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Abstract: Based on the relation between kinetic Boltzmann-like transport equations and non-

linear hyperbolic conservation laws, we derive kinetic-induced moment systems for the spatially

one-dimensional shallow water equations (the Saint-Venant equations). Using Chapman-Enskog-

like asymptotic expansion techniques in terms of the relaxation parameter of the kinetic equation,

the resulting moment systems are asymptotically closed without the need for an additional clo-

sure relation. Moreover, the new second order moment equation for the (asymptotically) third

order system may act as a monitoring function to detect shock and rarefaction waves, which we

confirm by a number of numerical experiments.
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1. Introduction

The Saint-Venant system (SVE) is the one-dimensional case of the shallow

water equations, that describe the dynamics of a fluid flow under a free surface,

e.g., open channels, rivers, coastal areas, etc. Its importance stems from the fact

that it is used for the prediction of tides in the ocean, floods on rivers, surges in

channels, tsunamis, among other types of phenomena corresponding to shallow

water flows.

On the other hand, analytical solutions of the system are, in general, not

available, since in reality droughts and topography changes take place and new
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64 D. C. Gil Montoya and J. Struckmeier

terms have to be included in the system. Hence, it has become more relevant to

use accurate numerical methods involving adaptive discretization techniques. The

construction of these methods becomes more efficient, if it is possible to know or

to detect in advance the location, where discontinuities in the solution will occur.

Using the relation between the SVE and kinetic transport equations it is

possible to compute a hierarchy of kinetic-induced moment (relaxation) systems

with a relaxation parameter given by ε, such that, in the limit ε→ 0 the system will
tend to an equilibrium given by the inviscid SVE. Using asymptotic expansions

for the moments of the kinetic equation in terms of ε, we are able to derive

moment systems which are automatically closed without the need for an additional

closure relation. In particular, the second order moment W (x,t) will behave as

δ-function at discontinuities, which might be used as a monitoring function in the

construction of adaptive mesh refinement (AMR) models.

The paper is organized as follows: Chapter 2 contains a short review on

the Saint-Venant equations, subsequently, the definition of kinetic representations

is explained, which is the basis of our work. The application to the SVE and

the computation of a third order moment system (relaxation system) based

on a Chapman-Enskog-like expansion with its characteristic structure will be

presented in Chapter 3; it is shown that it works as a monitoring function to detect

discontinuities. Finally, a number of numerical experiments for both systems are

given in Chapter 4.

2. The Saint-Venant system

2.1. Preliminaries

The Saint-Venant Equations (SVE) are a nonlinear hyperbolic system of

partial differential equations, that describe the evolution of a height of water

h(t,x) and its horizontal velocity u(t,x), at a time t≥ 0 and at a point x ∈R.
The evolution is governed (in inviscid form) by the continuity and momentum

equations given by:

∂h

∂t
+
∂

∂x
(hu)= 0 (1)

∂

∂t
(hu)+

∂

∂x

(
hu2+

g

2
h2
)
=0 (2)

where g stands for the gravitational acceleration and hu for the flow discharge.

For details on the derivation of the inviscid1 SVE see Leveque [1] and Stoker [2].

The previous system can be written in quasilinear form as:
(
h

hu

)

t

+M(h,u)

(
h

hu

)

x

=

(
0

0

)
(3)

where the matrix M(h,u) is the Jacobian of the flux matrix, and is given by:

M(h,u)=

(
0 1

−u2+gh 2u

)
(4)

1. zero viscosity
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Kinetic-Induced Moment Systems for the Saint-Venant Equations 65

with eigenvalues λ1,2 = u(x,t)∓
√
gh(x,t), which are distinct and real as long as

h > 0, therefore, the system is considered strictly hyperbolic. As we can see, if

h=0 (vanishing water height), the system is not strictly hyperbolic anymore. In

our case we will have two characteristic curves and two waves corresponding to

a shock or a rarefaction wave, these curves are determined by the eigenvalues of

the Jacobian of the flux matrix M(h,u).

The corresponding eigenvectors are given by:

r1=

(
1

u−
√
g
h

)
(5)

r2=

(
1

u+
√
g
h

)
(6)

The SVE are completed by the entropy function E(h,u), corresponding to

the total energy of the system, with q= [h,hu]T :

E(h,u)=
1

2
hu2

︸ ︷︷ ︸
kinetic energy

+
g

2
h2

︸︷︷︸
potential energy

(7)

This is an obvious choice since an entropy function should be a conserved

quantity, in this case the energy, whenever the unknown q(x,t) is smooth, but

which has a source or a sink at discontinuities. In our case, the energy will decrease

in an admissible shock but will increase across an expansion shock.

Consequently, we can also define an entropy flux together with the entropy

inequality, which, for weak solutions, reads:

∂E

∂t
+
∂

∂x

[
u(E+

g

2
h2)
]
≤ 0 (8)

and becomes an equality if the solution q = [h,hu]T is smooth. This condition

will be useful to guarantee the convergence to the physically correct solution in

the numerical experiments. For more details on the properties and definition of

entropy functions see Leveque [1].

2.2. Kinetic Representation

The Kinetic Formulation as defined by Lions [3], is an equivalent formu-

lation of a conservation laws system based on an appropriate transport equation

such that:

• it contains a full family of entropy inequalities,
• it involves an additional variable ξ, termed kinetic or microscopic velocity,
• its ξ-moments recover the original equations and their entropy conditions.

A weaker version of this is the so-called Kinetic Representation, since it

uses only the single entropy coming from the total energy (the motivation for this
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66 D. C. Gil Montoya and J. Struckmeier

can be seen in [4], section 1.7), and it is an equivalent system to the SVE (1) and

(2). It is based on the condition:



h
hu

hu2+ g2h
2


=
∫

R



1
ξ
ξ2


M(h,ξ−u)dξ (9)

termed the representation formula, which is valid under the following conditions.

Consider the function χ(ω) on R, together with the properties:

χ(ω)=χ(−ω)≥ 0 (even non-negative function) (10)
∫

R

χ(ω)dω=1 and

∫

R

ω2χ(ω)dω=κ (11)

and define M(h,ξ−u), the density of particles as:

M(h,ξ−u)=
√
hχ(
ξ−u√
h
) (12)

The proof of the representation formula is just a simple computation of the

right hand side of (9). Now, we can check by making integrations w.r.t. ξ against

weights 1 and ξ, and using the values in (9) that Q(t,x,ξ), which is a collision

term defined as:

∂

∂t
M(h,ξ−u)+ξ ∂

∂x
M(h,ξ−u) :=Q(t,x,ξ) (13)

satisfies the conservation relations:∫

R

Qdξ=0 and

∫

R

ξQdξ=0 (14)

It is possible to consider (13) as the limit when ε→ 0 of a Boltzmann-type
equation with a Bhatnagar-Gross-Krook (BGK) relaxation term:

∂

∂t
f(t,x,ξ)+ξ

∂

∂x
f(t,x,ξ)=

1

ε
[M(h,ξ−u)−f(t,x,ξ)] (15)

h(t,x)=

∫

R

f(t,x,ξ)dξ (16)

hu(t,x)=

∫

R

ξf(t,x,ξ)dξ (17)

where

Q= lim
ε→0

1

ε
[M(h,ξ−u)−f(t,x,ξ)] (18)

As mentioned in Perthame [4], the rigorous proof of this consideration is

still an open problem.

3. Kinetic induced Moment System

3.1. Moment System from the Kinetic Model

Until now, all of the previous theory is well-known and it is going to form

the basis of our work. Now, we want to derive a new system based on the SVE with
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Kinetic-Induced Moment Systems for the Saint-Venant Equations 67

the use of the kinetic representation explained in Section 2.2, which will provide

useful information for numerical treatments and the general kinetic theory.

3.1.1. Boltzmann-type equation and BGK relaxation model

The Boltzmann equation describes the statistical distribution of the density

of particles f which is formed by the effects of the free advection of particles (left

hand side), and the collisions between them which involve the exchange of energy

and momentum (right hand side). One of the methods for expressing the collision

term in a simpler way (and the method used here) is the Bhatnagar-Gross-Krook

(BGK) model, whereM(ρ,ξ−u) is termed an equilibrium function, f(t,x,ξ) is the
density of particles, which at time t and position x moves with a velocity ξ, and

ε≪ 1 is the mean free path2:
∂

∂t
f(t,x,ξ)+ξ

∂

∂x
f(t,x,ξ)=

1

ε
[M(h,ξ−u)−f(t,x,ξ)] (19)

A more in-depth study on the Boltzmann equation and the BGK model can

be found in Struchtrup [5].

3.1.2. Moments of f(t,x,ξ)

The moments derived from the Boltzmann equation are an alternative de-

scription for f , since f is difficult to compute and contains a lot of information

that is not necessarily useful. The moments are weighted averages of the distri-

bution function, much more approachable than f itself, and form a complete set

of partial differential equations (see [5]); not all the moments must be considered,

only those that yield relevant information.

Consider the Equations (16) and (17), the zeroth and the first moments of

the function f(t,x,ξ) are already known to be:

W0=

∫

R

f(t,x,ξ)dξ=h(t,x) (20)

W1=

∫

R

ξf(t,x,ξ)dξ=hu(t,x) (21)

The subsequent moments are defined as:

Wk =

∫

R

ξk f(t,x,ξ)dξ for k=2,3,4,. . . (22)

3.1.3. Equilibrium function M(h,ξ−u)
A system is in equilibrium, if there are no changes taking place in time and

all the forces are balanced, i.e., it is in a homogeneous steady state. The first

three equilibrium values corresponding to the first three moments (k=0,1,2) of

M(h,ξ−u) are already given by the kinetic representation formula (9); starting

2. Average distance traveled by a particle between collisions
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68 D. C. Gil Montoya and J. Struckmeier

from this it is possible to find with a little bit of algebra the general formula for

any k:

Wk |E=
∫

R

ξkM(h,ξ−u)dξ = huk + k(k−1)
4
gh2uk−2 ∀k (23)

3.1.4. Moment System

Multiplying both sides of (19) by the weights 1, ξ and ξk, and integrating

over the microscopic velocity, we obtain themoment equations, which are infinitely

many relations equivalent to the SVE. As a result, additional unknown quantities

appear, and our aim is to find a finite number of moment equations that allow

us to obtain a closed system. Following multiplication and subsequent integration

we obtain:

∂h

∂t
+
∂

∂x
(hu)= 0 (24)

∂

∂t
(hu)+

∂

∂x
W2=0 (25)

∂

∂t
Wk+

∂

∂x
Wk+1=

1

ε
[huk +

k(k−1)
4
gh2uk−2−Wk] (26)

First order non-equilibrium system

Following the technique proposed by Gil Montoya, Struchtrup and Struck-

meier [6], we define the first order non-equilibrium values as the difference between

the scalar variables and their equilibrium values; they will be useful since they

vanish in equilibrium. These values are defined as:

W
(1)
k =Wk−Wk |E for k=2,3,4,. . . (27)

We can see thatW
(1)
0 =W

(1)
1 =0 andW

(1)
2 =W2−(hu2+ g2h2). The corresponding

first order non-equilibrium moment system is given by:

∂h

∂t
+
∂

∂x
(hu)= 0 (28)

∂

∂t
(hu)+

∂

∂x
W
(1)
2 +

∂

∂x
(hu2+

g

2
h2)= 0 (29)

∂

∂t
W
(1)
k +

∂

∂t
(huk+

k(k−1)
4
gh2uk−2)+

∂

∂x
W
(1)
k+1

+
∂

∂x
(huk+1+

k(k+1)

4
gh2uk−1)=−1

ε
W
(1)
k (30)

where the last equation holds for k=2,3,4,. . ..

The following step serves to eliminate the second time derivative in (30).

After some algebraic computations we arrive at:

∂

∂t
W
(1)
k +

∂

∂x
W
(1)
k+1+

k

4
gh2
∂

∂x
(uk−1)− k(k−1)(k−2)

4
g2h2uk−3

∂h

∂x

−kuk−3[u2+ (k−1)(k−2)
4

gh]
∂

∂x
W
(1)
2 =−

1

ε
W
(1)
k

(31)
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Expanding the moments in (31) according to the classical Chapman-Enskog

approach in the form:

W
(1)
k = εW

(1)
k,1 +ε

2W
(1)
k,2 for k=2,3,4, .. . (32)

and taking the first order terms we obtain:

W
(1)
2,1 =−

g

2
h2
∂u

∂x
(33)

W
(1)
k,1 =−

k

4
gh2
∂

∂x
(uk−1)+

k(k−1)(k−2)
4

g2h2uk−3
∂h

∂x
(34)

Equation (34) can be written as:

W
(1)
k,1 =

k(k−1)
2
uk−3[uW

(1)
2,1 +

(k−2)
2
g2h2
∂h

∂x
] (35)

Therefore, the zeroth order system yields the inviscid SVE:

∂h

∂t
+
∂

∂x
(hu)= 0 (36)

∂

∂t
(hu)+

∂

∂x

(
hu2+

g

2
h2
)
=0 (37)

and the first order system yields the viscous SVE:

∂h

∂t
+
∂

∂x
(hu)= 0 (38)

∂

∂t
(hu)+

∂

∂x

(
hu2+

g

2
h2
)
+
∂

∂x
W
(1)
2 =0 (39)

where W
(1)
2 = εW

(1)
2,1 =−ε g2h2 ∂u∂x is the diffusion term.

Now a third variable W
(1)
2 has appeared, but we only have two equations,

in order to have a closed system we need to find a third equation.

Second order non-equilibrium system

W
(2)
k =W

(1)
k −

k(k−1)
2
uk−3[uW

(1)
2 +

ε(k−2)
2
g2h2
∂h

∂x
] for k=3,4,5,. .. (40)

with W
(1)
k = εW

(1)
k,1 .

The corresponding second order non-equilibrium moment system is given

by:

∂h

∂t
+
∂

∂x
(hu)= 0 (41)

∂

∂t
(hu)+

∂

∂x
W
(1)
2 +

∂

∂x
(hu2+

g

2
h2)= 0 (42)

∂

∂t
W
(1)
2 +

∂

∂x
W
(1)
3 +

g

2
h2
∂u

∂x
−2u ∂
∂x
W
(1)
2 =−

1

ε
W
(1)
2 (43)

∂

∂t
W
(1)
2 +

∂

∂x
W
(2)
3 +

3ε

2
g2
∂

∂x

(
h2
∂h

∂x

)
+

(
g

2
h2+3W

(1)
2

)
∂u

∂x

+u
∂

∂x
W
(1)
2 =−

1

ε
W
(1)
2 (44)
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Equation (44) results from (31) following the substitution k=2 since W
(2)
k

holds only for k = 3,4,5, .. ., with W
(1)
3 replaced according to (40). The final

equation of the system is as follows:

∂

∂t
W
(2)
k +

k(k−1)
2

∂

∂t
(uk−2W

(1)
2 +

ε(k−2)
2
g2h2uk−3

∂h

∂x
)+
∂

∂x
W
(2)
k+1

+
k(k+1)

2

∂

∂x
(uk−1W

(1)
2 +

ε(k−1)
2
g2h2uk−2

∂h

∂x
)+
k

4
gh2
∂

∂x
(uk−1)

−k(k−1)(k−2)
4

g2h2uk−3
∂h

∂x
−kuk−3[u2+ (k−1)(k−2)

4
gh]
∂

∂x
W
(1)
2

=−1
ε
[W
(2)
k +

k(k−1)
2
uk−3(uW

(1)
2 +

ε(k−2)
2
g2h2
∂h

∂x
)]

(45)

which holds only for k=3,4,5, . ...

The following step serves to eliminate the second time derivative in (45).

After some algebraic computations we arrive at:

∂

∂t
W
(2)
k +

∂

∂x
W
(2)
k+1−

k(k−1)
2
uk−2

∂

∂x
W
(2)
3

−k(k−1)(k−2)
2h

uk−3
[(
∂

∂x
W
(1)
2 +gh

∂h

∂x

)(
ε(k−3)g

2

2
h2u−1

∂h

∂x
+W

(1)
2

)

+
g

2
h2
(
εgh2
∂2u

∂x2
+
∂

∂x
W
(1)
2

)]
=−1
ε
W
(2)
k

(46)

For convenience we want to indicate the variables that are already ex-

panded, and thus we write h= ĥ, u= û andW
(1)
2 = εŴ

(1)
2 . The system now reads:

∂ĥ

∂t
+
∂

∂x
(ĥû)= 0 (47)

∂

∂t
(ĥû)+ε

∂

∂x
Ŵ
(1)
2 +

∂

∂x
(ĥû2+

g

2
ĥ2)= 0 (48)

∂

∂t
εŴ
(1)
2 +

∂

∂x
W
(2)
3 +

3ε

2
g2
∂

∂x

(
ĥ2
∂ĥ

∂x

)
+

(
g

2
ĥ2+3εŴ

(1)
2

)
∂û

∂x

+ û
∂

∂x
εŴ
(1)
2 =−Ŵ

(1)
2 (49)

∂

∂t
W
(2)
k +

∂

∂x
W
(2)
k+1−

k(k−1)
2
ûk−2

∂

∂x
W
(2)
3

− k(k−1)(k−2)
2ĥ

ûk−3
[(
∂

∂x
εŴ
(1)
2 +gĥ

∂ĥ

∂x

)(
ε(k−3)g

2

2
ĥ2û−1

∂ĥ

∂x

+εŴ
(1)
2

)
+
g

2
ĥ2
(
εgĥ2
∂2û

∂x2
+
∂

∂x
εŴ
(1)
2

)]
=−1
ε
W
(2)
k (50)

Again, expanding the moments in (50) in the form:

W
(2)
k = ε

2W
(2)
k,2 +ε

3W
(2)
k,3 for k=3,4,5, . .. (51)

and taking the first order terms we obtain:

W
(2)
3,2 =

3

2
g

[
2Ŵ

(1)
2

∂ĥ

∂x
+ ĥ
∂

∂x
Ŵ
(1)
2 +gĥ

3 ∂
2û

∂x2

]
(52)
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W
(2)
k,2 =

k(k−1)(k−2)
4

gûk−3
[
2Ŵ

(1)
2

∂ĥ

∂x
+ ĥ
∂

∂x
Ŵ
(1)
2 +gĥ

3 ∂
2û

∂x2

+(k−3)g2ĥ2û−1
(
∂ĥ

∂x

)2]
(53)

Equation (53) can be written as:

W
(2)
k,2 =

k(k−1)(k−2)
4

ûk−3
[
2

3
W
(2)
3,2 +(k−3)g3ĥ2û−1

(
∂ĥ

∂x

)2]
(54)

Third order system

If we now defineW
(2)
3 = ε

2Ŵ
(2)
3 , since it is already expanded, we can obtain

a third order system using (47), (48) and (49):

∂ĥ

∂t
+
∂

∂x
(ĥû)= 0 (55)

∂

∂t
(ĥû)+ε

∂

∂x
Ŵ
(1)
2 +

∂

∂x
(ĥû2+

g

2
ĥ2)= 0 (56)

∂

∂t
Ŵ
(1)
2 +ε

∂

∂x
Ŵ
(2)
3 +

3

2
g2
∂

∂x

(
ĥ2
∂ĥ

∂x

)
+

(
g

2ε
ĥ2+3Ŵ

(1)
2

)
∂û

∂x
+

û
∂

∂x
Ŵ
(1)
2 =−

1

ε
Ŵ
(1)
2 (57)

with

Ŵ
(2)
3 =

3

2
g

[
2Ŵ

(1)
2

∂ĥ

∂x
+ ĥ
∂

∂x
Ŵ
(1)
2 +gĥ

3 ∂
2û

∂x2

]
(58)

3.2. Moment System of third order

For simplicity we re-write ĥ=h, û= u, Ŵ
(1)
2 =W and replace the value of

Ŵ
(2)
3 found in the previous section. In this way we shall arrive at a third order

closed system (showed below), which will be the focus of the present work:

∂h

∂t
+
∂

∂x
(hu)= 0 (59)

∂

∂t
(hu)+

∂

∂x
(hu2+

g

2
h2)+ε

∂W

∂x
=0 (60)

∂W

∂t
+

(
g

2ε
h2+3W

)
∂u

∂x
+u
∂W

∂x
=

−3
2
εg
∂

∂x

[
g

ε
h2
∂h

∂x
+2W

∂h

∂x
+h
∂W

∂x
+gh3

∂2u

∂x2

]
− 1
ε
W

(61)

Equation (61) can be written in balance form as:

∂

∂t
(εW +hu2+

g

2
h2)+

∂

∂x
(3εuW +hu3+

3g

2
uh2)=

−3g
2
ε2
∂

∂x

[
g

ε
h2
∂h

∂x
+2W

∂h

∂x
+h
∂W

∂x
+gh3

∂2u

∂x2

]
−W

(62)
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3.2.1. Inviscid system

The respective homogeneous-inviscid system for (59), (60) and (62) is:



h
hu

εW +hu2+ g2h
2



t

+M(h,u,W )




h
hu

εW +hu2+ g2h
2



x

=



0
0
0


 (63)

with the Jacobian of the flux matrix equal to

M(h,u,W )=




0 1 0

0 0 1

−3u(εW+hu
2+ g

2
h2)

h
+4u3 3

εW+hu2+ g
2
h2

h
−6u2 3u


 (64)

The system is strictly hyperbolic for h > 0, and the eigenvalues of

M(h,u,W ) are given by:

λ1=u−
√
3g

2
h+3ε

W

h
(65)

λ2=u (66)

λ3=u+

√
3g

2
h+3ε

W

h
(67)

Hence, we will have 3 characteristic curves and 3 waves, where infor-

mation can travel at the fluid velocity, or move as acoustic waves at speeds

c=∓
√
3g
2 h+3ε

W
h
. The 1-wave will move to the left, while the 3-wave will move to

the right; between these two waves the velocity is constant (um), and the 2-wave

will appear with velocity λ2=um.

Then the corresponding eigenvectors will read:

r1=




1

u−
√
3g
2 h+3ε

W
h

(u−
√
3g
2 h+3ε

W
h
)2


 (68)

r2=



1

u

u2


 (69)

r3=




1

u+
√
3g
2 h+3ε

W
h

(u+
√
3g
2 h+3ε

W
h
)2


 (70)

Shock and Rarefaction waves

The characteristic fields 1 and 3 are genuinely non-linear since ∇λp ·rp 6=0,
for p= 1,3; the 1-wave and 3-wave will deform into shock or rarefaction waves,

given that λ1 and λ3 vary along the integral curves of r1 and r3, respectively.

The behavior of both waves is similar to the one described in Chapter 2 for the

Saint-Venant System.
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For the system to have physical meaning, the weak solution must satisfy

the entropy condition (8).

Contact discontinuity

In contrast to fields 1 and 3, ∇λ2 · r2 = 0 and the second field is termed
a linearly degenerate field. Neither shock nor rarefaction waves can occur in the

2-characteristic field, instead contact discontinuities appear.

Contact discontinuities are linear discontinuities that propagate to the

characteristic speed (66) on each side, without distorting, given that λ2 = u is

constant along the integral curve of r2; the height will jump on the discontinuity

as will variables that depend on h(x,t). Characteristics will be parallel to the wave

in the x− t plane, rather than impinging on it.

3.2.2. Shock and rarefaction waves detector

In the formal limit ε→ 0, the system (59)–(61) reads:
∂h

∂t
+
∂

∂x
(hu)= 0 (71)

∂

∂t
(hu)+

∂

∂x
(hu2+

g

2
h2)= 0 (72)

W =−g
2
h2
∂u

∂x
(73)

Therefore, as ε goes to zero, and considering that h> 0, we have that if:

∂u

∂x
=0 W =0 (74)

∂u

∂x
< 0 W > 0 (75)

∂u

∂x
> 0 W < 0 (76)

Additionally, we could distinguish between shock and rarefaction waves,

since:
∂u

∂x
→−∞ W →∞ (shock wave)

∂u

∂x
→∞ W →−∞ (rarefaction wave)

As we saw in Section 2.1, the generic solution for the shallow water system

consists of two waves – depending on the initial data, each one will be either

a shock wave or a rarefaction wave.

In order to prove that our third order moment system (61) may act as an

indicator for the detection of shock and rarefaction waves, consider a discontinuity

located at s(t) with h(x,0)≡ h0 and
(
u(s(t−),t) =−u(s(t+),t)

)
, u(s(t−),t)> 0;

such that we have a two-shock Riemann solution. The speed of the shock waves

will be given by the Rankine-Hugoniot conditions.
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Hence, from (73) we can infer that for ε≪ 1 the solution ofW (x,t) tends to
a δ-function located at the point of the discontinuity s(t). Scaling the variable x

as:

η=
x−s(t)
ε

(77)

and introducing the scaled functions:

ĥ(η,t)=h(εη+s(t),t) (78)

û(η,t)=u(εη+s(t),t) (79)

Ŵ (η,t)= εW (εη+s(t),t) (80)

we turn the system (59)–(61) turn into:

ε
∂ĥ

∂t
+(û− ṡ(t))∂ĥ

∂η
+ ĥ
∂û

∂η
=0 (81)

ε
∂

∂t
(ĥû)+(û− ṡ(t)) ∂

∂η
(ĥû)+ ĥ

∂

∂η
(
1

2
u2+gĥ)+

∂Ŵ

∂η
=0 (82)

ε
∂Ŵ

∂t
+(û− ṡ(t))∂Ŵ

∂η
+

(
g

2
ĥ2+3Ŵ

)
∂û

∂η
=−3g
2

∂

∂η

[
gĥ2
∂ĥ

∂η
+

2Ŵ
∂ĥ

∂η
+ ĥ
∂Ŵ

∂η
+gĥ3

∂2û

∂η2

]
−Ŵ

(83)

Again, taking the formal limit ε→ 0, we obtain the leading order of (81)
and (82) as:

∂û

∂η
=(ṡ(t)− û) 1

ĥ

∂ĥ

∂η
(84)

∂Ŵ

∂η
=(ṡ(t)− û)ĥ∂û

∂η
−gĥ∂ĥ
∂η

(85)

Moreover, Equations (59) and (60) can be written as:

∂h

∂t
+
∂

∂x
(hu)= 0 (86)

∂

∂t
(hu)+

∂

∂x
(hu2+

g

2
h2)+

1

ε

∂Ŵ

∂η
=0 (87)

since ∂W
∂x
= 1
ε2
∂Ŵ
∂η
. Now, replacing (85) into (87), we obtain:

∂

∂t
(hu)+

∂

∂x
(hu2+

g

2
h2)+

1

ε
(ṡ(t)− û)ĥ∂û

∂η
−gĥ∂ĥ
∂η
=0 (88)

∂

∂t
(hu)+u

∂

∂x
(hu)+ ṡ(t)h

∂u

∂x
=0 (89)

u
∂h

∂t
+h
∂u

∂t
+u
∂

∂x
(hu)+ ṡ(t)h

∂u

∂x
=0 (90)
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And replacing ∂h
∂t
according to (86) leads to:

∂u

∂t
+ ṡ(t)

∂u

∂x
=0 (91)

This demonstrate that in the limit ε→ 0, the system (59)–(61), yields the
correct shock propagation.

4. Numerical example

We will use Godunov’s Method together with the Roe linearisation and

the Harten-Hyman Entropy Fix method (HHE) to get the numerical results from

both of our systems: the inviscid Saint-Venant Equations (1) and (2), and the third

order moment system (59), (60), (62). The finite volume method is implemented

inside the Clawpack software for conservation laws [7].

The computational domain is given by [−15,15] withM =500 cells in the x
direction, with an initial time step ∆t = 0.1; the time step would be updated

accordingly with the desired cfl condition cfl = 0.9 and the maximum value

permitted cfl max=1. The final time will be t final=3.

4.1. Approximate Riemann Solvers

Define a function Q̂i− 1
2

(x/t) that approximates the true similarity solution

of the Riemann problem with data Qi−1 and Qi. The obvious choice is to use an

approximation based on the solution of the linear problem, therefore, this function

will consist of a set of m waves W p
i− 1
2

propagating at some speed sp
i− 1
2

:

Qi−Qi−1=
m∑

p=1

W p
i− 1
2

(92)

Hence, we can use the waves and speed from the approximative solution to

define:

A−∆Qi− 1
2

=
m∑

p=1

(sp
i− 1
2

)−W p
i− 1
2

(93)

A+∆Qi− 1
2

=

m∑

p=1

(sp
i− 1
2

)+W p
i− 1
2

(94)

where the minus and plus sign in the speed represents the min(λ,0) and the

max(λ,0) respectively. We can subsequently use the fluctuations in the Godunov’s

method:

Qn+1i =Qni −
∆t

∆x

[
A+∆Qi− 1

2

+A−∆Qi+ 1
2

]
(95)

4.1.1. Linearised Riemann Solvers and the Roe Linearisation

Replace the non-linear problem by a linear one, in which at each cell

interface we get:
∂q̂

∂t
+Âi− 1

2

∂q̂

∂x
=0 (96)
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The matrix Âi− 1
2

:

• must be diagonalizable, with real eigenvalues,
• must satisfy Âi− 1

2

→ f ′(q) as Qi−1,Qi→ q, since the new matrix is an ap-
proximation of the original Jacobian matrix in a neighborhood of Qi−1,Qi.

Hence, the approximate Riemann solution consists of m waves proportional

to the eigenvectors r̂p
i− 1
2

of the matrix Âi− 1
2

, propagating with a speed equal to

the eigenvalues ŝp
i− 1
2

= λ̂i− 12
p
. Now, it is possible to solve the linear system:

Qi−Qi−1=
m∑

p=1

αp
i− 1
2

r̂p
i− 1
2

(97)

in order to obtain the values of αp
i− 1
2

and compute the waves W p
i− 1
2

=αp
i− 1
2

r̂p
i− 1
2

.

There are many choices for the linearised matrix, one of them and the one

studied in this thesis is the Roe Linearisation, which for the SVE problem will

be demonstrated to display certain desired properties.

In the case when the exact Riemann solution consists of a single shock,

the approximate solution should agree with the exact one. Therefore it must hold

that: “if Qi−1 and Qi are connected by a single wave W
p=Qi−Qi−1 in the exact

Riemann solution, thenW p should also be an eigenvector of Âi− 1
2

”. Consequently,

the Rankine-Hugoniot condition with ql=Qi−1 and qr =Qi must be satisfied by

both problems at the cell interface. Then:

f(Qi)−f(Qi−1)= ṡ(Qi−Qi−1)= Âi− 1
2

(Qi−Qi−1) (98)

since the single shock is an eigenvector of the linearised matrix. This property

will guarantee that (93) and (94) yield a conservative method, considering that

the following condition is satisfied:

[
A−∆Qi− 1

2

+A+∆Qi− 1
2

]
= f(Qi)−f(Qi−1) (99)

A way to obtain a suitable matrix Âi− 1
2

is to integrate the Jacobian matrix

over an appropriate path in state space3 between Qi−1 and Qi:

Âi− 1
2

=

∫ 1

0

f ′(q(ζ))dζ (100)

where q(ζ)=Qi−1+(Qi−Qi−1)ζ is a straight-line path parametrized for 0≤ ζ ≤ 1;
nevertheless, the previous integral is not always easy to calculate. We can

introduce a change of variable to facilitate this integration.

Assume that z(q) is an invertible mapping so we know q(z) as well and f

as a function of z. The integration path will become z(ζ) =Zi−1+(Zi−Zi−1)ζ,
where Zj = z(Qj) for j= i−1,i. We can now write:

3. Graph of each possible state (h,hu) for the SVE
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f(Qi)−f(Qi−1)=
∫ 1

0

df(z(ζ))

dζ
dζ =
[∫ 1

0

df(z(ζ))

dz
dζ
]
(Zi−Zi−1)=

Ĉi− 1
2

(Zi−Zi−1) (101)

Qi−Qi−1=
∫ 1

0

dq(z(ζ))

dζ
dζ =
[∫ 1

0

dq(z(ζ))

dz
dζ
]
(Zi−Zi−1)=

B̂i− 1
2

(Zi−Zi−1) (102)

replacing the left hand side of (101) by the right hand side of (98) and using (102)

we obtain our desired matrix Âi− 1
2

= Ĉi− 1
2

B̂−1
i− 1
2

.

4.1.2. The Harten-Hyman Entropy Fix

In the case of transonic rarefaction waves (f ′(ql)< 0<f
′(qr)), the entropy

condition will be violated and the use of (93) and (94) would lead to a wrong

solution. Therefore, in the case where λp< 0 to the left of the wave while λp> 0

to the right of the wave, it is necessary to modify the fluctuations by performing

an entropy fix.

Define a transonic rarefaction in the kth wave as (λkl < 0<λ
k
r ), where λ

k
l,r

is the kth eigenvalue of the Jacobian matrix computed in the states qkl,r to right

and left:

qkl =Qi−1+
k−1∑

p=1

W p, qkr = q
k
l +W

k (103)

where W p=W p
i− 1
2

.

We want to replace the single wave W k with speed λ̂k by two waves;

W kl = βW
k propagating at speed λkl and W

k
r = (1−β)W k propagating at speed

λkr . In order to retain conservation, it must hold that λ
k
lW
k
l +λ

k
rW
k
r = λ̂

kW k, and

we can compute β as:

β=
λkr− λ̂k
λkr−λkl

(104)

A more practical way to adjust the fluctuations in (93) and (94) is to replace

the positive and negative parts of the speeds (ŝk = λ̂k) in the kth field by:

(λ̂k)−≡βλkl (105)

(λ̂k)+≡ (1−β)λkr (106)

which adds up to λ̂k and will be non-zero in the transonic case.

For details on the Finite Volume Method and the Roe Linearisation the

Reader is referred to Leveque [1].

4.2. Inviscid case of the SVE

The numerical results for this hyperbolic system are included in the shallow

water Clawpack package, here we use the same Roe Solver as used in Chapter 15

of [1].
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4.2.1. Riemann Solver

Roe Linearisation

Using z=h−
1

2 q as a parameter vector, we can define:[
z1

z2

]
=

[ √
h√
hu

]
(107)

then

q(z)=

[
(z1)2

z1z2

]
=⇒ ∂q
∂z
=

[
2z1 0
z2 z1

]
(108)

In a similar way we calculate:

f(z)=

[
z1z2

(z2)2+ 12g(z
1)4

]
=⇒ ∂f
∂z
=

[
z2 z1

2g(z1)3 2z2

]
(109)

obtaining

Âi− 1
2

=

[
0 1

−û2+gh 2û

]
(110)

where h is the arithmetic average and û is the Roe Average:

h=
1

2
(hi−1+hi) (111)

û=

√
hi−1ui−1+

√
hiui√

hi−1+
√
hi

(112)

The eigenvalues and the eigenvectors of the newly obtained matrix would

be given by:

λ̂1= û− ĉ λ̂2= û+ ĉ (113)

r̂1=

[
1
û− ĉ

]
r̂2=

[
1
û+ ĉ

]
(114)

with ĉ=
√
gh. Then:

Qi−Qi−1=
[
δ1

δ2

]
=α1

i− 1
2

r̂1+α2
i− 1
2

r̂2=W 1
i− 1
2

+W 2
i− 1
2

(115)

Inverting the matrix of right eigenvectors we can compute the α coefficients

by solving the linear system to the left, obtaining:

α1
i− 1
2

=
(û+ ĉ)δ1−δ2

2ĉ
(116)

α2
i− 1
2

=
−(û− ĉ)δ1+δ2

2ĉ
(117)

We now have all the information to compute the waves and to update the

fluctuations (93) and (94) in the Godunov’s Method using the eigenvalues as the

speeds:

sl= û− ĉ (118)

sr = û+ ĉ (119)

Sonic Entropy Fix

We want to identify the transonic rarefactions in order to modify the

fluctuations. Consider hr and ur – the values to the right of the discontinuity; and
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hl, ul – the values to the left. For simplicity we do not use subscripts to denote

the right and the left states, since later we must include the position on the grid

as a subscript.

• Check the 1-wave:
First we check the 1-wave (with velocity λ1) in the left state (i−1):

s0=uri−1−
√
g∗hri−1 (120)

If s0 and sl are greater than zero then there are no waves propagating to

the left and we have a fully supersonic case; otherwise, we must verify if

transonic waves occur. Define s1 as the speed corresponding to λ1 to the

right of the 1-wave:
[
hr1
hur1

]
=

[
hri−1

hri−1 ∗uri−1

]
+W 1

i− 1
2

(121)

s1=
hur1
hr1
−
√
g∗hr1 (122)

If s0< 0 and s1> 0, then there is a transonic rarefaction in the 1-wave and

the new speed will be given as in (105) and (106) by:

s−1 = s0
( s1−sl
s1−s0

) (123)

On the other hand, if this is not the case we have two possibilities; that

sl < 0 and the 1-wave is propagating to the left with s
−

1 = sl or if none of

the previous conditions hold, then the wave is propagating to the right.

• Check the 2-wave:
We now check the 2-wave corresponding to λ2 in the right state i:

s3=uli−
√
g∗hli (124)

Define s2 as the speed corresponding to λ2 to the left of the 2-wave:
[
hl2
hul2

]
=

[
hli
hli ∗uli

]
+W 2

i− 1
2

(125)

s2=
hul2
hl2
−
√
g∗hl2 (126)

If s2< 0 and s3> 0, then there is a transonic rarefaction in the 2-wave and

the new speed will be given as in (105) and (106) by:

s−2 = s2
(s3−sr
s3−s2

) (127)

On the other hand, if this is not the case, we have two possibilities; that

sr < 0 and the 2-wave is propagating to the left with s
−

2 = sr or, if none of

the previous conditions hold, then it is propagating to the right.
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In order to compute the fluctuations, we must define the total flux difference

which is td=
∑m
p=1s

p

i− 1
2

W p
i− 1
2

. Then, finally:

A−∆Qi− 1
2

= s−1W
1
i− 1
2

+s−2W
2
i− 1
2

(128)

A+∆Qi− 1
2

= td−A−∆Qi− 1
2

(129)

4.2.2. Initial and boundary conditions

For the boundary conditions Clawpack has already a number of options

that can be specified in the input file; in our case we will apply a non-reflecting

outflow using a zero-order extrapolation, in the following manner:

Qn0 =Q
n
1 Qn

−1=Q
n
1

QnM+1=Q
n
M QnM+2=Q

n
M

(130)

where the interior values are given by Qn1 ,. .. ,Q
n
M , and the boundaries are

represented by x1=−15 and xM+1=15. Since the solution will be comprised of
waves propagating to the right and left, this approach will allow a non-incoming

signal, avoiding spurious reflections in the left and right boundaries.

The computational domain is extended with two ghost cells at the end of

both boundaries, in order to have the neighboring points needed for the compu-

tation of the fluxes. Furthermore, these cells will be useful for the discretization

of the derivatives in the source term of the third order moment system. On the

other hand, the initial conditions are not included in the software, this data will

be supplied by us for each of the variables:

h(x,0)= tan−1(x)+7.5 ∀x (131)

u(x,0)= 0 ∀x (132)

4.3. Moment system of the third order

By analogy with the Euler equations from gas dynamics presented in

Chapter 15 of [1], it is possible to define in a similar way a Roe-solver for the

homogeneous system (63). Then, the inhomogeneous part, together with the

diffusion term, would be solved by applying a fractional-step method.

The same computational data as in the SVE is used, including results for

three different values of the relaxation term, ε=0.01, 0.1, 1.

4.3.1. Riemann Solver for the homogeneous system

Roe Linearisation

For the solution of the conservation law problem, we define

H =
3εW+hu2+ 3g

2
h2

h
and the parameter vector as:



z1

z2

z3


=




√
h√
hu√
hH


 (133)
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Then:

q(z)=




(z1)2

z1z2

1
3z
1z3+ 23 (z

2)2


=⇒ ∂q

∂z
=



2z1 0 0

z2 z1 0
1
3z
3 4
3z
2 1
3z
1


 (134)

In a similar way we calculate:

f(z)=




z1z2

1
3z
1z3+ 23 (z

2)2

z2z3


=⇒ ∂f

∂z
=



z2 z1 0
1
3z
3 4
3z
2 1
3z
1

0 z3 z2


 (135)

obtaining

Âi− 1
2

=




0 1 0

0 0 1

−ûĤ+2û3 Ĥ−4û2 3û


 (136)

where û and Ĥ are the Roe Averages:

û=

√
hi−1ui−1+

√
hiui√

hi−1+
√
hi

(137)

Ĥ =

√
hi−1Hi−1+

√
hiHi√

hi−1+
√
hi

(138)

and Hi=
3εWi+hiu

2

i+
3g

2
h2i

hi
. The eigenvalues and the eigenvectors are given by:

λ̂1= û− ĉ λ̂2= û λ̂3= û+ ĉ (139)

r̂1=



1

û− ĉ
(û− ĉ)2


 r̂2=



1

û

(û)2


 r̂3=



1

û+ ĉ

(û+ ĉ)2


 (140)

with ĉ=
√
Ĥ− û2. Then:

Qi−Qi−1=



δ1

δ2

δ3


=α1

i− 1
2

r̂1+α2
i− 1
2

r̂2+α3
i− 1
2

r̂3=W 1
i− 1
2

+W 2
i− 1
2

+W 3
i− 1
2

(141)

Inverting the matrix of right eigenvectors we can compute the α coefficients

by solving the linear system, to obtain:

α1
i− 1
2

=
1

2ĉ2
((û2+ ĉû)δ1−(ĉ+2û)δ2+δ3) (142)

α2
i− 1
2

=
1

ĉ2
((ĉ2− û2)δ1+2ûδ2−δ3) (143)

α3
i− 1
2

=
1

2ĉ2
((û2− ĉû)δ1+(ĉ−2û)δ2+δ3) (144)

We now have all the information to update the fluctuations (93) and (94)

using the eigenvalues as the speeds.
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Sonic Entropy Fix

The procedure to detect transonic rarefactions is very similar to the one

described in the SVE case, with the difference that in this case we have to use the

structure of the new eigenvalues for the computation of the speeds.

Also, now the system has three waves, therefore we must also check the

middle one, whose speed is given by the velocity u, if it is less than zero then it

will be propagating to the right, otherwise it will be propagating to the left; in

this case a transonic wave will not occur.

4.3.2. Fractional-Step Method for the balance law system

In the case of Balance law equations4, instead of solving the entire system,

an easier approach is to use fractional-step methods. Consider the following

system:
∂q

∂t
+
∂

∂x
f(q)= γ(q,qx,qxx,. . .) (145)

The idea is to split the complete system into two sub-problems that can be

solved separately. The first problem will consist in the homogeneous conservation

law system, which can be solved by using a finite volume method with a time

step ∆t, later this solution will be used as initial condition in the discretization of

the second problem, which will change accordingly with the nature of the source

term. Therefore, the solution of the previous system will be equivalent to solving:

∂q

∂t
+
∂

∂x
f(q)= 0 (146)

∂q

∂t
= γ(q,qx,qxx, .. .) (147)

Using the numerical solution of (63) as initial condition, we can now solve

the second problem resulting from the splitting of (59), (60), (62) accordingly

with (146) and (147), which is given by:



h

hu

εW +hu2+ g2h
2




t

=




0

0

− 3g2 ε2 ∂∂x
[
g
ε
h2 ∂h
∂x
+2W ∂h

∂x
+h∂W

∂x
+gh3 ∂

2u
∂x2

]
−W




(148)

The previous system can be written in an equivalent form as:



q1

q2

q3




t

=




0

0

−3gε ∂
∂x

[
∂q1
∂x

[
q3− (q2)

2

q1

]
+ q12

∂
∂x

[
q3− (q2)

2

q1
− g2 (q1)2

]
+

g
2ε(q1)

3 ∂2

∂x2

[
q2
q1

]]
− 1
ε

[
q3− (q2)

2

q1
− g2 (q1)2

]




(149)

4. A conservation law system with source terms
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For the discretization of this system we will use an explicit method with

a forward difference for the time derivative at tn and central finite differences for

the space derivatives at position xi:

Qn+1i =Qi∗+∆t(γ(Qi∗)) (150)

∂q

∂x
=
Qi+1−Qi−1
2∆x

(151)

∂2q

∂x2
=
Qi+1−2Qi+Qi−1

(∆x)2
(152)

∂3q

∂x3
=
Qi+2−2Qi+1+2Qi−1−Qi−2

2(∆x)3
(153)

where Qi∗ is the solution of the homogeneous system at each time step. The ghost

cells defined previously are used here for the computations at the boundaries.

4.3.3. Initial and Boundary Conditions

For the boundary condition, we will use again a non-reflecting outflow;

as for the initial conditions, they will be the same as in the SVE regarding the

variables h and u, together with W (x,0)= 0 ∀x.

4.4. Results

Now we can compare the numerical solutions for both systems and demon-

strate that in practice W (x,t) will work as a singularity detector, also that the

solutions for the height and velocity from the moment system of the third order

will tend to the ones in the original SVE. The solutions are shown at times t=0,

1.875, 3 and ε=0.01, 0.1, 1 (see Figures 1–5). For the initial time, only the results

of the first ε are presented, since they are equal for the others. The blue graphics

correspond to the SVE and the red ones to the third order system.

As we could see in Figure 1, the initial condition for the height of the water

h(x,t) simulates the dam-break problem, which considers a wall separating the

two different levels of water with zero velocity.

As time starts running, the wall is removed and water starts moving to the

left side of the x−axis originating two different types of waves. The front wave
will steepen into a shock wave and the back wave will spread-out as a rarefaction

wave.

The formation of both waves can be observed in the Saint-Venant Equations

as well as in the third order moment system, proving – as we were expecting –

that not only the solutions of the last system will approximate the original SVE,

but also that as we decrease the value of ε the approximation will improve. On the

other hand, the functionW (x,t) indeed behaves as a δ-function at discontinuities,

going to∞ at the point of the shock wave, to zero in the regions where the velocity
is constant and to −∞ in the region of the rarefaction wave. Also, we should
notice that the position of the singularities is not approximated exactly, this can

cause some problems for example when using the third order moment system to

construct adaptive discretization techniques.
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Figure 1. Initial conditions (t=0) for the SVE (blue) and the third order moment

system (red)

In order to measure the differences at a fixed time, between the numerical

solutions of h(x,t) and u(x,t) in both systems, we will use the discrete l1-norm

since for conservation laws the integral of the conserved quantities is of great

relevance (as seen in previous chapters); and the l∞-norm which helps us to prove

point-wise convergence. We will use Qnm to denote the solutions of the third order

moment system and qnm for their counterparts obtained from the SVE:

ln1 =
1

M+1

M∑

m=0

|Qnm−qnm | (154)

ln
∞
= max
m=0,...,M

|Qnm−qnm | (155)
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Figure 2. Numerical results at t=1.875 for the SVE (blue) and the third order moment

system (red) with ε=0.01

In Table 1 the results for t= 0.75, 1.875, 3 and ε= 0.01 are shown, while

Table 2 shows the values where the l∞-norm is achieved. The errors are calculated

only for the smallest value of ε since, as was clear from the figures, as we increase

the relaxation term, the differences between the SVE results and the third order

moment system will increase. Capital letters are used for the results from the

third order moment system and lower case letters for the ones from the SVE.

The previous results allow us to see that as time advances, the lp errors

are increasing, and at each time step the l∞-norm is achieved in the positions

where the discontinuities are formed; these large differences are in part due

to the fact that we are not in the formal limit of ε and shifts in the exact
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Figure 3. Numerical results for the third order moment system at t=1.875

with ε=0.1 (top) and ε=1 (bottom)
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Table 1. lp errors between solutions of h(x,t) and u(x,t) for ε=0.01

h(x,t) u(x,t)

t ln1 ln
∞

ln1 ln
∞

0.75 0.0242 0.2404 0.0126 0.1088
1.87 0.0762 0.7402 0.0315 0.2937
3 0.1283 1.0321 0.0499 0.4041

Table 2. Positions and values where the l∞-norm is achieved for ε=0.01

t x∞ H∞ h∞ U∞ u∞

0.75 −1.98 6.66 6.90 −0.1720 -0.281
1.87 −4.74 6.36 7.10 −0.1200 -0.414
3 −7.56 6.19 7.22 −0.0719 -0.476

Figure 4. Numerical results at t=3 for the SVE (blue) and the third order moment

system (red) with ε=0.01
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Figure 5. Numerical results for the third order moment system at t=3 with ε=0.1 (top)

and ε=1 (bottom)
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location of the singularities will occur, becoming larger in time; another important

reason for these differences comes from the use of an explicit scheme for the

discretization of the source term which might not be the best approximation for

the problem.

Nevertheless, in a general outlook the results obtained are very promising,

and for ε≪ 1 the third order system represents a fine approximation for the
Saint-Venant equations until now, as we can see with the l1-norm. However,

considerations in the approximation of the source term should be made together

with a deeper study on the convergence of the third order moment to the SVE.

5. Conclusions and future work

Starting from a Boltzmann-like kinetic transport equation with a BGK

relaxation term and using the moments of the density of particles f(x,t,ξ), it

was possible to reconstruct a relaxation model, such that, in the limit of ε→ 0,
the density of particles will tend to an equilibrium function. This equilibrium

function can be constructed, with the help of the kinetic representation, to give

first three moment equations that will form an equivalent system to the Saint-

Venant Equations.

As ε→ 0, the system approaches the SVE together with a higher order
moment W (x,t), that may act as a shock and rarefaction waves detector, given

that at discontinuities it behaves like a δ-function.

On the other hand, the numerical results allow us to see that the theoretical

predictions are confirmed, given that as ε is decreased, the solutions of h(x,t),

u(x,t) and W (x,t) are become closer to the equilibrium values. Nonetheless, the

numerical errors show us that the convergence of the third order moment system

to the SVE has to be improved, since large differences arise in the positions of the

singularities. Hence, a more elaborated discretization for the source term should be

implemented, for example using implicit schemes instead of an explicit one. Also,

a deeper study of the system under different initial conditions using the Riemann

invariants can give us more information on the behaviour of the solution.

Until now, we have achieved very good results for the one-dimensional

case of the Saint-Venant Equations; moreover, we have built the basis for the

construction of an adaptive discretization method that will allows to improve the

time of the computations and the accuracy of the solutions. Along with this,

considerations on the change of topography and dry states (h(x,t) = 0) can be

made together with the two-dimensional case.
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