
TASK QUARTERLY 16 No 3–4, 229–238

NUMERICAL MODEL OF MASS TRANSFER

IN POROUS MEDIUM

YAROSLAV DANILOVYCH P’YANYLO

AND NAZARIY BOGDANOVYCH LOPUH

Centre for Mathematical Modelling,

Pidstryhacha Institute for Applied Problems of Mechanics and Mathematics,

Ukrainian Academy of Science,

Dudajev str. 15, 79005 Lviv, Ukraine

pjanylo@cmm.lviv.ua

(Received 12 April 2012; revised manuscript received 28 May 2012)

Abstract: A new numerical model of gas filtration in a porous medium is proposed and in-

vestigated. Gas filtration is modeled with a nonlinear differential equation in partial deriva-

tives. Methods of solving the equation are discussed. A computer experiment basing on real-

experiment-extracted input physical and geometrical parameters is performed and its results

are analyzed. The received results agree well with the corresponding experimental data.
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1. Introduction

A significant number of works in the literature is devoted to the research

on porous media [1]. In nature porous environments are carriers of hydrocarbons,

water and many other useful substances. Adequate mathematical models of

porous environments allow developing algorithms for their optimal design and

operation [2, 3]. As a rule, mass transfer in porous media is described by nonlinear

differential equations in partial derivatives or systems of such equations. Since

the input parameters and the properties of the porous medium are usually known

with low accuracy, an accurate solution of the modeled mathematical and physical

problems presents considerable computing difficulties. Exact analytical solutions

exist merely in few cases. Numerical and iterative methods or linearization of

the initial equations are basically used to obtain approximate solutions. It is

worth noting that the linearization of equations often gives solutions sufficiently

accurate for many practical problems. Adequacy and reliability of these solutions

substantially depends on the linearization method. In this work, the effect of the

method of linearization of the initial equation on the adequacy and accuracy of
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the obtained solution is investigated on the example of modeling of gas filtration

in a porous medium. A comparison of the numerical and experimental results

is a criterion of the mentioned adequacy and reliability of the chosen numerical

scheme.

The finite elements method (FEM) is a widespread method of solving

problems of the abovementioned type. In [4] this method is used for setting the

initial boundary conditions on the set of the measured discrete data. As each

numerical method, the FEM has also its specific features and limitations. As the

initial equation is nonlinear, a direct application of the FEM leads to the necessity

of solving high order nonlinear systems of algebraic equations. If the starting

equation is initially linearized, then the linearization error is near to the FEM

error. Thus, the accuracy of the solution method chosen for the corresponding

problem of mathematical physics should be compatible with the expected overall

accuracy.

2. Model of gas filtration in porous environment

The mass transfer in porous medium is exemplified here as gas and fluid

filtration, described by the following equation:
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In Equation (1) l = 2 for gas, and l = 1 for an incompressible fluid;

k= k(x,y,c,t), m=m(x,y,c) and h=h(x,y,c) are the coefficient of permeability,

porosity and thickness of the considered medium, respectively; µ is dynamic

viscosity of gas, pat pressure, q density, z the gas compressibility coefficient,

for calculation of which a significant number of empirical formulas based on

experimental data is used including:

z=
1

1+fp
(2)

where f =(24−0.21t◦C) ·104, and pressure p(x,y,c) is measured in atmospheres;
x, y, c are spatial Cartesian coordinates; t is the time. Gas is extracted from porous

medium through I wells located at points (x0i ,y
0
i ,c
0
i ), active during certain periods

of time t∈ [t1i,t2i], (i= 1,I). Therefore, the extraction density is determined by
the formula:

q=
1

V

I
∑

i=1

qi(x,y,c,t)δ(x−x0i t)δ(y−y0i )δ(c−c0i )
[

η(t− t1i)−(t− t2i)
]

(3)

Here qi is the extraction from the i-th well at the moment t, δ(x) is the delta-

function, η(t− tji) is the Heaviside unit-step function.
The main problem is to find the solution p(x,y,c,t) of Equation (1) for

known values of pressure p(xi,yi,ci,t0) at given points of the medium. The criteria

of the adequacy and reliability of the solution are: the pressure values in the

tq316l-e/230 14VIII2013 BOP s.c., http://www.bop.com.pl



Numerical Model of Mass Transfer in Porous Medium 231

metering and monitoring wells and the condition gas mass balance in the medium,

defined by the formula:

M =

∫

V

ρdv (4)

where integration iscarried out the storage volume V , M is the mass of gas in

storage, ρ density under pressure equation of state, p= ρzRT . Here R is the gas

constant and T is the gas temperature. Note that it is not the mass of gas in

the medium that is actually measured, but the mass changes ∆M at subsequent

instants of time:

∆M =

∫

V

∆ρdv=

∫

V

∆p

∆z∆R∆T
dv (5)

∆M values are thus determined by the calculated pressure drops.

3. Problem formulation

It is known from geological investigations that the gas and oil carrying layers

usually have an insignificant thickness (an order of several tens of meters) and

considerable sizes in horizontal directions (several square kilometers). In most

cases layers are almost horizontal. In the case of gas-carrying layers the gas

pressure difference between the top and bottom surfaces of a layer is insignificant.

Thus, at gas selection-pumping through vertical chinks, the layer can be vertically

averaged over pressure and thus considered as two-dimensional.

Let Ω ⊂ IR2 be a two-dimensional region occupied by a porous medium.
Within Ω, let a set of points (set of wells) with coordinates {xi,yi}, i= 1, .. . ,n,
and the pressures values of p(xi,yi,t0) at these points be given at time t0.

Denoting:

k̃x= kx/kc, k̃y = ky/kc (6)

the distribution of gas pressure p(x,y,t) in a layer in a non-stationary case is

described by the following nonlinear differential equation in partial derivatives:
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where ku is the layer permeability in the u direction αn is the gas saturation.

Parameters of Equation (7) depend on the spatial coordinates and time. The de-

pendences are unknown and it is necessary to build inverse problems for their de-

velopment. The solution of such problems involves considerable difficulties. How-

ever, in practice the changes of parameters are negligible and can be considered

constant in certain space-timeregions.

Equation (7) on the border Γ2 of the Ω region (Figure 1) satisfies the

Neumann boundary condition:

Φp(x,y)= 0, (x,y)∈Γ2 (8)

where

Φp
def
=
kh

µz

∂p

∂x
νx+

kh

µz

∂p

∂y
νy; νx=cos(ν,x), νy =cos(ν,y) (9)
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and the boundary condition at Ω∗:

p(xi,yi,t
j)= p1, (xi,yi)∈Ω∗ (10)

Here Γ2 is the external border of region Ω; Ω∗ is a subset of Ω including the

points with known values of pressure pji , j is the time index; ν is the external

vector normal to the region Ω⊂ IR2.

Figure 1. Exemplary triangulation of porous medium

Since there is no transport of gas across border Γ2, the pressure gradient

along the vector normal to the boundary vanishes and ∂p
∂n
= 0 should be taken

as a boundary condition. In order to find analytical solution to define the initial

distribution of the reservoir pressure. Taking the end of the neutral period as

a reference point, the initial pressure distribution can be assumed to be constant

and equal to the measured value, p0.

4. Iterative schemes for layer pressure calculation

Let us rewrite Equation (1) in the following form:
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(11)

It is known from experimental data that, when operating underground,

the change rate of the reservoir pressure in an underground gas storage is small.

Therefore, Equation (11) can be linearized as follows:
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1. Let p∗ be the pressure at the previous iterative step. Then Equation (11)

can be written in the form:
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From which it follows that:
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If p(j) is the j-th approximation of the solution, the iterative proce-

dure is defined as:
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Multiplying the above equation by kp∗
mµ
=κ1 one obtains:
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Denoting:

ψ(x,y,z)=−2kzpatq (17)

the linearized equation for the pressure distribution of gas or liquid in

complex porous medium becomes:
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2. Linearization of the left hand side of Equation (11) gives:
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On the right hand side of Equation (11) parameter z is factored out from

the derivative as a constant:
∂
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Thus, the linearized version of Equation (11) reads:
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We apply iteratively the finite element method combined with the

difference scheme of time discretization to construct a numerical model of
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non-stationary problems of gas filtration in a porous medium. During the

calculations the linearized version of Equation (11) is solved iteratively at

each time interval.

3. Another numerical-analytical scheme is as follows. Let us introduce the

notation p2= f in:
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Despite the fact that the parameters of the latter equation depend

also on the coordinates and on time, it follows from computational ex-

periments that the parameters can be equally appropriately considered as

variable, or averaged using iterative refinement. Let us consider the latter

option. In such event:
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Integrating the above in respect of time from t1 to t2 one obtains:
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Approximating the integral on the left hand side of the latter equality

with the trapezoid formula one obtains:

t2
∫

t1

fdt=
t2− t1
2

[

f(x,y1,y2,t2)+f(x,y1,y2,t1)
]
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2
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We can assume that the outflow density is a known function. In such

event the integral on the right hand side has a parametric representation:

t2
∫

t1

qdt= q1(x,y1,y2,t1,t2)≡ q1 (28)

It is known that the reservoir pressure changes only slighty in time.

Therefore, we can decompose the ϕ=
√
f function in a Taylor series time

variable t in the neighborhood of t= t1, taking only the first two terms:

ϕ=
√

f(x,y1,y2,t2)=
√

f(x,y1,y2,t1)+
f ′t(x,y1,y2,t1)

2
√

f(x,y1,y2,t1)
(t2− t1) (29)

from which it follows that:
√

f(x,y1,y2,t2)−
√

f(x,y1,y2,t1)=
f ′t(x,y1,y2,t1)

2
√

f(x,y1,y2,t1)
(t2− t1) (30)
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Thus, in order to determine the f function the following equation is

obtained:

t2− t1
2
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We can assume that the function f(x,y1,y2,t1) and its derivative are

known at the first step of the iteration procedure. At subsequent steps:

f ′t(x,y1,y2,t2)=
f(x,y1,y2,t2)−f(x,y1,y2,t1)

t2− t1
(33)

Then
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The iterative procedure of determining the unknown function f(x,y1,y2,t)

is based on the latter equation. If the value of t2−t1 in the latter formulas
coincides with ∆t in the method of finite elements, then the latter equation

is equivalent to:

∂2f
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=αnm

1√
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µ
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∂
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f
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kx
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where f∗ is the iterative approximate value of f .

5. Finite element method

The two-dimensional region Ω (Figure 1) is divided into elementary trian-

gular elements [5]. The domain triangulation is performed in such a way that the

coordinates of the known values of pressure (xi,yi) coincide with the coordinates

of the triangle vertices. (x̃i, ỹi) are the triangle vertices at which the pressure

values are to be found.

In general, the differential equation in partial derivatives of the second order

is written as:

−
2
∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

+gu= f, x∈Ω2⊂ IR2 (36)
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u(x1i,x2i,t
j)=uji , (x1i,x2i)∈Ω∗ (37)

Φu(x)= 0, x∈Γ2 (38)

where u is the unknown function and aij , g, f are functions continuous in

the domain. Finding a generalized solution of problem (36)–(38) consists in

minimization of the functional:

F (u)=

∫

Ω

2
∑

i,j=1

aij
∂u

dxi

du

dxj
dx+

∫

Ω

gu2dx−2
∫

Ω

fudx (39)

Approximate solution uh of the variational problem is sought in the form of

ue = Neqe, where Ne = (ϕi,ϕj ,ϕm) is the matrix of the basis functions; qe =

(ui,uj ,um)
T is the matrix of values of the sought solution at the vertices of

triangular elements. Superscript T means the transpose operation, and the index

e – an elementary triangle.

The basis functions for triangular elements are chosen as:

ϕi(x1,x2)=
1

2Se
(ai+bix1+cix2) (40)

where Se is the area of the triangle, and the coefficients ai, bi, ci are determined

by the coordinates of the triangle vortices.

From the variational formulation (39) we obtain a system of linear algebraic

equations:
∑

j

uj(Aϕi,ϕj)= (f,ϕj), i,j=1,. .. ,n (41)

The linearized differential Equations (18) and (22) are reduced to Equa-

tion (39) using an explicit scheme of discretization in time:

∂u

∂t
≈ ut−ut−1

∆t
(42)

where ∆t is the step of discretization in time, ut−1 is the value of the solution

received at the previous time step. The above described FEM scheme is used

iteratively for linearized equations at each time step.

6. Calculation

The proposed scheme was tested in the numerical experiment performed on

a porous medium of an area of S=16Mm2, with the following initial parameters:

µ= 0.000011Pa·s, h= 18.2m, R = 506.7J/kg·K, T = 293K, z = 0.87, m= 0.31,
k=1.8 ·10−12m2. The input information was provided by the values of pressure
in control, measurement and operating wells in the neutral period. The reservoir

pressure distribution was determined over a period of gas extraction (six months).

Tables 1 and 2 show the calculated values of the average reservoir pres-

sure (Ppl) for various times (t). In the left column of the table ‘No.’ corresponds

to the number of the linearization method (see Section 4) used in the computa-

tional scheme, ∆Pi is the difference between the measured values, Pz, and the

corresponding calculated values.
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Table 1. Values of average reservoir pressure Ppl t days after beginning of gas extraction

from storage, ∆t=1 day

Ppl (atm)
Method

t=0 t=30 t=60 t=90 t=120 t=150 t=180

No. 1 51.54 47.78 43.99 38.57 33.74 29.31 28.99

No. 2 51.54 47.90 44.05 39.16 33.98 29.64 29.28

No. 3 51.54 47.37 43.58 38.26 34.18 29.86 29.69

∆P1 0.02 −0.59 −0.86 −0.29 0.39 0.47 0.59

∆P2 0.02 −0.71 −0.92 −0.88 0.15 0.14 0.3

∆P3 0.02 −0.38 −0.45 0.02 −0.05 −0.08 −0.11
Pz (atm) 51.56 47.19 43.13 38.28 34.13 29.78 29.58

Table 2. Values of average reservoir pressure Ppl t days after beginning of gas extraction

from storage, ∆t=0.5 day

Ppl (atm)
Method

t=0 t=30 t=60 t=90 t=120 t=150 t=180

No. 1 51.54 47.76 43.96 38.55 33.71 29.31 29.01

No. 2 51.54 47.94 44.09 39.19 34.12 29.72 29.31

No. 3 51.54 47.38 43.51 38.39 34.2 29.88 29.70

∆P1 0.02 −0.57 −0.83 −0.27 0.42 0.47 0.57

∆P1 0.02 −0.75 −0.96 −0.91 0.01 0.06 0.27

∆P1 0.02 −0.19 −0.38 −0.11 −0.07 −0.1 −0.12
Pz (atm) 51.56 47.19 43.13 38.28 34.13 29.78 29.58

7. Conclusions

We can conclude from the analysis of the calculated values of the average

reservoir pressure that the smallest deviation of the numerical results from the

measured values is received using the third linearization method. Comparing the

values in the tables, no improvement of the results for methods 1 and 2 by

reduction of the time step was obtained. The numerical experiments performed

for a real object and the measured input data show the high efficiency of the

approaches offered in the article in numerical modeling of mass transport through

a porous medium of a complex structure.
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