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Abstract: This paper presents physical interpretations of the first and second invariants

of tensors of fluid mechanics. Some examples of elementary applications and meanings are

also given.
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Notation

D – strain rate tensor

DD – deviatoric part of strain rate tensor

D∗ – normalised strain rate tensor

e – internal energy

E , E∗ – enstrophy
k – kinetic energy of velocity fluctuations

Nd – dissipation power

p, pe – hydrodynamic, effective pressure

R – Reynolds stress tensor

T – temperature

T – tensor
~U – velocity vector

V – volume

~w – vector

W – vorticity measure

γ – strain rate

δ – Kronecker delta

ǫ, ǫ∗ – specific enstrophy

ε∗ – dissipation of kinetic energy fluctuation

λ – heat conductivity

µ, µe, µt, µv – dynamic, effective, eddy (turbulent), bulk viscosity

ν – kinematic viscosity
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224 K. Tesch

ρ – density

σ – stress tensor

τxy – shear stress

φv – dissipation function related to bulk viscosity

φµ – dissipation function
~Ω – vorticity vector

Ω – spin tensor

〈·〉 – average
‖·‖ – norm
∂~U
∂~r – transposed velocity gradient tensor

∇~U – velocity gradient tensor

1. Introduction

The classical fluid mechanics provides physical interpretations to the first

tensor invariants only. It is difficult to find information about the physical meaning

of successive invariants. For instance in [1] one can find the following note about

the second and third invariant of strain rate tensor: ‘The remaining two invariants

are given by. . ., but they do not have clear physical interpretations.’

Invariants of velocity gradient tensors are often used in turbulence mod-

elling [2]. This is because they contain all the necessary information involving the

rates of rotation, stretching, and angular deformation, those being responsible for

kinetic energy dissipation and vortex stretching.

Invariants of the strain rate tensor are commonly used to model the

behaviour of non-Newtonian fluids [3]. This concerns the rate type fluid and

generalised Newtonian fluids in particular [4].

In this paper the physical interpretations of second invariants of the basic

fluid mechanics tensors are given. Additionally, discussion about third invariants

of certain tensors is included.

First invariants are connected with such hydrodynamic concepts as velocity

divergence or hydrodynamic pressure. Physical interpretation of second invariants

requires additional concepts connected with thermodynamics. The fundamental

idea that is a key concept in the case of second invariants is the dissipation function

φµ. It appears in the internal energy e equation

ρ
de

dt
=φµ+λ∇2T −p∇· ~U (1)

The above equation is known as the Fourier-Kirchhoff equation in heat transfer

problems. Density is denoted here as ρ, pressure as p and temperature as T . The

dissipation function φµ in the most general case, involving bulk viscosity µv, may

be calculated from the equation

φµ=µv(∇· ~U)2+2µDD2≥ 0 (2)

The dissipation function is of an invariant nature as a consequence of the fact that

it is related to the second invariant of the strain rate tensor D or its deviatoric

part DD =D−3−1δ trD. This relation is given by means of Equation (4). The
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dissipation function appears also in equations describing the second invariant of

the stress tensor σ, being a linear function of the strain rate tensor (in agreement

with Newton’s hypothesis)

σ=−pδ+2µDD (3)

One should pay attention to the symbol D2. It has two meanings. It may either

represent the dot product of two tensors D ·D (giving a tensor as a result) or
the double dot product D :D (giving scalar). The ambiguity may be decided by

means of an equation rank. For instance DD2 in Equation (2) means DD :DD

because it is a scalar equation.

2. Invariants

We shall consider invariants of tensor T in the form of traces trT , trT 2,

trT 3, where T 2 ≡T ·T and T 3 ≡T ·T ·T . These are all invariants of symmetric
tensors. It is also convenient to utilise the definition of tensor norm ‖T ‖2 :=T :T ,
as described in Section 3.4.

2.1. Kronecker delta

It is hard to call the Kronecker delta δ (identity tensor) a basic fluid

mechanics tensor. However, it appears in many tensor relationships. It can be

readily verified that all invariants of this tensor have the same form trδ = 3,

trδ2=3, trδ3=3.

2.2. Strain rate tensor

The first invariant of the strain rate tensor D is connected with compress-

ibility through the relation trD = ∇· ~U . It equals zero for the incompressible
case.

The second invariant is connected with the energy dissipation concept. By

means of the following identity ‖D‖2≡ trD2, being true also for deviators, it can
be easily shown that

trD2=
φµ−φv
2µ

+ 1
3

(

∇· ~U
)2

≥ 0 (4)

This is true owing to the Equation (3) and the relationship between the double

dot product (norm) of a tensor and its deviatoric part in the following form

‖DD‖2= ‖D‖2−3−1(trD)2. The symbol φv describes the part of the dissipation
function which is related to bulk viscosity φv :=µv(∇· ~U)2. If the Stokes hypothesis
is valid, this function equals zero. For the incompressible case, the Equation (4)

takes a simpler form

trD2=
φµ
2µ

(5)

2.3. Spin tensor

From the spin tensor definition Ω it arises that its first invariant equals

zero trΩ = 0. Similarly, from the physical interpretation of its components it

arises that the double dot product (norm) equals ‖Ω‖2=2−1~Ω ·~Ω. The vorticity
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vector is denoted here as ~Ω. Introducing the norm of a vector ‖·‖ one may find
the following form of the second invariant of the spin tensor

trΩ2=− 1
2
‖~Ω‖2=−ǫ∗≤ 0 (6)

where ǫ∗ stands for enstrophy (Equation (21)). This means that the second

invariant in this case equals one half of the vorticity vector norm. Evidently,

the norm of a vector as well as the enstrophy is of an invariant nature.

As for the third invariant, through the equation trΩ3=detΩ, it obviously

equals zero as for all asymmetrical tensors trΩ3=0.

2.4. Velocity gradient tensor and its transposition

The velocity gradient tensor ∇~U and its transposition ∂~U∂~r are asymmetrical
tensors. This fact results in a larger number of invariants in comparison with

symmetrical tensors. Despite this, the first invariant of both tensors is the same

as for the strain rate tensor D and equals ∇· ~U . The second invariant has the
general form

tr

(

∂~U

∂~r

)2

=tr
(

∇~U
)2

=trD2−ǫ∗ (7)

The specific form depends on the tensor D. This is due to introduced simplifica-

tions (Stokes hypothesis or incompressibility).

For an asymmetrical tensor it true that T :T 6= tr(T ·T ). However, in the
case of the velocity gradient tensor and its transposition we have

‖∇~U‖2=trD2+ǫ∗ (8)

where the velocity gradient tensor norm is given by ‖∇~U‖2 =∇~U :∇~U and is
discussed further towards the end.

Invariants of velocity gradient tensors and their analysis are useful because

they unambiguously determine the local topology of the fluid motion [2, 5].

2.5. Stress tensor

The first invariant of the stress tensor σ is utilised for the definition of

hydrodynamic pressure p in the form −3p = trσ. Thus, we have its physical
interpretation.

The form of the second invariant of the stress tensor depends on the

constitutive equation that describes it. For the Newton hypothesis (3) the scalar

dot product of stress tensors can be evaluated as

σ
2= p2δ−4pµDD+4µ2DD2 (9)

The above equation is the most general in the sense that it concerns compress-

ibility. If we assume incompressibility it is enough to get rid of the deviators.

Utilising Equation (2) we have the following form of the second invariant of the

stress tensor

trσ2=3p2+2µ(φµ−φv)≥ 0 (10)

The total dissipation function φµ according to Equation (2) is reduced by the

dissipation related to bulk viscosity φv. The above equation is of a very general
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nature. It has an identical form for all cases, irrespective of the Stokes hypothesis

or compressibility. Obviously, the second invariant of the stress tensor is connected

with dissipation. Following the same line of reasoning it is possible to formulate

the equation for the third invariant of this tensor

trσ3=−3p3−6pµφµ+8µ3 trD3 (11)

The only problem we encounter is the lack of interpretation of the strain rate

third power trace, i.e. the third invariant of this tensor trD3.

2.6. Reynolds stress tensor

We will take under consideration the Reynolds stress tensor described by

means of the Boussinesq hypothesis only. This tensor is expressed by means of

the averaged strain rate tensor 〈D〉, the kinetic energy of turbulence k and the
eddy viscosity µt as

R=− 2
3
ρkδ+2µt〈D〉 (12)

Its first invariant is connected with the turbulence energy k and it is given by

trR=−2ρk. We restrict ourselves to the incompressible case.
The second invariant is connected with the dissipation of the mean flow

2µ〈D〉2 which together with the fluctuation dissipation ε∗ forms the averaged
dissipation function 〈φµ〉

〈φµ〉=2µ〈D2〉=2µ〈D〉2+ρε∗≥ 0 (13)

We do not introduce the homogeneity assumption here ε∗ := 〈D′2〉. Evaluating
the product R2 and taking advantage of the identity ‖R‖2≡ trR2 together with
relation (13) we obtain the following interpretation of the second invariant of the

Reynolds stress tensor

trR2= 4
3
k2ρ2+2

µ2t
µ
(〈φµ〉−ρε∗) (14)

The subsequent procedure is discussed in the next subsection. This is because the

Reynolds stress tensor is a component of the total stress tensor.

2.7. Total stress tensor

The total stress tensor is composed of an averaged stress tensor and

the Reynolds stress tensor 〈σ〉 :=−〈p〉δ+2µ〈D〉+R. Utilising the Boussinesq
hypothesis (12) and the following definitions of the effective pressure pe :=〈p〉+ 23ρk
and the effective viscosity µe :=µ+µt we obtain an analogous form as for the stress

tensor σ

〈σ〉=−peδ+2µe〈D〉 (15)

The first invariant has an identical shape as for the stress tensor σ as is given by

equation tr〈σ〉=−3pe. We can find the second invariant following the same logic
as in the previous subsection. The result is analogous to Equation (10)

tr〈σ〉2 :=3p2e+2
µ2e
µ
(〈φµ〉−ρε∗) (16)

Again, this shows the generality of the discussed interpretation. We deal with

mean flow dissipation only.
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3. Examples of applications

3.1. Vorticity measure

Serrin [6] has given the following definition of the vorticity measure W ,

which comes originally from Truesdell: W 2 :=‖Ω‖2/‖D‖2. The norm of vorticity
vector ‖~Ω‖ depends on units but the vorticity measure W does not. Moreover,
this measure is combined from two invariants. This means that it is itself of an

invariant character. The measure equals zero for the irrotational flow ‖~Ω‖=0 and
D 6= 0 (i.e. we deal with angular and linear deformation). The measure equals
infinity for rotational flow ‖~Ω‖ 6= 0 and D= 0 (i.e. we deal with pure rotational
motion without angular and linear deformation). The second case (rotational) has

the largest possible vorticity measure. Employing the equations for appropriate

tensor invariants we obtain

W 2=
1

2
‖~Ω‖2
trD2

=
ǫ∗

trD2
∈ [0,∞] (17)

3.2. Shear stress

It is possible to find another interpretation of the second invariant (10)

for an incompressible case. This second interpretation is possible thanks to the

strain rate γ which appears in the simple shear flow τxy =µ
∂Ux
∂y =µγ. It may be

generalised to the three-dimensional case

γ=
√
2D :D=

√
2‖D‖ (18)

Obviously, the above relation comes to its one-dimensional equivalent. By means

of the identity ‖D‖2 ≡ trD2 and Equation (5) one may find a very simple
relationship between the shear strain rate and the dissipation function φµ=µγ

2.

This equation gives the relationship between the shear stress (for instance on

the wall) and the dissipation function. From this equation another physical

interpretation of the stress tensor second invariant for an incompressible case

arises

trσ2=3p2+2µ2γ2 (19)

which has no compressible equivalent.

3.3. Enstrophy

The enstrophy E is defined as the integral of the velocity gradient tensor
norm over certain volume V

E =
∫∫∫

V

‖∇~U‖2dV =
∫∫∫

V

ǫdV (20)

where ǫ :=‖∇~U‖2 may be treated as a specific enstrophy. As shown previously,
the norm of the velocity gradient tensor is invariant. So is the enstrophy. The less

general definition of enstrophy takes under consideration only the asymmetrical

part of the velocity gradient tensor, i.e. the spin tensor Ω.

tq217n-e/228 15V2014 BOP s.c., http://www.bop.com.pl



On Invariants of Fluid Mechanics Tensors 229

This results in

E∗=
∫∫∫

V

‖Ω‖2dV =
∫∫∫

V

1

2
‖~Ω‖2dV =

∫∫∫

V

ǫ∗dV (21)

where ǫ∗ :=2−1‖~Ω‖2 may be again treated as specific enstrophy and it is also the
second invariant of the spin tensorΩ. Basically, the specific enstrophy is defined as

one half the square of the vorticity. The definition (21) arises from Equation (20)

through identity ‖∇~U‖2 ≡ ‖~Ω‖2+∇· (~U ·∇~U) and two further conditions. The
former being incompressibility ∇· ~U = 0 and the latter assumes velocity ~U to
decay rapidly at infinity. Finally, integration of the definition (20) by means of

the Gauss theorem results in Equation (21).

The definition of enstrophy plays important role in the theory of turbu-

lence [7]. It determines the rate of dissipation of kinetic energy being a global

measure of the dissipation rate. To see this, it is necessary to recall the dissi-

pation power definition [8] Nd :=
∫∫∫

V
φµdV . The dissipation function φµ for an

incompressible case is given by Equation (5). Keeping in mind Equation (8)

in the form of ‖∇~U‖2 = ‖D‖2+ ‖Ω‖2 as well as the earlier identity ‖∇~U‖2 ≡
‖~Ω‖2+∇·(~U ·∇~U), it can be easily shown that

2µ

∫∫∫

V

‖D‖2dV =2µ
∫∫∫

V

‖Ω‖2dV (22)

This means that for the incompressible case where velocity ~U decays rapidly at

infinity Nd =2µE∗, i.e. dissipation power is proportional to enstrophy. However,
locally it is not true ‖D‖2 6= ‖Ω‖2.

3.4. Norms and normalising functions

The concept of tensor norm T can be introduced by analogy to a vector

norm. The norm of vector ~w is associated with its magnitude w≡‖~w‖:=(~w · ~w)1/2.
The norm of a tensor is defined as ‖T ‖ :=(T : T )1/2. The relationship between
the norm of a symmetrical tensor and the second invariant ‖T ‖ :=(tr(T ·T ))1/2
results from this definition.

Let us consider the deviatoric part of the strain rate tensor [8]. By means

of Equation (2) and Stokes hypothesis we can obtain

‖DD‖=
√

φµ
2µ

(23)

The norm of the strain rate tensor or its deviator is connected with dissipation.

Both the dissipation and norm ‖DD‖ are of an invariant character. The nor-
malisation of vector ~w/‖~w‖ gives a unit vector towards ~w. Analogously, we can
consider normalisation of tensors. Denoting the normalised strain rate tensor by

D∗ we have for its deviator

D
∗D =

DD

‖DD‖ =D
D

√

2µ

φµ
(24)

It arises that the dissipation function performs the role of normalising function

on the strain rate tensor or its deviator. After normalisation we have ‖D∗D‖=1.
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4. Summary

The set of all first and second invariants of basic tensors of fluid mechanics

is given in Table 1. This table extends the current physical interpretations of

particular invariants up to the second order. Additionally, one can find there the

third invariants of the Kronecker delta, the spin tensor and the stress tensor for

inviscid fluid.

To grant a physical interpretation to third invariants one should first find

the physical interpretation of the strain rate tensor third invariant D3.

Table 1. Invariants

T trT trT 2 trT 3

δ 3 3 3

D ∇· ~U φµ−φv
2µ +

1

3
(∇· ~U)2≥ 0

D, µv =0 ∇· ~U φµ
2µ +

1

3
(∇· ~U)2≥ 0

D, ρ=const 0
φµ
2µ ≥ 0

DD 0
φµ−φv
2µ ≥ 0

DD, µv =0 0
φµ
2µ ≥ 0

Ω 0 −ǫ∗≤ 0 0

∂~U
∂~r , ∇~U ∇· ~U trD2−ǫ∗

σ −3p 3p2+2µ(φµ−φv)≥ 0
σ, ρ=const −3p 3p2+2µφµ≥ 0
σ, µ=0 −3p 3p2≥ 0 −3p3

R −2ρk 4

3
k2ρ2+2

µ2t
µ (〈φµ〉−ρε∗)

〈σ〉, ρ=const −3pe 3p2e+2
µ2e
µ (〈φµ〉−ρε∗)
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