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Abstract: This paper introduces a new rheological model of blood as a certain generalisation

of the standard Herschel-Bulkley model (Herschel W H and Bulkley R 1926 Kolloid-Zeitschrift

39 (4) 291). This model is a rheological constitutive equation and belongs to the group of

the so-called generalised Newtonian fluids. Experimental data (Yeleswarapu K K et al. 1998

Mech. Res. Comm. 25 (3) 257) is compared with the results obtained from the new model, to

demonstrate that it allows obtaining the best agreement together with the Luo-Kuang model

(Luo X and Kuang Z B 1992 J. Biomechanics 25 (8) 929; Easthope P L and Brooks D E

1980 Biorheology 17 235). The new model may be easily implemented into commercial CFD

codes, which is not that obvious for more complicated models such as differential, integral and

rate type fluids (Astarita G and Marrucci G 1974 Principles of non-Newtonian Fluid Mechanics

London, McGraw-Hill; Tesch K 2012 Selected Topics of Blood Flows and Microclimate Modelling

in Protective Suits Gdansk, Gdansk University of Technology Press). What is more, it allows

modelling of such phenomena as shear thinning, yield stress and constant viscosity values at

high shear rates.
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Notation

Ai – Rivlin-Ericksen tensor

Ct – left Cauchy-Green tensor

D – strain rate tensor

f – function

k – flow consistency

n – flow index

p – pressure

r – radius

γ – shear rate

δ – Kronecker delta

λ1 – relaxation time

λ2 – retardation time
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µ – viscosity

µ∞ – viscosity at high shear rates

σ – stress tensor

τ – viscous part of the stress tensor

τ – shear stress

τ0 – yield stress

∇~U – velocity gradient
∂~U

∂~r
– strain rate tensor

1. Introduction

Blood may be treated as a non-Newtonian fluid. This means that another

constitutive equation is needed to close the system of equations describing the

blood motion. The non-Newtonian nature of blood arises due to the presence of

red blood cells in the plasma. The mentioned equation belongs to the class of the

so-called mechanical (rheological) constitutive equations.

An ideal rheological constitutive equation for proper and complete mod-

elling of the blood flow behaviour should take into consideration the flexibility

and aggregation of red blood cells, the influence of temperature on viscosity, the

yield stress and thixotropy. It is hardly possible to satisfy all of these conditions.

The more attributes are satisfied, the better the model is. One has to keep in

mind that such a model is also more complicated then.

2. Models

Typically, we can divide rheological constitutive equations into categories

of Newtonian-, generalised Newtonian-, differential-, integral- and rate type fluids.

For any case the stress tensor σ is decomposed into a reversible and irreversible

(viscous) part, τ . If the density is constant we have:

σ=−pδ+τ (1)

For Newtonian fluids we have a linear relationship between the viscous part of

the stress tensor τ and the strain rate tensor D :

τ =2µD (2)

where the dynamic viscosity µ is a factor of proportionality. The definition (2)

is a generalisation of the following one-dimensional expression taken from an

experiment:
τ =µγ (3)

All the fluids that do not fulfil Equations (2) or (3) are known to be non-

Newtonian.

2.1. Newtonian fluids

For Newtonian fluids the relationship between shear stress and shear rate

is linear which also means that viscosity is constant:

τ =µγ (4a)

µ=const. (4b)
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The above constitutive equation will not allow making a correct description of

the blood behaviour such as shear thinning and yield stress and many others.

The only advantage of this model is that it keeps viscosity constant at high shear

rates.

2.2. Generalised Newtonian fluids

Generalised Newtonian fluids satisfy the following rheological equation:

τ =µ(γ)γ (5)

where the viscosity depends on the shear rate γ. Despite the name these fluids are

non-Newtonian. The Newtonian rheological Equation (4) may be always obtained

as a certain simplification of the selected generalised Newtonian fluid. The most

popular generalised Newtonian fluids, easily applied to blood flow modelling,

are the Bingham, Ostwald-de Waele, Herschel-Bulkley, Casson and Luo-Kuang

models.

The Bingham model [1] expresses the shear rate and dynamic viscosity in

the following manner:

τ = τ0+kγ (6a)

µ=
τ0

|γ|+k (6b)

We have an additional term responsible for the yield stress τ0 in comparison with

the Newtonian model (4). If τ < τ0 the Bingham fluid behaves as a solid, otherwise

it behaves as a fluid. Except for the yield stress modelling ability it is not the best

model for a blood flow description. This is simply because it cannot mimic the

shear thinning. If τ0=0, we have the Newtonian fluid (4).

The Ostwald-de Waele [2, 3] or so-called power-law model is given by:

τ = kγn (7a)

µ= k |γ|n−1 (7b)

where k is a flow consistency index and n is a flow index. It is probably the

simplest model allowing the shear thinning phenomenon. This is because of the

dimensionless flow index n present in Equation (7). However, it suffers from

the lack of yield stress. A disadvantage of this model is the problem of correct

prediction of viscosity at low and high stresses. For n=1 we obtain the Newtonian

fluid (4).

The Herschel-Bulkley model [4] combines the two previous models, i.e. the

Bingham and Herschel-Bulkley models. This results in:

τ = τ0+kγ
n (8a)

µ=
τ0

|γ|+k |γ|
n−1

(8b)

This also means that it is now possible to model the shear thinning behaviour and

the yield stress. One has to keep in mind that the Herschel-Bulkley model inherits

the disadvantages of the Ostwald-de Waele model, i.e. it cannot correctly predict
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the blood behaviour at high and low shear stresses. For τ0=0 and n=1 we can

obtain the Newtonian fluid (4). It is also possible to obtain both the Ostwald-de

Waele and Bingham models.

The Casson model [5] follows the definitions:
√
τ =
√
τ0+
√

kγ (9a)

√
µ=

√

τ0

|γ|+
√
k (9b)

It cannot be derived from the three above models. The advantages, however, are

exactly the same as previously. It allows shear thinning and yield stress modelling.

What is even more important this model is able to keep constant viscosity at high

shear rates and is commonly used for blood flow modelling. For τ0 = 0 we have

the Newtonian fluid (4). There is also the generalised Casson model. The only

difference is that we do not have the power 1
2
(
√
) but an optional power m

instead. This makes it even more flexible in the sense of the shear thinning level

calibration.

The Luo-Kuang model [6] has been the best discussed blood model so far.

It is defined by means of the following equations:

τ = τ0+k
√
γ+µ∞γ (10a)

µ=
τ0

|γ|+
k
√

|γ|
+µ∞ (10b)

where µ∞ stands for constant viscosity at high shear rates. It cannot be derived

from any of the previously discussed models. It allows modelling of the shear

thinning behaviour and the yield stress as well as the correct prediction of viscosity

at high stresses. It allows modelling of the best blood behaviour [7] at least within

the frame of generalised Newtonian fluids. For τ0 = 0 and k = 0 we have the

Newtonian fluid (4).

The generalised Herschel model, introduced here, is given by the following

definition:

τ = τ0+kγ
n+µ∞γ (11a)

µ=
τ0

|γ|+k |γ|
n−1
+µ∞ (11b)

A new rheological parameter, n, is introduced here. It allows better flexibility

in comparison with the Luo-Kuang model (10). There are three components of

viscosity in Equations (10) and (11) that may be easily distinguished. The first

component, τ0 |γ|−1, is responsible for the yield stress. The second component,
k |γ|n−1, is responsible for the non-Newtonian behaviour and the last component,
µ∞, allows constant viscosity at high shear rates. The combination of these

components makes these two models the best among the models discussed in this

paper. Similarly as for the Luo-Kuang model, for τ0 = 0 and k = 0 we have the

Newtonian fluid (4). Obviously for n= 1
2
we obtain the Luo-Kuang model (10).

Figure 1 shows relationships between all the generalised Newtonian models

discussed in this paper except for the Szulman model. This model is a certain
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Figure 1. Various models dependency

generalisation of the generalised Casson and Herschel-Bulkley models. There is

no direct connection between the Szulman and Generalised Herschel models. The

level of complexity of these two is more or less the same. Theoretically, the

Szulman model allows for more than the Casson model. However, one has to

be careful when fitting the values of the constants as it is quite easy to end up

with values that do not allow constant viscosity at high shear rates.

2.3. Differential type fluids

The viscous part of the stress tensor is expressed explicitly as a function of

other tensors and their derivatives, both being of a kinematic nature. These may

be Rivlin-Ericksen [8] tensors Ai:

τ = f(A1,A2,. . .) (12)
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defined by means of the following recurrent equation:

Ai+1=
dAi
dt
+Ai ·

∂~U

∂~r
+∇~U ·Ai, i=1,2, . .. (13)

2.4. Integral type fluids

The viscous part of the stress tensor is expressed explicitly as a function of

one or more integrals of other tensors of a kinematic nature:

τ =

t
∫

−∞

f(t−τ)(δ−Ct(τ)) dτ (14)

2.5. Rate type fluids

Equations describing the rate type fluids are not explicit for the stress

tensors. This simply means that the constitutive equation involves both the

viscous part of the stress tensor and its derivatives:

τ̇ = f
(

τ ,D ,Ḋ
)

(15)

The most popular variants of rate type fluids are Maxwell and Oldroyd equations.

The former follows the definition:

τ +λ1τ̇ =2µD (16)

It generalises the Newtonian hypothesis by means of an additional term containing

the time derivative of the stress tensor. This term is responsible for the so-called

fluid memory. λ1 stands for the relaxation time. The latter adds another term

containing the time derivative of the strain rate tensor:

τ +λ1τ̇ =2µ
(

D+λ2Ḋ
)

(17)

and λ2 is the retardation time. It can be considered as the time needed to strain

relaxation when the stress is removed.

3. Comparison with experimental data

This paragraph shows a comparison between the experimental data and the

predictions of the generalised Newtonian models discussed earlier. More complex

models (integral, differential and rate type fluids) are not discussed here. This is

simply because they cannot be easily implemented into commercial CFD codes.

The experimental velocity profiles [9] were measured by means of Doppler

velocimetry inside a straight plexiglass tube (0.25 inch in diameter and 6 feet long).

The investigated fluid was composed of porcine blood and 10% sodium citrate. The

viscosity of the fluid was measured by means of Couette and capillary viscometers.

All experiments were performed at room temperature within six hours of the blood

collection.
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3.1. Viscosity

Figure 2 shows a comparison of various models vs. experimental data for

blood [9]. The values of constants such as τ0, k and n were obtained by means

of the least squares method. It is obvious that the Newtonian fluid model is the

worst. The best agreement is achieved for the Luo-Kuang and generalised Herschel

models. Models such as Ostwald-de Waele and Hereschel-Bulkley are not able to

predict viscosity at high shear rates whereas they fit perfectly for middle values of

shear rates. Surprisingly enough, the Casson model does not fit the experimental

data well except for constant values (overestimated) at high shear rates.

Figure 2. Various models vs. experimental data: N – Newtonian model, B – Bingham,

H-B – Herschel-Bulkley, O-dW – Ostwald-de Waele, C – Casson, gC – generalised Casson,

L-K – Luo Kuang, gH – generalised Herschel

3.2. Velocity

Figures 3–9 show a comparison of various models and the experimental data

for three different volumetric flow rates. The velocity profiles may be solved either

Figure 3. Newton model

tq316p-e/259 14VIII2013 BOP s.c., http://www.bop.com.pl



260 K. Tesch

Figure 4. Bingham model

Figure 5. Casson model

Figure 6. Ostwald-de Waele model
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Figure 7. Herschel-Bulkley model

Figure 8. Generalised Herschel model

Figure 9. Luo-Kuang model
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numerically or analytically [10]. Again, it is not surprising that the Newtonian

and Bingham models do not predict the velocity profiles well. As for the other

models, the prediction is quite accurate. The best agreement was obtained for the

Luo-Kuang and generalised Hereschel models.

4. Conclusions

The generalised Newtonian fluids are the simplest and easiest to implement

into commercial CFD codes. The Luo-Kuang and generalised Herschel models

allow the best experimental fitting of data. This has been shown in this paper.

More advanced models such as those of Oldroyd and Maxwell have a potential

for even better approximation of blood features but they cannot be directly

implemented into commercial CFD codes. Generally speaking, there is no universal

constitutive equation that would be able to model all the features of blood. This

means that there is still need for further research in this field.
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