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Abstract: The photonic response exhibited by typical semiconductor nanodevices is modeled

through a notionally universal descriptor by virtue of the Green’s function associated with

the generic complete, inhomogeneous differential equation. It is derived that the photoresponse

evolution is expressible as the sum of saturation-limiting linear nanophotonic behavior and

a linear superposition of eigenfunctions of the respective homogeneous Fredholm integral

equation.
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1. Introduction

The motivation for this study derives from the experience of systematical

investigating of the photonic response of semiconductor diodic nanodevices for two

decades already [1]: Their (persistent) conductivity enhancement behavior under

evolving cumulative photonic intake proves [2–4] crucial for their technological

applicability such as, inter alia, swift optoelectronic switches, exact photon

counters and reliable telecommunication transducers.

Both prediction and interpretation of their functionality through codifica-

tion of a notionally universal descriptor commensurate with their experimentally

monitored nanophotonic fundamental parameters as well as their asymptotic pho-

toenhancement steady state seem worth attempting.

A typical nanophotonic response concerns the evolution of the nanodevice

persistent photocarrier sheet density η against the instantaneous cumulative

photon dose β absorbed. This paper follows the procedure up to the occurrence

of the negative differential mobility feature linked to the onset of the occupancy

of the nanoheterojunction first excited conduction subband.
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2. Nanophotonic response modeling

In previous studies of ours, an approximate analogy between the photonic

dose β rate of change (dη/dβ) of the persistent photocarrier sheet density η

and the average conductivity carrier mobility µ [1] has been traced allowing the

expression of the second photonic dose derivative η′′ββ = (d
2η/dβ2) of the surface

concentration η as a nanodevice-specific multiple of the photonic dose rate of

change µ′β =(dµ/dβ) of carrier mobility µ:

η′′ββ+Mµ′β =0, M < 0 (1)

Equation (1) already incorporates the experimentally monitored limiting

linearity of η(β) for approaching the saturation of the nanophotonic device

fundamental conduction subband, signaled by the instantaneous vanishing of µ′β .

The physically meaningful boundary conditions reflect that the photoin-

duced electron surface concentration scans the scale from its naught dark-value

to the capacity η0 of the eventually (at critical total photonic dose β0) saturated

fundamental subband:

η(0)= 0 and η(β0)= η0 (2)

Mathematically, the solution of Equation (1) under the inhomogeneous

boundary conditions (2) is formulated as the superposition of function χ(β)

satisfying the respective homogeneous differential equation:

χ′′ββ =0 (3)

subject to the inhomogeneous terminal conditions:

χ(0)= 0 and χ(β0)= η0 (4)

and function ψ(β) verifying the complete, inhomogeneous differential equation:

ψ′′ββ+Mµ′β =0 (5)

under the associated homogeneous terminal conditions:

ψ(0)= 0 and ψ(β0)= 0 (6)

Obviously, the particular solution of Equation (3) consistent with the

requirement (4) is:

χ(β)= η0(β/β0) (7)

On the other hand, for complete Equation (5) holding under conditions (6)

the respective Green’s function g(β,γ) may be employed which for a reference

cumulative photonic dose γ reads:

g(β,γ)=−B(β)Γ(γ)/w[B,Γ]γ for β <γ (8)

g(β,γ)=−B(γ)Γ(β)/w[B,Γ]γ for β >γ (9)
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with B(β) being the solution of the homogeneous equation:

B′′ββ =0 (10)

under the condition

B(0)= 0 (11)

Γ(γ) being the solution of the homogeneous equation:

Γ′′ββ =0 (12)

under the condition

Γ(β0)= 0 (13)

and w[B,Γ]γ being the Wronskian determinant of functions B and Γ evaluated at

the reference instantaneous cumulative photonic dose γ.

Thus, the Green’s function takes the form:

g(β,γ)= (β0−γ)β/β0 for β <γ (14)

g(β,γ)= (β0−β)γ/β0 for β >γ (15)

Upon the above, the solution of Equation (5) consistent with conditions (6)

is derivable as the convolution between the Green’s function g and the stimulus

Mµ′β :

ψ(β)= 0[g(β,γ)∗Mµ′β(γ)]
β
0

(16)

3. Nanophotonic response descriptor

In the light of the fact that the modeling scheme Green’s function is

nanodevice-specific as parameterized by the characteristic total photonic dose β0
tantamount with the saturation of the capacity η0 of its fundamental conduction

subband, it appears meaningful to adopt g(β,γ) as a potentially notionally

universal nanophotonic response descriptor (NRD).

Owing to the symmetry of the NRD with respect to interchanging its two

arguments β and γ, ψ(β) being generated by the convolution between the continu-

ous, real-valued, symmetric, double argument function g(β,γ) and the continuous,

real-valued, single argument function Mµ′β(β), determined by the nanophotonic

nature of the experimental device and its measured µ′β(β) photoresponse, can be

represented [5] by a linear combination (through a series κν of pertaining weight-

ing coefficients) of the eigenfunctions ψν(β) of the homogeneous Fredholm integral

equation having the particular double argument function g(β,γ) as its kernel:

ψ(β)=Σν{κνψν(β)} (17)

with ψν(β) being the ν-th order eigenfunction of the homogeneous Fredholm

(convolution) integral equation:

ψν(β)=αν 0[g(β,γ)∗ψν(γ)]
β
0

(18)

with αν denoting the respective ν-th order real eigenvalue (fulfilling the property

that a pair of mutually orthogonal eigenfunctions) and the NRD embodying the

Fredholm kernel correspond to each pair of distinct eigenvalues.
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Therefore, ψ(β) is derived through Equation (17) as the resultant of the or-

thogonal component eigenfunctions ψν(β) as scaled by the appropriate real coeffi-

cients κν determined through the photoenhancement-associated stimulus function

Mµ′β(β) energizing the nanophotonic device under experimental monitoring.

4. Conclusions

Initiation of the herewith conceived and discussed NRD is expected to

be proving conducive to useful conclusions with respect to current and future

photonic investigations of (hetero)junction nanodevices:

Firstly, the availability of a notional scheme allowing consideration of the

instantaneous nanophotonic response of a semiconductor device as the functional

superposition of inherent limiting performance and a dynamic interplay of synergy

eigenfunctions permeated by measurable parameters of an individual nanodevice.

Secondly, the conceptual and computational isomorphism of the NRD in-

gredients (Fredholm eigenfunctions, superposition weighting factors) to the nan-

odevice energy band structure and majority carrier mobility photoenhancement

evolution idiosyncrasy.

Thirdly, the inspirational virtue of the introduced NRD to permit guidance

of Wavefunction-Engineering of the operation of future nanophotonic devices

which would be exhibiting pre-chosen (in accordance to pre-evaluation of the

NRD parameters) application-specific Figures of Merit (mean photonic dose rate

of reaching the nanodevice fundamental subband capacity).

In the present paper a notionally universal nanophotonic response descrip-

tor has been adopted in terms of the kernel of the Fredholm integral equation

providing the orthogonal spectrum attached to the limiting behavior for causally

picturing the complete nanophotonic response function of a typical semiconductor

heterojunction device.
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