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Abstract: In this paper we apply the finite-difference method to solve a parabolic equation of

a general problem of short wave diffraction in a conducting medium. It is based on the implicit

Runge-Kutta method of the second order combined with the iterative procedure. We also present

new numerical simulations for X-rays focusing using the mentioned approach. We consider CRLs

with a parabolic profile with a radius of curvature up to 0.2mm. The main goal of this work

is to elaborate an X-ray calculator for a PC which would present new possibilities compared to

conventional ones. The correspondent code is written in FORTRAN to obtain the focal distance

and diffraction spot profiles. Simulations for two cases were performed, the first one with 33 Al

lenses for X-ray energy 15keV, the results showed that we needed to consider more than 50000

points in each direction which forced us to consider a one-dimensional simulation only. For the

second case we performed a simulation for several lenses, up to 15 Al lenses to perform the 2-d

simulation. We have good agreement with the experimental data for the focal distance, and for

the intensity at the focal plane while, for the spot size, we have smaller FWHM for the Gaussian

beam at the detector than in the experimental data. We believe that the FWHM we have is

smaller as our lenses are ideal without any defects.

Keywords: Finite difference model,Focusing X-rays,Runge-Kutta

1. Introduction

Most of the X-ray applications are based on their ability to penetrate ma-

terials. In materials sciences we use an electromagnetic wave with an appropriate

wavelength to investigate, and examine the structure of samples. Consequently,
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102 M.M.R.E. Elsawy and S. Leble

there is demand for focusing X-ray beams to understand biological, chemical, and

physical systems. There are different ways to focus X-rays like: grazing mirrors,

Fresnel plates and compound refractive lenses. In our model, as in others [1–3],

we use CRLs with the parabolic profile [1] to simulate focusing X-ray beams with

a diffraction account.

The article presents the results of a simulation of X-ray propagation and

focusing in a frame of finite-difference approximation of a parabolic equation.

The equation is derived on the basis of a standard Maxwell system for the

conducting medium for an anzatz solution as a plane wave with a slow varying

3D amplitude [3], the conductivity is neglected outside the lenses. We consider

the parabolic shape of lenses to focus X-rays, see e.g. [1, 2]. However, we need to

mention that we use here perfect lenses without any defects. As initial condition

we use Gaussian form of the beam cross-section with the coherent modulation. The

general motivation for such finite-difference modeling (FDM) is, and simulations

are performed, to prepare the conditions for a more complicated problem of a lens

with defects. In the last chapter we will compare and discuss our results with the

theoretical results and the experimental data presented in [1].

2. Problem formulation and anzatz solution

2.1. The Parabolic equation derivation

The derivation of the model equation starts from Maxwell’s system to

describe the propagation in free space (before and after lenses). Inside the lenses

we solve Maxwell’s equations in metals for a linear, isotropic, non-magnetic, and

homogeneous medium. Thus, electric susceptibility χe(ω0), and conductivity σ

will be constants. We consider also fixed frequency ω0, inside and outside the

lenses.

We start with Maxwell’s equations in metals as a linear, isotropic, homo-

geneous, and non-magnetic medium.

∇· ~D=0,
∇· ~B=0,

∇× ~E=−∂
~B

∂t
,

∇× ~H = ~J+ ∂
~D

∂t
.

(1)

The electric displacement ~D is given by:

~D= ǫ0 ~E+ ~P (2)

and ~P is the polarization vector. For non-magnetic medium ~B = µ0 ~H, we can

write the polarization ~P = ǫ0χe(ω0) ~E; hence, the electric displacement ~D can be

written as:
~D= ǫ0(1+χe(ω0)) ~E= ǫ1(ω0) ~E, (3)
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where ǫ1(ω0) is the real dielectric constant or the electric permittivity of the

medium at given carrying frequency ω0. We conventionally assume that the linear

relation between current ~J and ~E for isotropic medium as

~J =σ ~E (4)

here σ(ω0) is the real constant that can be used to define the complex electric

permittivity ǫr(ω0). The wave equation inside the lenses takes the form:

∇2 ~E−ǫ1µ0
∂2 ~E

∂t2
=σµ0

∂ ~E

∂t
. (5)

The index of refraction for X-rays inside the medium can be written as:

n=1−δ+ iβ, (6)

where δ for an appropriate materials is the refractive decrement of the order of

O(10−6) such that 1−δ close to one, while β is the absorption coefficient of the
order of O(10−9) [4, 5]. Thus, the material influences feebly the propagation of

X-ray beams. Therefore, we can consider the field as a plane wave with the same

wave number as in free space k0 =
ω0
c0
, the shift would be accounted for by the

equation for amplitude Alens inside the lens which is slowly dependent on ~r and t.

Hence
~E(~r,t)=Alens(~r,t)exp

(

i(k0x−ω0t)
)

+c.c. (7)

In conditions of a stationary source, we obtain:

∂Alens
∂x
+
iω0
2c0

(

1−ǫ1µ0c20−
iµ0σc

2
0

ω0

)

Alens=
ic0
2ω0

(

∂2Alens
∂y2

+
∂2Alens
∂z2

)

, (8)

the complex permittivity and the index of refraction n are linked by the relation

n=
√
ǫrµ0, (9)

where µ0 is close to 1. Hence, we can express the index of refraction n as n=
√
ǫr,

and
∂Alens
∂x
+
iω0
2c0

(

1−n2
)

Alens=
ic0
2ω0

(

∂2 Alens
∂y2

+
∂2Alens
∂z2

)

. (10)

But, while

n2=1−2(δ− iβ)+(δ− iβ)2= ǫr, (11)

we can neglect the term (δ+ iβ)2 since it is very small compared to other terms.

Now equation (10) takes the form:

∂Alens
∂x
+BAlens=

ic0
2ω0

(

∂2Alens
∂y2

+
∂2Alens
∂z2

)

, (12)

where

B=
ω0
c0
(iδ+β). (13)

For propagation in free space, it is a special case of equation (12) with

B=0, and Alens=A the complex amplitude in free space. Thus, in free space we

have the parabolic equation:

∂A

∂x
=
ic0
2ω0

(

∂2A

∂y2
+
∂2A

∂z2

)

, (14)
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2.2. The geometry of the lens and boundary conditions

In this model we consider compound refractive lenses with the same shape

as in [1] each of which has a parabolic cross section of width (lens) = 1mm, and

the smallest width of lens (d). We indicate the curvature radius at y = z = 0 of

the lens as R [1]. Using the equation of parabola we can define the left and right

surface of a lens as:

XSL(y,z)=−0.5R
(

(y−0.5lenw)2+(z−0.5lenw)2
)

+

(

lenw−d
2

)

,

XSR(y,z)= 0.5R
(

(y−0.5lenw)2+(z−0.5lenw)2
)

+

(

lenw+d

2

)

.

(15)

At the boundaries, going from equation (14) to (12) we assume the amplitude

function to be continuous, neglecting reflections due to a small deviation of the

refraction index from 1. As initial condition (along x) we apply stationary case of

coherent wave form (7).

Figure 1. Single Parabolic lens. This figure is from [1]

3. The Numerical method

3.1. Implicit Runge-Kutta scheme

In this section we will solve equation (14) and equation (12) numerically

using the finite-difference method, transforming the PDE (16) to the system of

ODEs, and the implicit Runge-Kutta scheme of the second order with iterative

procedure implementation [6]. We naturally account for continuity on a lens

boundary.

Let us start with equation (12) for propagation inside the lens. We will

denote that Alens= Ã just for simplicity

∂Ã

∂x
+BÃ=

ic0
2ω0

(

∂2Ã

∂y2
+
∂2Ã

∂z2

)

. (17)
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Ãn+1j,k −Ãnj,k
hlens

+BÃ
n+ 1

2

j,k =
ic0
2ω0h2r

(

Ã
n+ 1

2

j+1,k+Ã
n+ 1

2

j−1,k+Ã
n+ 1

2

j,k+1+Ã
n+ 1

2

j,k−1−4Ã
n+ 1

2

j,k

)

,

(18)

where hlens is the space step in x-axis inside the lens. In order to calculate

intermediate quantities Ã
n+ 1

2

j,k we apply the implicit scheme

Ã
n+ 1

2

j,k

(

1+
B ·Dist
2
+
ic0hlens
ω0h2r

)

=

Ãnj,k+
ic0hlens
4ω0h2r

(

Ã
n+ 1

2

j+1,k+Ã
n+ 1

2

j−1,k+Ã
n+ 1

2

j,k−1+Ã
n+ 1

2

j,k+1

)

,

(19)

where Dist is the distance between two points inside the lens that needs to be

defined according to the shape of our parabolic lens.

Finally we arrive at a simple formula

Ãn+1j,k =2Ã
n+ 1

2

j,k −Ãnj,k. (20)

The system of equations (19) and (20) gives us the implicit Runge-Kutta method

of the second order [6].

For the propagation in free space, the scheme takes the form:

2
A
n+ 1

2

j,k −Anj,k
hx

=
ic0
2ω0h2r

(

A
n+ 1

2

j+1,k+A
n+ 1

2

j−1,k+A
n+ 1

2

j,k+1+A
n+ 1

2

j,k−1−4A
n+ 1

2

j,k

)

, (21)

An+1j,k =2A
n+ 1

2

j,k −Anj,k. (22)

3.2. Parameters of integration choice

Inside the lenses. From the dispersion relation for equation (12) the

following conditions must be satisfied for the propagation inside the lenses

hlens≪
w0h

2
r

c0
, (23)

and

hlens≪≪
1

|B | . (24)

We take hlens as the space step for x-axis inside the lens with the condition:

hx≪
w0h

2
r

c0
. (25)

The parameter hx is the space step in x-axis in free space.

The first step

Ã
n+ 1

2
(0)

j,k

(

1+
B ·Dist
2
+
ic0hlens
ω0h2r

)

=

Ãnj,k+
ic0hlens
4ω0h2r

(Ãnj+1,k+Ã
n
j−1,k+A

n
j,k+1+Ã

n
j,k−1),

(26)

the second step, we need to run it for several times

Ã
n+ 1

2
(m+1)

j,k =
Ãnj,k+

ic0hlens
4ω0h2r

(Ã
n(m)
j+1,k+Ã

n(m)
j−1,k+Ã

n(m)
j,k+1+Ã

n(m)
j,k−1)

(

1+ B·Dist2 + ic0hlens
ω0h2r

) , (27)
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the last step

Ãn+1j,k =2Ã
n+ 1

2
(m)

j,k −Ãnj,k. (28)

Outside the lenses. If we put B=0 in the equations, we will obtain the

implicit scheme in vacuum outside the lenses. In calculations it is enough to take

m=4 [6].

4. Numerical simulations

In this part we will discuss our numerical results. We use the initial

conditions at x=0 as in [1] in order to compare the results. The initial conditions

are Gaussian beams with FWHM = 700µm in the horizontal direction, and

FWHM = 35µm in the vertical direction. We consider here two cases, the first

case using the data from [1], and the second case with several lenses to perform

the 2-d simulation. For the first case the results showed that we need to consider

more than 50000 points in each direction, which will be difficult for the personal

computer, therefore, we will only perform the 1-d simulation. While, for the second

case we use a smaller number of lenses up to 15 lenses in order to perform the 2-d

simulation.

4.1. First case 33 Al lenses with 15 keV X-ray

We consider the data form [1], and we test the program for a different

number of points in each direction. The results should not depend on the number

of points that we use in y, z directions (for y only in the 1-d case). In order to

do that, we need to choose the hx, and hr space steps in x, y, and z directions,

respectively, correctly and try to find a suitable number of points for our mesh. The

dispersion relation governs the relation between the space steps in each direction

hx≪ ω0hr
2

c0
. In order to choose the number of points in y, z direction we need to

calculate 0.001/hr, this relation will give us the number of points in the horizontal

and vertical direction, hx here is used as the space step in the x-axis to identify

the place of the detector. For instance, if the focal plane is at 1.298m from the

CRLs it means that we need 1.298/hx points in the x-axis. While, hlens is used as

the space step inside the lens, and it should satisfy the conditions in the dispersion

relation for equation (12).

• Number of Al lenses = 33
• Radius of curvature = 0.2mm
• Energy = 15keV
• δ=2.414×10−6
• β=1.299×10−8
• The distance from the source to the CRLs is 63m

4.1.1. The choice of hx

First, let us choose the best value for the constant in the relation

hx= constant×
ω0
c0
h2r (29)
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that will give us the best choice for the space step hx. We fixed the number of

points as 40000, which means that we fixed the space step hr. We tried with

some values for constant hr, the results showed that the best choice for the space

step was 0.032911422 which gave us a small error in the FWHM and in the focal

distance, see Table 1. We can go further by choosing a smaller value for the

constant which means a smaller value for hx that will give us a smaller error.

However, in this case we need more points for the propagation after the CRLs.

For example, if we choose the constant to be 0.016455711 that gives us space step

hx=0.000000781, and we need 1661440 points in the x-axis to reach the detector

at 1.298m.

Table 1. The choice of hx

constant hx focal distance FWHM

0.131645688 0.00000625 1.2580312m 3.25µm

0.065822844 0.000003125 1.2539093m 3.55µm

0.032911422 0.000001562 1.2528818m 3.65µm

4.1.2. The error for choosing hx

In order to compute the error we will use the Runge rule [7]. We can assume

that Zh=3.55 and Z2h=3.65 for the spot size. The error can be written as

R=
Zh−Z2h
3

=0.033333333 (30)

which is small if we compare it to FWHM=3.65. We can do the same for the focal

distance f if Zh=1.2539093, Z2h=1.2528818, then

R=
Zh−Z2h
3

=0.0003425 (31)

which is very small if compared to 1.2528818. From the last investigations we can

say that the best choice for the constant in the relation

hx= constant×
ω0
c0
h2r (32)

is 0.032911422 which is equivalent to hx=0.000001562.

4.1.3. The choice of hlens

Now, having obtained the best choice for hx=0.000001562 which is corre-

sponding to constant 0.032911422 in the relation

hx= constant×
ω0
c0
h2r (33)

We need to choose the space step inside the lens hlens that will give us a small

error according to the Runge rule for the spot size, and for the focal distance. We

fix here the number of points to be 40000 which means that hr = 0.000000025.
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We have seen from the dispersion relation for the propagation inside the lens that

the following conditions have to be satisfied

hlens≪
w0h

2
r

c0
(34)

and

hlens≪≪
1

|B | (35)

1
|B| =5.4533·10−6. Table 2 gives us different values for hlens with the corresponding
spot size and focal distance. As can be seen the best choice for hlens is 0.000000125

that will give us a small error according to the (Runge rule) for the spot size, and

for the focal distance. The best choice for hlens corresponding to 8000 steps for

each lens.

Table 2. The choice of hlens

hlens focal distance FWHM

0.000001 1.2528818m 3.65µm

0.0000005 1.2492204m 3.90µm

0.00000025 1.2483004m 3.95µm

0.000000125 1.2480707m 3.95µm

4.1.4. Choice of hr
In order to find necessary number of points for the mesh in the transverse

plane, we need to find the suitable value for the space step hr. We have fixed here

the space step inside the lens hlens=0.000000125, we use the best choice for the

constant to obtain hx from the relation

hx= constant×
ω0
c0
h2r (36)

which is equivalent to 0.000001562 for 40000 points, and 0.000001 for 50000

Table 3. Due to the large number of lenses, we need to consider more points,

we started with 40000 points, and checked 50000 points. However, the results for

40000, and 50000 points are very close for the focal distance, and for the FWHM.

We could take more points which means smaller hr, and hx. However, we use here

the implicit Runge-Kutta method of the second order which means that we need

to take 80000 points as the next step after 40000, not 50000. However, due to the

limitations in the computer we will consider only 50000 points. We can say that,

as a starting point, it is enough to consider 50000 points. In the future we will

have to try with more points using supercomputers, and also for the 2-d case. In

other words, the suitable choice of hr will be 0.00000002.

Table 3. The choice of hr

Number of points hr focal distance FWHM

40000 0.000000025 1.2480707m 3.95µm

50000 0.00000002 1.2470340m 3.92µm
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5. Results for ideal lenses

We obtained the best choice for the space steps hx, hlens and hr which

correspond to using 50000 points. Our results give focal distance f =1.2470340m,

and FWHM= 3.92µm at 1.298m from the CRLs, Figure 2. We considered ideal

lenses without any defects which was the main reason for having smaller FWHM

than the experimental data. We considered only the 1-dim case for the horizontal

direction while in the experimental data the horizontal and vertical results will

be seen, Figure 3. Table 4 presents a comparison between our results and the

experimental data. The results show that we have a good agreement with the

experimental data for the focal distance, and for the intensity at the focal plane,

Figure 2. Results for Focusing hard X-rays with 33 perfect Al CRLs directly after the lenses

(right), and at 1.298m from the lenses (left) with FWHM=3.92µm, and focal

distance = 1.2470340m

Figure 3. Experimental data for the horizontal and vertical direction [1]

Table 4. Comparing the Results

Item focal distance FWHM

Our results (Ideal CRLs) 1.2470340m 3.92µm

Experimental data 1.2553036m 14.0µm
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while in case of the FWHM we have a smaller FWHM. We believe that is perhaps

due to the ideal CRLs that we used and the fixed frequency.

6. Two-dimensional simulation

In this section we perform simulation for the 2-dimensional case. We obtain

more than 50000 points in each direction from the last section that we need to

consider in order to obtain accurate results, which makes it difficult to make a 2-d

simulation for the first case using the PC. In this section, we only want to test

the program for getting results in 2-d. We perform simulations here with fewer

lenses up to 15 lenses made of Al. We use the same parameters as in the first

case, but we consider the initial condition to be the same everywhere. Figure 4

and Figure 5 give us the results directly after the lenses. When we increase the

number of lenses, the maximum value of the intensity decreases as absorption

increases with the number of lenses.

Figure 4. 2-Dimensional results for 1 lens (left) and 5 lenses (right)

Figure 5. 2-Dimensional results for 10 (left) and 15 lenses (right)

7. Conclusion

We present here a new numerical method based on the finite-difference

method to focus X-rays using CRLs. We solve the wave equation inside and outside

lenses using the FDM and the implicit second order Runge Kutta method with

the iterative procedure implementation. The program is written in FORTRAN to

compute the focal distance and the spot size and cross structure. We considered

here two cases with the same shape of the lenses as in [1]. As the first case

we considered 33 Al lenses with a 15keV beam having good agreement with

the experimental data for the focal distance and for the intensity at the focal

plane, while we have smaller results for the FWHM. We believe that the smaller
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FWHM for the Gaussian beam appear because we use ideal lenses without any

defects. The results showed that we needed to use more than 50000 points in

each direction which forced us to perform one-dimensional simulation only. The

time of calculation increased 16 times for the same number of lenses while the

quantity of points in each direction increased two times which was due to the

condition hx≪ ω0hr
2

c0
. It means that if we compare a system of 100×100 points

with a system of 1000×1000 for such a number of lenses we need to do 10000
times more operations than in the first case. The maximum quantity of complex

points which could be calculated nowadays on a personal computer is about

5000×5000 to 10000×10000. Hence, the program should be properly optimized
and parallelized to perform the 2-d simulation using a supercomputer. In the

second case, we tested the program for a small number of lenses up to 15 lenses

made of Al. In the future, we will try to add some defects to the lenses, and check

the influence of the defects on the spot size and on the focal distance. We also

will take into account incoherence of the incoming beam to compare in details the

results of calculation with experiments.
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