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Abstract: A very important problem in the transient liquid pipe flow analysis is accurate and

effective modeling of hydraulic resistance. The so called integral convolution of the mean local

acceleration of liquid and a weighting function need to be solved in a numerical way in order to

simulate unsteady resistance. A necessary condition in effective numerical calculations is that the

weighting function needs to be defined as a finite sum of exponential terms. The function keeps

a constant shape in a laminar flow, in a turbulent flow, its shape changes and it is dependent on

the instantaneous Reynolds number. In this article an easy method is presented to determine

a proper weighting function in a very straightforward manner in a quick time. A comparison

of the determined functions and function prototypes in a frequency domain will be presented

as well.
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1. Introduction

It is important to model the hydraulic resistance occurring during a tran-

sient flow of liquids through pressure lines. Failing to consider the maximum or

minimum possible pressure in a hydraulic system at the design phase can lead

to major system damage or even injuries in case of long transmission pipelines.

The Joukowski relationship is a simple dependence for ordinary water hammer

phenomena without cavitation which is helpful in determining the maximum pres-

sures. On the other hand, if cavitation is present, the pressure fluctuation can be

significantly larger, which calls for numerical modeling of such systems.
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264 K. Urbanowicz

It has been known for some time that the wall shear stress exerted on the

pipe wall is a sum of the quasi-steady component τq and the component τu related

to the flow unsteadiness:

τ = τq+τu (1)

This approach was pioneered by Zielke [1] who has demonstrated that,

component τu for a laminar flow can be correctly described analytically in the

form of a convolution integral of the product of the momentary liquid velocity

variation and a weighting function (that has a fixed shape in the case of a laminar

flow):

τu=
2µ

R

t∫

0

w(t−u)∂v
∂t
(u)du (2)

where: µ – dynamic viscosity; R – inner radius of pipe; v – instantaneous mean

flow velocity; t – time; u – time, used in convolution integral; w(t) – weighting

function.

Similarly, formula (2) can be also used for determining the component τu for

the turbulent flow, which has been demonstrated in the works by Zarzycki [2–4]

and Vardy and Brown [5–10], but with one difference: the weighting function

dedicated to the turbulent flow should be used, where the shape of the function

depends on the momentary value of the Reynolds number.

The literature offers two methods for resolving the convolution integral (2):

the classic (inefficient) method presented by Zielke [1] (slightly improved by Vardy-

Brown [11] in 2010) and the efficient method presented by Trikha [12] (later

improved by Kagawa et al. [13] and Schohl [14]). The efficient solutions require

that the weighting function is written in the form of a finite sum of exponential

expressions:
k∑

i=1

mie
−ni ·̂t (3)

where: t̂= ν · t/R2 – dimensionless time, mi and ni – coefficients of weighting
function

Approximating the classical weighting functions (Zielke [1] for the laminar

flow and Vardy and Brown [7] or Zarzycki [3] for the turbulent flow) is not easy

to accomplish. The last four decades have brought many works the authors of

which have dealt with estimating coefficients of efficient weighting functions both

for laminar and turbulent flows. In time, as computerization has progressed, the

number of exponential expressions making an efficient function has been increasing

in cycles (with the exception of the weighting function by Kagawa et al. that was

recalled after many years, as the Japanese original article remained unknown to

the world for long) which can be seen in Table 1.

In 2004, Vardy and Brown [9] presented a certain numerical method for

estimating coefficients of the efficient weighting functions. However, since this

method is used to determine the sought values of coefficients based on a system

of equations, the number of which depends on the number of the exponential
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Table 1. Matrix of works concerning efficient weighting functions for laminar and turbulent

flows

LAMINAR FLOW

Author:
Trikha
[12]
1975

Schohl
[14]
1993

Vardy and
Brown [9]
2004

Kagawa
et al. [13]
1983

Vitkovsky
et al. [15]
2004

Urbano-
wicz [16]
2009

Number of
exponential 3 5 9 10 10 26

terms:

TURBULENT FLOW

Author:
Vitkovsky
et al. [15]
2004

Urbano-
wicz [16]
2009

Vardy and
Brown [10]
2007

Zarzycki and
Kudźma [4]
2004

Kudźma
[17]
2005

Urbano-
wicz [16]
2009

basing on classic Vardy and Brown [7]
weighting function

basing on classic Zarzycki [3]
weighting function

Number of
exponential 10 16 17 6 8 22

terms:

expressions sought, the method is inefficient and complex. The following work

will present another method providing a possibility of much simpler estimation of

coefficients mi and ni representing efficient weighting functions.

2. Unsteady wall shear stress component

2.1. Convolution integral

The major shortcoming in the classic numerical solution of the convolution

integral presented by Zielke (2) is the fact that the sought component τu is

computed from a longer sum in each time step (since the sum takes account

all the velocity fluctuations from the beginning of the transient state) [1]:

τu=
2µ

R

k−1∑

j=1

(vi,k−j+1−vi,k−j) ·w
(

j∆t̂−∆t̂
2

)

(4)

where: k – current numerical time step, ∆t̂=∆t νR2 =
L·ν
f ·c·R2 – dimensionless time

increase, L – length of the pressure line, f – number of analyzed cross pipe section,

c – pressure wave velocity.

According to the foregoing equation (4), the last velocity change, that is

multiplied by the value of the weighting function determined for the smallest

dimensionless time w(∆t̂/2), has the strongest effect on the component τu. As

is known, the weighting function takes large values for small dimensionless times

and small values for relatively larger times (Figure 1).

Trikha [12] was the first to present a certain efficient numerical solution

of the convolution integral in 1975, however, Kagawa et al. [13] published the
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Figure 1. Pattern of laminar weighting functions

improved solution in 1983 as it had been based on too many simplifying assump-

tions:

τu=
2µ

R

k∑

i=1

(

yi(t) ·e−ni·∆t̂+mi ·e−ni·
∆t̂

2 · [v(t+∆t)−v(t)]
)

︸ ︷︷ ︸

yi(t+∆t)

(5)

where: yi(t) – parameter computed for the previous time step (during the oc-

currence of the transient state, i.e., for the first time step of numerical analysis

yi(0)= 0).

Still another efficient form of a convolution integral solution was proposed

by Schohl [14] in 1993:

τu=
2µ

R

k∑

i=1



yi(t) ·e−ni·∆t̂+
mi

(

1−e−ni·∆t̂
)

ni ·∆t̂
· [v(t+∆t)−v(t)]





︸ ︷︷ ︸

yi(t+∆t)

(6)

The foregoing efficient solutions (5) and (6) require that the weighting

function is written in the form of a finite sum of exponential expressions.

2.2. Classic forms of the weighting function

In addition to presenting the classic convolution integral solutions (2)

and (4), Zielke proposed a correct form of the weighting function for a laminar

flow in his work of 1968 [1]:

w(t̂)=

6∑

i=1

mit̂
(i−2)/2, for t̂≤ 0.02 (7)

w(t̂)=

5∑

i=1

e−ni ·̂t, for t̂ > 0.02 (8)

where: m1 = 0.282095; m2 =−1.25; m3 = 1.057855; m4 = 0.9375; m5 = 0.396696;
m6 = −0.351563; n1 = 26.3744; n2 = 70.8493; n3 = 135.0198; n4 = 218.9216;
n5=322.5544.
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Weighting Function Approximation in Transient Pipe Flow 267

The literature offers two weighting function models for a turbulent flow:

• Vardy and Brown [7]

w(t̂,Re)=
A∗e−B

∗ t̂

√
t̂

(9)

where: A∗=
√

1/4π and B∗=Reκ/12.86; κ= log10(15.29/Re
0.0567);

• Zarzycki [3]
w(t̂,Re)=

C√
t̂
·Ren (10)

where: C =0.299635; n=−0.005535.

2.3. Simple method of approximating the weighting function

A single exponential expression will not provide for correct mapping of the

classic weighting function onto the required range of dimensionless time. This

means that a function approximating the classic weighting function should be

a finite sum of such expressions:

wapr.(t̂)=
k∑

i=1

mie
−ni ·̂t (11)

The process of computing the coefficients mi and ni describing subsequent

exponential expressions is not as easy as it could seem. This is demonstrated, last

but not least, by the first efficient weighting functions proposed in the literature,

which feature great simplicity (few exponential expressions) but poor mapping

of the approximated function (consider, for instance, the weighting function

proposed by Trikha [12] and Schohl [14] for the laminar flow or by Zarzycki-

Kudźma [4] for the turbulent flow).

The authors of many functions have made ancillary use of complex statis-

tical and fine-tuning procedures [4, 13–15] while computing their coefficients:

• Schohl [14] has applied a fine-tuning procedure based on the least squares
method (so he has managed to match 5 exponential expressions to 136

points describing the pattern of the classic weighting function by Zielke).

Vitkovsky et al. [15], Kudźma and Zarzycki [4] and others have estimated

their functions similarly.

• Kagawa et al. [13] have followed the classic function by Zielke (from the
smallest values on the right) and fitted in new exponential expressions

in real time. Vardy [9] has appreciated the potential of this approach by

concluding that this method could be used for determining the smallest

number of expressions required for the approximation while preserving

a predefined level of accuracy. Urbanowicz [16] has used a similar method

in his work.

• Vardy and Brown [9] have proposed a numerical procedure in which
parameter ni values are adopted for known dimensionless times and then an

appropriate system of equations is construed and resolved to find individual

coefficients mi.
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The following article presents a simple alternative method based on the

determination of subsequent exponential expressions in steps (as in Kagawa et al.)

and adjusting the weighting function so that the trace should cross certain points

selected using the classic weighting function (as in Vardy-Brown).

The range of applicability of efficient weighting functions should be suffi-

cient enough to ensure correct simulation of actual turbulent flows. Vardy and

Brown suggest [9] that the range of applicability of the new functions should de-

pend on the time step 〈10−2∆t̂;103∆t̂〉 adopted for the numerical analysis. And
this remark seems to be right because it implies that the range of applicability of

the function should indeed depend on the tested hydraulic system.

For an approximation of a turbulent classic weighting function, it is best

to perform the approximation for as small the Reynolds number as possible (for

instance Re=2·103). This approach serves its purpose because, for such numbers,
the shape of the turbulent weighting function resembles the shape of the laminar

weighting function and, what is important, provides near-zero values (smaller

than 10−4) for dimensionless times t̂ > 5.47 ·10−2. On the other hand, if large
Reynolds numbers are used (such as Re = 106) the classic turbulent weighting

function provides near-zero values much sooner: as early as for dimensionless

times t̂ > 1.2 ·10−3. Accordingly, approximating the new function will be more
difficult for such small values of the weighting function.

Figure 2. Direction of determination of new exponential expressions

As has been stated, the new procedure is a stepped one in which new values

of coefficients mi and ni describing a single exponential expression mi ·exp(−ni · t̂)
will be determined in each subsequent step. The determination of exponential

expressions starts from large values of dimensionless time (time t̂ ≈ 100 can
be regarded as such) for which the classic weighting function provides smallest

values (near-zero) (Figure 2). The following Figure 3 presents a block diagram

of subsequent steps of developing an efficient function representing a sum of five

exponential expressions wapr.(t̂)=
∑5
i=1mie

−ni ·̂t.

The determination of new exponential expressions will be a result of the

assumption that the new weighting function is supposed to cross evenly spaced

points of the logarithmic scale. The points are the values of the classic weighting
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Figure 3. Determination of subsequent exponential expressions for the new efficient

weighting function

Figure 4. Transition of the new estimated efficient weighting function through two points

function wcl. (estimated using Zielke weighting function wcl.,Z(t̂) for a laminar

flow or the Vardy-Brown weighting function wcl.,V−B(t̂,Re) for a turbulent flow).

The crossing of the new weighting function by the two points (Figure 4) relates

to the meeting of the following system of equations (used each time to compute

one exponential expression):







wcl.(t̂1)=mi+1 ·exp(−ni+1 · t̂1)+
i∑

r=1

mr ·exp(−nr · t̂1)

wcl.(t̂2)=mi+1 ·exp(−ni+1 · t̂2)+
i∑

r=1

mr ·exp(−nr · t̂2)

t̂1=E1(i)= 10
(s−2i∆s); t̂2=E2(i)= 10

(s−2i∆s+k∆s)

(12)
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where: wcl. – Zielke weighting function value wcl.,Z(t̂) for a laminar flow or

Vardy-Brown weighting function value wcl.,V−B(t̂,Re) for a turbulent flow; s –

starting exponent; i – step (i = 1,2, . .. ,h for a laminar flow leaving the first

original exponential expressions (m1 = 1, n1 = 26.3744); in a turbulent flow:

i= 0,1,2, .. . ,h); ∆s – exponent increment; k – increment multiplier (this work

tested the values of the parameter within the 〈0.0001;1〉 range).
Using the following notation:







wcl.(t̂1)=C1
i∑

r=1

mr ·exp(−nr · t̂1)=C2

wcl.(t̂2)=C3
i∑

r=1

mr ·exp(−nr · t̂2)=C4

(13)

will provide the following system of equations:
{

C1=mi+1 ·exp(−ni+1 ·E1)+C2
C3=mi+1 ·exp(−ni+1 ·E2)+C4

(14)

where: in case of a turbulent flow if i=0: C2=0 and C4=0; while for a laminar

flow (leaving the first exponential expression of the classic Zielke weighting

function) if i=1: C2=exp(−26.3744 · t̂1) and C4=exp(−26.3744 · t̂2).
Transforming the foregoing system of equations (14) the following equation

can be produced:

C1−C2
exp(−ni+1 ·E1)

− C3−C4
exp(−ni+1 ·E2)

= 0 (15)

Using the foregoing equation it is possible to determine the unknown “ni+1”

numerically, using the FZERO function representing a module of MATLAB or,

for instance, using the BISECTION method. Once “ni+1” is found, “mi+1” is

computed using one of the following equations:

C1−C2
exp(−ni+1 ·E1)

=mi+1 or
C3−C4

exp(−ni+1 ·E2)
=mi+1 (16)

A complete numerical procedure used to determine new expressions of the

weight function for laminar and turbulent flows is presented schematically in

Appendix A.

More accurate functions (featuring better matching, or representing a smaller

relative percentage error) are obtained by applying smaller values of the parameter

k (increment multiplier). This is because a reduction of this parameter can be

followed by a reduction of the parameter ∆s. Numerous simulation tests using the

foregoing method demonstrated that the parameter ∆s had certain limits. The

lower limit for the laminar flow was ∆s=0.24 (at k=0.0001). The approximating

weighting function for this value features the best match to the Zielke function.
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After adjusting the values of the estimated parameters “mi” by multiplying the

values by the correction factor zl = 0.999615 (micl = zl ·mi – the role of the
correction factor is to spread evenly the distribution of the relative percentage

error to minimize the absolute percentage error) the relative error in the domain

of time was within the ±0.04% range.
For the turbulent flow, on the other hand, the approximating function

was most accurate for ∆s= 0.235 (at k= 0.0001). The relative percentage error

for the function remained within the ±0.032% range (with the correction factor
zt=0.99964).

It is not possible to use smaller values of the parameter ∆s as such values

would make the proposed procedure unstable and produce estimation errors.

In addition to good matching in the time domain, the estimated functions

feature good matching in the frequency domain which is confirmed in Figure 5

below showing the matching of the new estimated laminar function.

Figure 5. Analytical laminar weighting function and estimated approximation

It should be noted that selecting correct starting parameters is important

for the numerical resolution of non-linear equations, such as Equation (15). See

Appendix B for broader coverage of the starting value of parameter “ni+1”.
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3. Conclusion

The following paper presents a simple method for rapid determination

of new weighting functions written in the form of a finite sum of exponential

expressions. This notation in the form of the finite sum will allow efficient

determination of unsteady friction losses (using the efficient solution of the

convolution integral presented by Kagawa et al. [12] or Schohl [13]). The proposed

method will make it much simpler to simulate transient states in complex

hydraulic, water supply or heating networks.

Main Points:

1. Given that k = 0.0001, the new weighting function is much better

matched (with a smaller relative percentage error) than for k=1 as the reducing

parameter k allows reduction of the lower increment limit of the exponent ∆s.

2. There are certain bottom and upper limits of the parameter ∆s (expo-

nent increment) between which new exponential expressions can be determined.

Once the limits are exceeded, the approximation of new expressions can produce

errors (e.g., estimating subsequent parameters with values smaller than the pre-

vious ones: mi+1<mi or ni+1<ni) or even can be impossible to complete.

3. The lower (minimum) limit of parameter ∆s (exponent increment)

required for correct estimation of coefficients describing the weighting function

is different for laminar and turbulent flows. It could be said that it depends on

the pattern of the classic weighting function.

4. The number of the estimated exponential expressions “h” should depend

on the actually simulated transient state. We can follow the recommendation of

Vardy and Brown formulated in their paper of 2004 [9] that proposes to adopt

the value of the time step ∆t from the 〈10−2∆t;103∆t〉 range as the determinant
for identifying the number of expressions. For t > 103∆t the values of the weight

function should be assumed as null.

5. Note that each change of the form of the classic turbulent weighting

function reflects on the minimum value of ∆s that can be used for the foregoing

procedure. This is because the turbulent function is partly based on experimental

data and – considering the inputs from the ongoing, increasingly more accurate,

experimental research – the form of the function will evolve by slightly changing

its pattern.

The future work will be oriented towards developing a similar simple

method (for determination of coefficients of efficient weight functions) directly

in the domain of frequency.

Appendix A

The proposed algorithms are presented in Figures 6–7 on following pages.

Appendix B

The known efficient laminar weighting functions (Figure 8) were analyzed in

detail to ensure correct selection of the starting values of coefficients “ni+1”. Apart

tq316r-e/272 14VIII2013 BOP s.c., http://www.bop.com.pl



Weighting Function Approximation in Transient Pipe Flow 273

Figure 6. Simplified block diagram of determination of subsequent exponential expressions

for laminar flow
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Figure 7. Simplified block diagram of determination of subsequent exponential expressions

for turbulent flow
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Figure 8. Review of coefficients describing laminar efficient weighting functions

from the starting parameters mi and ni, diagrams 8a, 8b and 8c show a nearly

linear relationship of the growth of the parameters sought in the logarithmic

scale. Diagram 8d shows that the mi+1/mi ratio varies for the most accurate

of the known functions within the 1–2.15 range. Also, the diagram shows that

this relationship stabilizes to some extent starting from i= 3 for the functions

by Kagawa et al. and Vitkovsky et al. and starting from i= 8 for the function

by Urbanowicz (at 1.72 for Kagawa et al., 1.78 for Vitkovsky et al. and 1.48

for Urbanowicz). Diagram 8e confirms the foregoing observation for diagram 8d.

Namely, a similar trend is visible for the ratio of coefficients ni+1/ni that ranges
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from 1.46 to 3.1. In this case it is also clear that starting from i=4 for the function

by Kagawa et al. and starting from i=12 for the function by Urbanowicz the ratio

stabilizes to a certain extent (at 2.94 for Kagawa et al. and 2.2 for Urbanowicz).

However, this stabilization was not observed for the function by Vitkovsky et al.,

where the ni+1/ni ratio initially declined but then showed a regular growth trend

starting from i=2.

Also, a review of the foregoing diagrams shows clearly that subsequent

values of these parameters can be estimated in practice with a small error, which

enables the research algorithm to estimate the exact values of the parameters

without any error.
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