
TASK QUARTERLY vol. 18, No 1, 2014, pp. 67–80

SMOOTHED PARTICLE HYDRODYNAMICS

SIMULATIONS USING GRAPHICS

PROCESSING UNITS

KAMIL SZEWC

Institute of Fluid-Flow Machinery, Polish Academy of Sciences

Fiszera 14, 80-231 Gdansk

(Received 10 December 2013; revised manuscript received 20 January 2014)

Abstract: Smoothed Particle Hydrodynamics (SPH) is a fully Lagrangian, particle-based

technique for fluid-flow modeling. As a gridless method, it appears to be a natural approach

to simulate multi-phase flow with complex geometries. Since SPH involves a large set of short-

range particle-particle interactions, numerical implementations present a high degree of spatial

data locality and a significant number of independent computations. Therefore, the numerical

code can be easily written in a massively parallel manner. The main purpose of this study is

to discuss the issues related to the implementation of the SPH method for computation using

Graphics Processing Units (GPU). The study is supported by two-dimensional validation cases:

the lid-driven cavity and oscillation of a droplet. The obtained results show a good accuracy of

the method, as well as, high numerical efficiency of its GPU implementation.

Keywords: fluid dynamics, CFD, particle methods, SPH, GPU calculations

1. Introduction

The Smoothed Particle Hydrodynamics method (SPH) is a fully La-

grangian, particle based approach for fluid-flow simulations. One of its main ad-

vantages over the Eulerian techniques is no need of a numerical grid. Therefore,

there is no necessity to handle the interface shape as in grid-based methods. Thus,

the SPH method is increasingly used for hydro-engineering and geophysical ap-

plications involving free-surface and multi-phase flows. One disadvantage of the

SPH approach over the Eulerian methods is the numerical efficiency. However,

in many cases involving complex geometry, the “human” time needed to create

a computational grid can be so long, that it can be more time- and cost-efficient

to perform calculations using mesh-free approaches, such as SPH. In addition, in

recent years new techniques allowing numerical simulations to be performed us-

ing Graphics Processing Units (GPU) have been developed. The massive parallel

tq118c-d/67 26IX2014 BOP s.c., http://www.bop.com.pl

68 K. Szewc

computation capability of modern graphics cards allows simulations of large sys-

tems to be performed using cheap desktop computers. Particle methods are easy

to write in a parallel manner, hence they are suitable for calculations on GPUs.

The main purpose of this work is to discuss issues related to the accel-

eration of the SPH calculations using GPU devices. The paper is divided into

seven sections. The first section is this introduction. In Sections 2 and 3 the fun-

damental concepts of the SPH methods are briefly recalled and the SPH form

of governing equations is introduced. Section 4 contains information about the

GPU implementation issues and used algorithms. In Section 5 the SPH results of

the lid-driven cavity, as well as, droplet oscillation tests are presented and com-

pared with the reference data. Section 6 is devoted to discussing the efficiency of

the GPU implementation. The purpose of the last section is to summarize the

obtained results.

2. Smoothed Particle Hydrodynamics

The main idea behind the SPH approach is to introduce kernel interpolants

for flow quantities so that fluid dynamics is represented by a set of particle

evolution equations, cf. [1] for a review. Then, three approximations are made

to devise practical formulations.

The first formulation is an interpolation of field quantities at a point. To

construct it, we utilize an integral interpolant Â(r) of any field A(r)

Â(r)=

∫

Ω

A(r′)W (r−r′,h)dr′, (1)

where the integration is over all the domain Ω. W (r,h) is a weighting function

(kernel) with the parameter h (smoothing length) describing the range of the

kernel. Generally, the kernel should have a symmetrical form

W (r,h)=W (−r,h), (2)

satisfy the limit condition

lim
h→0
W (r,h)= δ(r), (3)

where δ(r) is the Dirac delta distribution, it should be sufficiently smooth and

normalized, so that ∫

Ω

W (r,h)dr=1. (4)

Taking into consideration the computational effort and proper implementation

of the boundary conditions, it is worth using kernels having a compact support.

Since there are many possibilities for the choice ofW (r,h) in order to avoid kernel

artefacts such as particle clustering [2], after [3], we use the Wendland kernel [4]

in the form (in 2-D)

W (r,h)=
7

4πh2

{(
1− q

2

)4
(2q+1) for |r| ≤ 2h,

0 otherwise,
(5)

tq118c-d/68 26IX2014 BOP s.c., http://www.bop.com.pl

Smoothed Particle Hydrodynamics Simulations Using Graphics Processing Units 69

where q = |r|/h. In 3D, the only difference is the normalization constant equal

to 21/16πh3. An optimal choice of the kernel and the simulation parameters has

been discussed in [3].

The second approximation of the SPH technique is the discretization of

media. It is achieved by a fine-grained representation (particles) of fluid in the

flow domain, where each particle carries the properties of the field. Then, the

integral interpolant (̂·), Equation (1), becomes a summation interpolant 〈·〉

〈A〉(r)=
∑

b

A(rb)W (r−rb,h)Ωb, (6)

where rb and Ωb denote the position and volume of the particle b. The SPH task

involves the computation of the interpolant at each particle, cf. Figure 1, so that

Equation (6) may be rewritten into the form

〈A〉a=
∑

b

AbWab(h)Ωb, (7)

where 〈A〉a= 〈A〉(ra), Aa=A(ra) and Wab(h)=W (rb−ra,h).

Figure 1. A set of neighboring particles in SPH; due to the finite support of the (compact)

kernel, it is only black particles that interact with the white one

An additional advantage of SPH is revealed when the differentiation of fields

is considered. In accordance with (1), the gradient of A(r) has the form

∇̂A(r)=

∫

Ω

∇A(r′)W (r−r′,h)dr′. (8)

Taking advantage of the integration by parts and utilizing the kernel symmetry,

after discretization, the above expression can be further transformed to

〈∇A〉a=
∑

b

Ab∇aWab(h)Ωb. (9)

Since the differentiation operator acts only on the kernel, the gradient of the field

is dependent only on the values of the field at particles. Higher derivatives can

be obtained in a straightforward manner, nonetheless, due to the accuracy and

tq118c-d/69 26IX2014 BOP s.c., http://www.bop.com.pl

70 K. Szewc

efficiency requirements, the commonly used form is built as a combination of the

finite difference approach and the SPH approximation [5].

The third SPH approximation consists in assuming that the field value Aa
at a point and its SPH approximation 〈A〉a are equal:

〈A〉a≈Aa, (10)

which amounts to neglecting the effects of scales which are typically smaller than

h and which are smoothed out.

3. Governing equations

A full set of governing equations for an incompressible viscous flow is

composed of the Navier-Stokes (N-S) equation

du

dt
=−
1

̺
∇p+

1

̺
(∇·µ∇)u+ f , (11)

where ̺ is the density, u the velocity, t the time, p the pressure, µ the dynamic

viscosity and f external acceleration, and the continuity equation

d̺

dt
=−̺∇·u, (12)

that for ̺= const takes the form

∇·u=0. (13)

The governing equations can be expressed in the SPH formalism using

Equations (6) and (9). However, it is important to note that it can be done in

many different ways, cf. [6] and [7]. In this paper, we consider the formulation

proposed by Hu and Adams [8]. To avoid any inconsistency of the density and

velocity fields caused by the use of the continuity equation, for details cf. [7], Hu

and Adams decided to take advantage of the density definition in the form

̺a=ma
∑

b

Wab(h)=
ma
Θa
. (14)

The N-S pressure term which is variationally consistent with Equation (14) has

the form (cf. [9] for details)
〈
∇p

̺

〉

a

=
1

ma

∑

b

(
pa
Θ2a
+
pb
Θ2b

)
∇aWab(h), (15)

while the N-S viscous term can be written as (cf. [8] and [10])
〈
1

̺
(∇·µ∇)u

〉

a

=
1

ma

∑

b

2µaµb
µa+µb

(
1

Θ2a
+
1

Θ2b

)
rab ·∇aWab(h)

r2ab+η
2
uab, (16)

where η = 0.01h is a small regularizing parameter added to avoid potential

singularities.

In the SPH method there are many ways to ensure the incompressibility

condition. In the present work, due to the easiness of implementation onto GPU

tq118c-d/70 26IX2014 BOP s.c., http://www.bop.com.pl

Smoothed Particle Hydrodynamics Simulations Using Graphics Processing Units 71

units, it was decided to use the Weakly Compressible SPH (WCSPH) method.

The WCSPH method is implemented by adding the artificial equation of state to

the governing equations

p=B

[(
̺

̺0

)γ
−1

]
, (17)

where B= c2̺0/γ, the reference density ̺0, the numerical sound speed c and γ are

suitably chosen to reduce the density fluctuations down to the demanded level.

The boundary condition is introduced by the so-called Ghost-Particle

method, which is similar to the well-known Classic Image Problem in the electro-

statics. The method consists in creation of modified images of particles located

near the boundary to result in proper physical fields near the wall. For details,

cf. [3] and [11].

4. GPU implementation issues

4.1. Multi-threading

A typical CPU supports one or two threads per core (2–16 cores in modern

devices). In contrast, a typical GPU has from 8 up to 192 streaming processors

(cores) allowing 8 to 192 of threads to run concurrently. For a detailed description

of the NVIDIA CUDA architecture see [12] and [13]. Streaming processors are

organized in streaming multiprocessors. Modern GPU cards, like NVIDIA Titan,

have even 15 streaming multiprocessors (2880 cores). A multi-threaded program

is partitioned into blocks of threads which run independently from each other,

so that a GPU can spread blocks between multiprocessors resulting in faster

execution. Blocks of threads are organized into a one-, two- or three-dimensional

grid, cf. Figure 2.

Figure 2. Grid, block and thread organization in the NVIDIA CUDA programming model;

memory-hierarchy allows threads within a single block to use the fast shared memory; all

threads share access to the global memory

tq118c-d/71 26IX2014 BOP s.c., http://www.bop.com.pl

72 K. Szewc

Since all threads in a block have to reside in the same streaming multi-

processor and must share limited memory resources, there is a hardware limit of

the number of threads per block (currently 768–2048). It is only threads within

a single block that can cooperate by synchronizing the execution and sharing

data using shared memory (cf. Section 4.4). The proper choice of the number of

threads per block depends on both the GPU device and the running algorithm.

The influence of this parameter on the performance of our SPH implementation

on the GPUs available to us is described in Section 6. Summarizing, the com-

plex architecture of modern GPU devices makes GPU programming much harder

than programming for classical CPUs. Well-written GPU algorithms should be

well-scalable with respect to the number of threads, even at the expense of lower

performance of a single thread. Since the SPH method involves a large set of in-

dependent particle-particle interactions its numerical code can be easily designed

to efficiently run on GPU by performing interactions of each particle within an

independent thread (the number of threads is equal to the number of particles).

It is important to note, that no thread synchronization is necessary for the SPH

interaction procedure, therefore, the efficiency can be well-scalable with respect

to the number of particles.

4.2. Searching for neighboring particles

A primary way to increase the efficiency of the SPH method is to use the

kernels of the compact support form, and then, to search for and interact only

with the neighboring particles which are close enough to have non-zero impact

on the result. For this purpose, the computational domain is subdivided to form

an auxiliary grid. In our code, the uniform grid, which is the simplest possible

spatial subdivision, has been implemented. For simplicity, we use a grid where

the cell size is the same as the range of the kernel (2h for the Wendland kernel).

This means that each particle can interact only with a limited number of particles

located in the neighboring 9 cells in 2D (27 in 3D), cf. Figure 3.

The particles-grid relationships are generated at each time step. it is

possible to perform incremental updates to the particle-grid structure, but, due

to the insignificant effect of a generation from the scratch procedure on the

computational time, we decided to implement the simplest scheme. In the classical

CPU algorithms, the particles-grid relationships are held in the form of a linked-

list data structure. Each node is composed of data and a reference to the next

node in the sequence. The linked-lists allows for efficient insertion (O(1) if the

last element is known) of nodes from any position in a sequence. For the SPH

method, the principal benefit of using linked-lists is quick access to information

about the location of particles in cells.

4.3. Single precision calculations

Since GPU cards were designed to accelerate the creation of images in

a frame buffer to output them onto a display, the double precision for such calcu-

lations was not needed. Therefore, most of the desktop GPU cards were designed

tq118c-d/72 26IX2014 BOP s.c., http://www.bop.com.pl

Smoothed Particle Hydrodynamics Simulations Using Graphics Processing Units 73

Figure 3. Particle interaction scheme in two-dimensional SPH; the highlighted particle may

interact only with particles located in the neighboring (colored) cells

to perform fast calculations with single precision only. There is a possibility to

perform double precision calculations, however, typically it is 16 times slower.

There are some GPU devices supporting fast double precision, e.g. NVIDIA Tesla

series. Although they are expensive, double precision are still much slower than

single precision calculations. However, it is important to note that lesser accuracy

related to this issue is not a problem for the SPH method. The numerical errors

related to the kernel shape, random distribution of particle positions and finally

approximations are much higher than the truncation error. In practice there are

no important differences between single and double precision SPH calculations.

4.4. GPU memory

One of the important advantages of GPU over CPU computation is its

potential memory bandwidth and latency. There are five different storage types

on a GPU: registers (∼ 8TB/s), shared memory (∼ 1.5TB/s), texture memory

(∼ 200MB/s), constant memory (∼ 200MB/s) and global memory (∼ 200MB/s).

Well written GPU software should use registers to the largest possible extent.

However, the problem is that the number of registers is highly limited, hence,

it is necessary to use another type of memory, unfortunately with much more

inefficient access, to implement interaction (exchange of data) between threads.

In such a case, the best choice is to use shared memory. The problem here

is that shared memory has small capacity and, additionally, each streaming

multiprocessor has its own shared memory, thus, threads which run on streaming

processors belonging to different streaming multiprocessors cannot share data

using this kind of memory, cf. Figure 2. From the point of view of the NVIDIA

tq118c-d/73 26IX2014 BOP s.c., http://www.bop.com.pl

74 K. Szewc

CUDA language, shared memory is restricted to threads belonging to one block of

threads. The only types of memory shared by all threads are texture, constant and

global memory, however, their bandwidth and latency are much smaller. Thus,

the best solution is to accordingly organize the exchange between different types

of memory to use registers and shared memory as commonly as it is possible.

Hopefully, in the SPH method, the artificial mesh used for searching of neighboring

particles is a natural constraint allowing a good organization of memory on a GPU.

Interaction between particles occurs only for those particles which are located in

the neighboring cells. Therefore, ordering memory to run interaction of particles

within one streaming multiprocessor using shared memory can have a significant

impact on performance. It is important to note that different GPU devices have

a different size of the shared memory, as well as, a different number of streaming

processors and multiprocessors. It results in the necessity to adjust the ordering

procedure to the given GPU device. In our code we only load particle-grid hash

data (cf. Section 4.2) into the shared memory to look at the hash values of

the neighboring particle without loading two hash values per thread. Another

problem is a small amount of the GPU’s global memory comparing to the memory

available in a CPU. High-end desktop GPUs have 4–6GB memory. An expensive

Tesla K40 designed especially for scientific computations has only 12GB memory.

Such amount of memory may be not enough for complex 3D fluid-flow problems

involving hundreds of millions of particles. Therefore, for such systems, there is

a necessity to use multi-GPU solutions; however, the communication between

GPUs can highly decrease the overall performance.

5. Numerical results

5.1. Lid-driven cavity

A two-dimensional lid-driven cavity is a common test for numerical algo-

rithms for viscous flows with the presence of no-slip boundaries. It involves a fluid

of density ̺ inside a square (L×L) box where the upper boundary moves hor-

izontally with the constant velocity uw. Although the geometry is very simple,

there is no analytical solution. For validation purposes, it was decided to compute

the lid-driven cavity flow at Re= |uw|L/ν = 100,1000 and 10000. All variables

are suitably non-dimensionalized with L, |uw| and ̺. The flow results are com-

pared with the numerical calculation performed on a fine-grid using the Eulerian

solver by Ghia et al. [14]. We decided to use N =4096 particles in the domain for

N =100, N =65536 for Re=1000 and N =262144 for N =10000, while h/∆r=2,

where ∆r is a measure of the inter-particle distance (at the initial state). Figure 4

presents the steady-state velocity fields obtained via projection of particle veloc-

ities into a regular (50×50) grid.

The vortex moves toward the centre of the domain with an increase in the

Reynolds number. The steady-state velocity profiles are presented in Figures 5.

All the three considered cases are in good accordance with the reference data.

The numerical performance of GPU calculations is discussed in Section 6.

tq118c-d/74 26IX2014 BOP s.c., http://www.bop.com.pl

Smoothed Particle Hydrodynamics Simulations Using Graphics Processing Units 75

Figure 4. Lid-driven cavity steady-state velocity at Re=100, 1000 and 10000; velocity fields

obtained via projection of particle velocities into a regular 50×50 grid

5.2. Oscillating droplet

One of the most common two-dimensional dynamic multiphase test cases is

a circular droplet oscillating under the action of the surface tension force. Here, we

decided to simulate oscillation of a droplet corresponding to an air-liquid system:

the density and dynamic viscosity ratio between the droplet and the surrounding

gas were ̺D/̺G = 1000 and µD/µG = 100, respectively. The simulations were

performed in a square box of size L. The droplet of radius R = 0.1875L was

placed at the centre of the domain. The initial perturbation was given by the

divergence-free velocity field in the form

ux=u0
x

r0

(
1−
y2

r0r

)
exp

(
−
r

r0

)
,

uy =u0
y

r0

(
1−
x2

r0r

)
exp

(
−
r

r0

)
,

(18)

where u0=4
√
R3̺D/σ, r0=0.25R, while r is the distance to the droplet center.

Lamb [15] showed that the frequency of oscillations of a two-dimensional

droplet is given by

ωn=

√
(n3−n)σ

̺DR3
, (19)

where n is the mode of oscillation. For n = 2, corresponding to our case, the

theoretical oscillation period is

T =2π

√
R3̺D
6σ
. (20)

Simulations were performed for N = 120× 120 particles, initially homo-

geneously distributed in the domain, h/∆r = 2 and the Wendland kernel (5).

We decided to use the Continuum Surface Force technique as a surface-tension

model, cf. [16] for details. Surface tension can be described by the Weber num-

ber We = ̺DRu
2/σ and the capillary number Ca = µDu/σ. Here, we chose

Ca2/We=µ2D/Rσ̺D =0.055. The capillary number, based on u0, was 0.065. The

evolution of particle distributions is presented in Figure 6. The results are suitably

tq118c-d/75 26IX2014 BOP s.c., http://www.bop.com.pl

76 K. Szewc

Figure 5. Lid-driven cavity velocity profiles at Re=100, 1000 and 10000: (left) u-velocity

along vertical line and (right) v-velocity along horizontal line, both through the geometric

centre of cavity; the reference results (gray squares) from [14]

tq118c-d/76 26IX2014 BOP s.c., http://www.bop.com.pl

Smoothed Particle Hydrodynamics Simulations Using Graphics Processing Units 77

Figure 6. Evolution of particle positions in droplet oscillation test (N =120×120)

normalized by the droplet radius R in space and the theoretical value of period

T in time.

To validate the correctness of the SPH GPU implementation, we compared

the oscillation period calculated using the SPH method with the theoretical result

(20). Figure 7 shows the droplet oscillation period as a function of the surface

tension coefficient. The obtained results show good agreement with the reference

data.

Figure 7. Droplet oscillation period obtained from SPH simulation as a function of the

surface tension coefficient; results compared to the analytical solution (20)

6. Performance analysis

For the performance analysis, we used 2 different hardware setups:

• CPU: Intel Core 2 Duo P7550, 2 x 2.26 GHz; GPU: NVIDIA GeForce GT

240M, 48 CUDA cores 1210MHz, 1GB DDR3, 128-bit; OS: Debian Squeeze

64bit, CUDA Toolkit 3.0.

tq118c-d/77 26IX2014 BOP s.c., http://www.bop.com.pl

78 K. Szewc

• CPU: AMD FX-8120, 8 x 3.2GHz; GPU: NVIDIA GeForce GTX 660Ti, 1344

CUDA cores, 915MHz, 2GB GDDR5, 192-bit; OS: Ubuntu 12.04LTS, CUDA

Toolkit 5.5.

The main hardware limitation of both setups was the amount of the GPU

memory. In our implementation, the method requires 0.28GB memory per million

particles in 2D and 0.4GB in 3D. It allows performing simulations of the 3D lid-

driven cavity problem using the NVIDIA GTX660Ti (2GB) up to Re = 1000.

The numerical efficiency was examined on the basis of simulations of the 2D lid-

driven cavity at Re=100. The case is described in detail in Section 5. To analyze

the performance of the code, we decided to measure the time of calculation for

different numbers of particles N = 256, 1024, 4096, 16384, 65536, 262144 and

h/∆r = 2. The time step was constant for all cases ∆t= 0.000025|uw|/L, while

the simulations ended after obtaining the steady-state solution at T =10.0|uw|/L.

Figure 8 presents the computational times as a function of the number of

particles in the domain. The results are compared with a similar numerical code

designed for performing calculations on a classical CPU.

Figure 8. Computational times to obtain the steady-state solution of the lid-driven cavity

test case (2D, Re=100)

Figure 9 presents the speed-up of the computational time referred to the

CPU calculations on Intel Core2 P7550 (2 cores). Both figures show that the

computational performance of the SPH code is much higher using the GPU

devices. In the case of medium-class NVIDIA GT660Ti, the time of computation is

even 8–10 times smaller comparing to the high-end AMD FX-8120 CPU (8 cores).

In the CUDA programming the efficiency of the code is also dependent on

the way how threads are executed within blocks (groups of threads), for details

cf. [12]. Different graphic cards have different optimal configurations of threads

tq118c-d/78 26IX2014 BOP s.c., http://www.bop.com.pl

Smoothed Particle Hydrodynamics Simulations Using Graphics Processing Units 79

Figure 9. Speedup of computational time refereed to the CPU calculation on Intel Core2

P7550 (2 cores); results obtained for the lid-driven cavity test case (2D, Re=100)

and blocks. Figure 10 presents the computational time of the lid-driven cavity

test case for different numbers of threads per block. In the case of the NVIDIA

GTX660Ti graphic card the maximal efficiency has been obtained for 128 threads

per block, while for NVIDIA GT240M it is 64 threads per block. Another thing

that has to be noted is the upper limit of threads per block. Different graphic

cards have different maximal number of threads per block. What is more, since

we use a shared memory for efficiency reasons, the maximal number of threads per

block is limited by the limit of the available shared memory per block. In the case

of the NVIDIA GT240M graphic card, the GPU limit is 16384 bytes. Therefore,

in our implementation of SPH, the highest possible number of threads per block is

256. In the case of NVIDIA GTX660Ti, the GPU limit of shared memory is 49152

bytes, hence, the highest possible number of threads per block is limited to 1024.

Figure 10. Computational time of the lid-driven cavity test case (2D, Re=100) for different

numbers of threads per block; results obtained for two different graphic cards

tq118c-d/79 26IX2014 BOP s.c., http://www.bop.com.pl

80 K. Szewc

7. Summary

The SPH method is considered to be a promising approach for modeling

complex flow phenomena in engineering. Due to the particle-based nature, no

necessity to track the interface position, and no numerical diffusion related to the

interface reconstruction, this method appears to be well-suited to handle multi-

phase flows. What is more, the SPH approach can be easily written in a parallel-

manner. Since, in general, the numerical cost of the classical grid-based approaches

is smaller, this feature is important and makes the SPH method competitive

with grid-based techniques in the field of numerical efficiency. However, in this

case, it is necessary to perform the SPH calculations using GPU devices. In the

present paper the issues related to the implementation of SPH on GPU have been

discussed and the numerical results, including computational times, have been

presented. The comparison of numerical efficiency of the GPU implementation

run on a mid-class GPU device and a high-class CPU processor has shown

higher efficiency of the GPU unit by an order of magnitude. As regards the

disadvantages of GPU implementations, the biggest limitation is the amount of

the GPU memory. However, it is important to note that this issue may be solved

in the nearest future using the heterogeneous Uniform Memory Access (hUMA)

by AMD which allows CPUs and GPUs to share the same memory resources

(integration of CPU and GPU into a single chip).

Acknowledgements

This research has been funded by Ministry of Science and Higher Education

(Poland) via grant Iuventus Plus 0479/IP2/2013/72. The author is indebted to

the Polish Science Foundation (FNP) for a research scholarship START 2013.

References

[1] Monaghan J J 2012 Ann. Rev. Fluid Mech. 44 323

[2] Swegle J W, Hicks D L, Attaway S W 1995 J. Comput. Phys. 116 123

[3] Szewc K, Pozorski J, Minier J P 2012 Int. J. Numer. Methods Eng. 92 343

[4] Wendland H 1995 Adv. Comput. Math. 4 389

[5] Cleary P W, Monaghan J J 1999 J. Comput. Phys. 148 227

[6] Szewc K, Tanière A, Pozorski J, Minier J-P 2012 Int. J. Nonlinear Sci. Numer. Simul.

13 383

[7] Szewc K 2013, PhD thesis, Institute of Fluid-Flow Machinery, Polish Academy of Sciences

[8] Hu X Y, Adams N A 2006 J. Comput. Phys. 213 844

[9] Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B 2009 J. Comput. Phys.

228 8380

[10] Flekkoy E G, Coveney P V, De Fabritiis G 2000 Phys. Rev. E 62 2140

[11] Cummins S J, Rudman M 1999 J. Comput. Phys. 152 584

[12] Sanders J, Kandrot E 2010 CUDA by Example: An Introduction to General-Purpose

GPU Programming, Addison-Wesley

[13] Cook S 2013 CUDA programming. A developer’s guide to parallel computing with GPUs,

Elsevier

[14] Ghia U, Ghia K N, Shin C T 1982 J. Comput. Phys. 48 387

[15] Lamb H 1932 Hydrodynamics, Dover

[16] Morris J P 2000 Int. J. Numer. Meth. Fluids 33 333

tq118c-d/80 26IX2014 BOP s.c., http://www.bop.com.pl

