10%). This approach serves its purpose because, for such numbers,
the shape of the turbulent weighting function resembles the shape of the laminar
weighting function and, what is important, provides near-zero values (smaller
than 10~*) for dimensionless times £ > 5.47-1072. On the other hand, if large
Reynolds numbers are used (such as Re = 10°) the classic turbulent weighting
function provides near-zero values much sooner: as early as for dimensionless
times £ > 1.2-1073. Accordingly, approximating the new function will be more
difficult for such small values of the weighting function.

(a) 5% 10* (b) %
— — Zielke — — Zielke
B 25 Re=2320 . Vardy-Brown L 25 Re = 2320 -==-== Vardy-Brown
5 .E’ 2 direction of new
g 2 direction of new g terms calculation
£ 15 terms calculation £ 15
5 5
= 1 2 10
! !
T 0.5 g 5
E = o=
0 .
10-10 10-¢ 1072 100 10-* 1073 1072 107t 10°
dimensionless time (—) dimensionless time (-)

Figure 2. Direction of determination of new exponential expressions

As has been stated, the new procedure is a stepped one in which new values
of coefficients m; and n; describing a single exponential expression m;-exp(—n; ~f)
will be determined in each subsequent step. The determination of exponential
expressions starts from large values of dimensionless time (time t ~ 10° can
be regarded as such) for which the classic weighting function provides smallest
values (near-zero) (Figure 2). The following Figure 3 presents a block diagram
of subsequent steps of developing an efficient function representing a sum of five
exponential expressions wapr. (f) = Z?Zlmie*”i'i.

The determination of new exponential expressions will be a result of the
assumption that the new weighting function is supposed to cross evenly spaced
points of the logarithmic scale. The points are the values of the classic weighting
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Figure 4. Transition of the new estimated efficient weighting function through two points

function we, (estimated using Zielke weighting function wd,7z(5) for a laminar
flow or the Vardy-Brown weighting function we V,B(f, Re) for a turbulent flow).
The crossing of the new weighting function by the two points (Figure 4) relates
to the meeting of the following system of equations (used each time to compute

one exponential expression):

t
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Wel. (t1) =miy1-exp(—niq1 ~751) + Zmr -exp(—n, -fl)

r=1
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where: w., — Zielke weighting function value wc1_7z(f) for a laminar flow or
Vardy-Brown weighting function value wc1,7v_B(f,Re) for a turbulent flow; s —
starting exponent; i — step (i =1,2,...,h for a laminar flow leaving the first
original exponential expressions (m; =1, ny = 26.3744); in a turbulent flow:
1=0,1,2,...,h); As — exponent increment; k£ — increment multiplier (this work
tested the values of the parameter within the (0.0001;1) range).

Using the following notation:

we. (t1) = Cy

%
Zmr . eXp(_nT : Z?1) = C(2
r=1

. (13)
wel. (t2) = C3
i
Zmr : exp(—n,. : t2) =Cy
r=1
will provide the following system of equations:

Cr=miy1-exp(—niy1-E1)+Co (14)
Cs=mjy1-exp(—n;y1-F2)+Cy

where: in case of a turbulent flow if i =0: Cy =0 and C4 =0; while for a laminar
flow (leaving the first exponential expression of the classic Zielke weighting
function) if i = 1: Cy = exp(—26.3744-1,) and Cy = exp(—26.3744-f5).

Transforming the foregoing system of equations (14) the following equation
can be produced:

e
exp(—nir1-E1)  exp(—niy1-Ea)

=0 (15)

Using the foregoing equation it is possible to determine the unknown “n; 1"
numerically, using the FZERO function representing a module of MATLAB or,
for instance, using the BISECTION method. Once “n;y1” is found, “m;y1” is
computed using one of the following equations:

01 — CQ C’3 - 04
) =Mm;4+1 O

exp(—niﬂ -E1 ) +1 ( )

exp(—niy1-Ea

A complete numerical procedure used to determine new expressions of the
weight function for laminar and turbulent flows is presented schematically in
Appendix A.

More accurate functions (featuring better matching, or representing a smaller
relative percentage error) are obtained by applying smaller values of the parameter
k (increment multiplier). This is because a reduction of this parameter can be
followed by a reduction of the parameter As. Numerous simulation tests using the
foregoing method demonstrated that the parameter As had certain limits. The
lower limit for the laminar flow was As=0.24 (at k=0.0001). The approximating
weighting function for this value features the best match to the Zielke function.
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After adjusting the values of the estimated parameters “m;” by multiplying the
values by the correction factor z; = 0.999615 (mic = z;-m; — the role of the
correction factor is to spread evenly the distribution of the relative percentage
error to minimize the absolute percentage error) the relative error in the domain
of time was within the £0.04% range.

For the turbulent flow, on the other hand, the approximating function
was most accurate for As=10.235 (at k=0.0001). The relative percentage error
for the function remained within the £0.032% range (with the correction factor
2 =0.99964).

It is not possible to use smaller values of the parameter As as such values
would make the proposed procedure unstable and produce estimation errors.

In addition to good matching in the time domain, the estimated functions
feature good matching in the frequency domain which is confirmed in Figure 5
below showing the matching of the new estimated laminar function.

(a) (b)

50
— theoretical
10 15 ——- approximate
40
) 1010 § 30
E £
2 P!
g é 20
< 105 =
10
10() 0
10() 105 101() 1015 102() 1025 10() 105 101() 1015 1020 1025
© non-dimensional frequency (2) @ non-dimensional frequency (2)
c d
003 0.04
X —
< 0.02 X 0.03
Z g 0.02
2 001 = oo
] 3
% 0 § 0
- -
= 001 g 00
g ;g -0.02
E -0.02 T 003
o]
~-0.03 -0.04

10() 10’) 101() 1015 1020 1025 100 105 1010 101") 102(] 1025
non-dimensional frequency () non-dimensional frequency ()

Figure 5. Analytical laminar weighting function and estimated approximation
It should be noted that selecting correct starting parameters is important

for the numerical resolution of non-linear equations, such as Equation (15). See
Appendix B for broader coverage of the starting value of parameter “n;y1”.

tq316r-e/271 14VIII 2013 BOP s.c., http://www.bop.com.pl



272 K. Urbanowicz

3. Conclusion

The following paper presents a simple method for rapid determination
of new weighting functions written in the form of a finite sum of exponential
expressions. This notation in the form of the finite sum will allow efficient
determination of unsteady friction losses (using the efficient solution of the
convolution integral presented by Kagawa et al. [12] or Schohl [13]). The proposed
method will make it much simpler to simulate transient states in complex
hydraulic, water supply or heating networks.

Main Points:

1. Given that k = 0.0001, the new weighting function is much better
matched (with a smaller relative percentage error) than for k=1 as the reducing
parameter k allows reduction of the lower increment limit of the exponent As.

2. There are certain bottom and upper limits of the parameter As (expo-
nent increment) between which new exponential expressions can be determined.
Once the limits are exceeded, the approximation of new expressions can produce
errors (e.g., estimating subsequent parameters with values smaller than the pre-
vious ones: m;11 <my; Or n;pq <n;) or even can be impossible to complete.

3. The lower (minimum) limit of parameter As (exponent increment)
required for correct estimation of coefficients describing the weighting function
is different for laminar and turbulent flows. It could be said that it depends on
the pattern of the classic weighting function.

4. The number of the estimated exponential expressions “h” should depend
on the actually simulated transient state. We can follow the recommendation of
Vardy and Brown formulated in their paper of 2004 [9] that proposes to adopt
the value of the time step At from the (1072At;103At) range as the determinant
for identifying the number of expressions. For ¢ > 103At the values of the weight
function should be assumed as null.

5. Note that each change of the form of the classic turbulent weighting
function reflects on the minimum value of As that can be used for the foregoing
procedure. This is because the turbulent function is partly based on experimental
data and — considering the inputs from the ongoing, increasingly more accurate,
experimental research — the form of the function will evolve by slightly changing
its pattern.

The future work will be oriented towards developing a similar simple
method (for determination of coefficients of efficient weight functions) directly
in the domain of frequency.

Appendix A

The proposed algorithms are presented in Figures 6—7 on following pages.

Appendix B

The known efficient laminar weighting functions (Figure 8) were analyzed in
detail to ensure correct selection of the starting values of coefficients “n;,”. Apart
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Figure 6. Simplified block diagram of determination of subsequent exponential expressions
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Re = 2320; s = 0; As = 0.235; k = 0.0001; h = 100; z = 0.99964
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Figure 7. Simplified block diagram of determination of subsequent exponential expressions
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Figure 8. Review of coefficients describing laminar efficient weighting functions

from the starting parameters m; and n;, diagrams 8a, 8b and 8c show a nearly
linear relationship of the growth of the parameters sought in the logarithmic
scale. Diagram 8d shows that the m;;1/m; ratio varies for the most accurate
of the known functions within the 1-2.15 range. Also, the diagram shows that
this relationship stabilizes to some extent starting from ¢ =3 for the functions
by Kagawa et al. and Vitkovsky et al. and starting from i =8 for the function
by Urbanowicz (at 1.72 for Kagawa et al., 1.78 for Vitkovsky et al. and 1.48
for Urbanowicz). Diagram 8e confirms the foregoing observation for diagram 8d.
Namely, a similar trend is visible for the ratio of coefficients n;y1/n; that ranges
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from 1.46 to 3.1. In this case it is also clear that starting from ¢ =4 for the function
by Kagawa et al. and starting from ¢ = 12 for the function by Urbanowicz the ratio
stabilizes to a certain extent (at 2.94 for Kagawa et al. and 2.2 for Urbanowicz).
However, this stabilization was not observed for the function by Vitkovsky et al.,
where the n;41/n; ratio initially declined but then showed a regular growth trend
starting from i = 2.

Also, a review of the foregoing diagrams shows clearly that subsequent
values of these parameters can be estimated in practice with a small error, which
enables the research algorithm to estimate the exact values of the parameters
without any error.
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