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Abstract: Amyloidosis, a serious and widespread disease with a genetic background, manifests

itself through the formation of dangerous fibrils in various organs. Apart from the polluted

environment and an unhealthy lifestyle, genetic factors may accelerate this process leading in

some cases to lethal damages to the body. Recently, a growing interest in amyloidogenic protein

research has been observed. Transthyretin (TTR) is a tetrameric protein that transports thyroid

hormone thyroxine and retinol binding protein in plasma and the cerebral fluid. Sometimes

TTR breaks apart and forms fibrils. Several single point mutations, having destabilizing impact

on the TTR complex, are involved in the amyloidogenic TTR cascade. Problems with the

TTR tetramer stability and conformational space characteristics of the protein have not been

addressed computationally before. We present selected results of our molecular dynamics (MD,

∼ 2000ns) and steered MD simulations (SMD) of three variants of TTR: Wild Type (WT), V30M

and L55P. SMD has been used to enforce the dissociation of TTR. Conformational spaces of

WT TTR and its amyloidogenic variants have been investigated using a novel “One Place One

Conformation” (OPOC) algorithm based on a graph technique called Petri net (PN) formalism.

While the PN approach alone does not permit a direct identification of protein regions with

reduced stability, it gives quite a useful tool for an effective comparison of complex protein energy

landscapes explored during classical and/or SMD steered molecular dynamics simulations.

Keywords: transthyretin, amyloidosis, molecular dynamics, Petri nets, clustering, conforma-

tional space, graphs
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1. Introduction

Numerous diseases have a clear molecular basis. Amyloidosis belongs to

such medical conditions and, due its social impact, it has been widely studied in

recent years. The common feature of amyloidogenic pathologies is the formation

of spurious unnatural biological fibrils in the affected organs, for example, in

peripheral nerves or in the heart. Amyloid deposits are made of proteins mainly.

Interestingly enough, precursors of those toxic materials are often WT natural

proteins having their sequences affected in a few places only.

Familial polyneuropathy (FAP) is amyloidosis caused by numerous deposits

of fibrils formed from transthyretin (TTR) [1]. TTR is a tetrameric, 55kDa, protein

which transports thyroid hormones and retinol binding protein in blood and the

cerebral fluid. Kelly et al. [2] have suggested that the decay of a TTR tetramer

into monomers is a key step in such a TTR based disease. There are over 100

dangerous TTR mutations reported in the literature; the particular TTR mutation

and the site of amyloid deposition determine the clinical manifestation of the

disease. Mutations usually increase the probability of unwanted TTR tetramer

destruction [3]. Even such simple mutations, like the L55P substitution, may have

a long-term dangerous impact on human health.

Estimates of TTR protein stability will contribute to better understanding

of FAP. Before the energetics of TTR is studied in detail and new stabilizing drugs

are designed, it is worth characterizing a conformational space of this complex

protein. To this end, we have performed computer modeling and checked whether

any substantial differences between the WT TTR and amyloidogenic mutants

in terms of accessible structures can be observed. Studies of destabilization

caused by single point mutations and based on free energy changes are rather

challenging and computationally expensive, despite the great progress in the

computational methodology. It is easier to obtain exploratory estimates of the

conformational freedom of protein, especially using classical molecular dynamics

computer simulations. Therefore, we have taken this approach in this work.

TTR has been studied computationally in several papers, however, in

contrast to our work, the sole subject of investigations were TTR monomers [4].

On rare occasions when the tetramer was modeled, like in the work of Rodrigues

et al. [5], artificial environment promoting pathogenesis (500K temperature) was

applied as a destabilizing factor, thus, the usefulness of their results is limited.

In order to asses to what extent the TTR structure was affected by the dynamics

in physiological conditions we performed large scale (> 900ns of trajectories) MD

simulations of a human TTR model and models of two widely studied variants,

V30M and L55P. Moreover, we calculated the forces required to split the TTR

tetramer into two dimers using the steered MD method (SMD) [6]. To the best of

our knowledge, this has been the first such study of TTR.

The analysis of MD trajectories is a crucial but sometimes difficult task and

typically it is performed using various approaches [7]. For example, in the paper

by J. Shao et al. [7], eleven different clustering algorithms are compared, based
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on top-down splitting and bottom-up aggregating. In particular algorithms such

as: single-linkage edge joining, centroid-linkage, average-linkage, complete-linkage,

centripetal, and centripetal complete self-organizing maps and tree splittings are

discussed.

In numerous applications the Principal Component Analysis (PCA) tech-

nique is used. In PCA the diagonalization of the atomic movement covariance

matrix and ordering of the eigenvalues allows the system dimension to be sig-

nificantly reduced and helps detect the most important fluctuations [8]. More

recently “dihedral” variants of PCA have been becoming popular: the use of in-

ternal dihedral angles, instead of Cartesian coordinates, facilitates construction of

free energy landscapes of biomolecules [9]. Alternatively, more advanced methods,

such as the Functional Mode Analysis, may be employed to obtain interesting cor-

relations between the system’s behavior and quasi-functional quantity [10]. Those

methods have established popularity, however, they are not easy to use [7]. Every

method of processing multi-gigabyte protein trajectories into simpler, yet mean-

ingful graphs has a potential of giving new insights into the MD analysis process

and expands the arsenal of computational biophysics. Graphs developed in a sys-

tematic way may help, for example, select or point out those features in protein

conformational spaces which are distinct during equivalent simulations for WT

molecules and their mutated variants. Such an approach is certainly “more auto-

matic” than tedious visual inspection of individual frames, and hopefully may be

more informative than the traditional clustering methods [7].

Here we adapted a Petri net approach [11] to the analysis of MD and SMD

trajectories. A special algorithm was developed for generation of a representation

Petri net from a given MD output data set – we called it the “One Place One

Conformation” (OPOC) algorithm. The OPOC algorithm has been tested on

MCP-1 chemokine, perhaps related to Autism Spectrum Disorders [12]. In this

paper we present new data on TTR and its variants related to FAP dynamics

and further exploit the OPOC algorithm using TTR MD trajectories. Our goal is

to unearth possible differences in conformational spaces of TTR and its variants

using simple PN graphs and to provide means for better selection of TTR structures

suitable for a future effective anti-FAP drug design.

2. Methods

2.1. Molecular Dynamics Simulations

All simulations were carried out using the NAMD package [13] with the

CHARMM27 force field [14]. The human TTR structure 1ICT from the PDB

database was used [15] (see Figure 1). The protein was immersed in a TIP3P water

box, at least 8 Å layer was kept in each-direction. NaCl ions were added at the

level of 0.15mmol/L. The MD simulations were preceded by water equilibration,

minimization and heating from 0 to 300K stages. The 1 fs timestep was used

and the Ewald summation method was employed for calculation of electrostatic
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interactions [16]. Mutants were generated from WT protein using the VMD

code [17].

Each SMD simulation [6] was preceded by at least 10ns of classic MD and

cutting of the water box to a droplet. The SMD pulling directions were determined

by vectors connecting the centers of mass of dimers (in the TTR tetramer

dissociation study) or monomers (in the dimer dissociation investigation). In the

SMD Cα atoms of TTRC-TTRD (the tetramer case, see Figure 1) or TTRD (the

dimer study) segments were fixed and the Cα atoms of TTRA-TTRB or TTRA

segments were pulled, respectively. SMD forces were attached to all Cα atoms of

the pulled fragment. 3 trajectories 200ns long for WT, V30M and L55P were split

into four equal parts each (p1-p4) and the p1+p2 parts were further analyzed

using our PN code for the OPOC algorithm written in Java.

2.2. Petri Net Representation of Conformational Space

Below we present a short synopsis on Petri nets. Petri nets (PN) belong

to the mathematical tools created to describe distributed systems [11]. They

were introduced by Carl Adam Petri in 1939 for modeling chemical reactions.

A Petri net has the form of a bipartite graph with two kinds of nodes: places and

transitions.

Definition 1.

A Petri net graph is a 4-tuple (P,T,F,W ), where:

• P is a finite set of places.

• T is a finite set of transitions (or actions), such that P∩T = ∅

• F is a set of directed arcs, satisfying: F∩(P ×P ) = F∩(T ×T ) = ∅ (the place

may be connected with the transition or the transition with the place; two

places or two transitions cannot be connected).

• W : F →{1,2,3, . ..} is a weight function assigned to arcs. The weight of one is

assigned to an arc as a default.

On the network plot places are represented by circles, transitions by squares

and arcs by arrows. Weights are represented by numbers labeling arcs. No label

is displayed near an arrow if its weight is the default (the default: 1).

We do not have any actions in a PN created according to Def. 1 – it is

a steady framework only. We need tokens to have actions. Distribution of tokens

over places of a net is called marking.

Definition 2.

Net N marking is mapping M :P →{0,1,2,3, .. .}.

Definition 3.

A Petri net is a quintuple (P,T,F,W,M0), where M0 is initial marking, and P ,

T , F , W are as in Def. 1.

Definition 4.

For each element t∈T we can define the set of input places •t= {p∈P ; (p,t)∈P}

tq318j-e/292 3II2015 BOP s.c., http://www.bop.com.pl



Computational Studies of TTR Related Amyloidosis. . . 293

which is the set of all places from which an arc runs to transition t and the set of

output places t•= {p∈P ; (t,p)∈P} – the set of all places to which arcs run from

transition t.

Definition 5.

Transition t may fire (such transition is called firabled or enabled) in markingM ,

if the number of tokens in every input place p of transition t is equal or greater

than weight W (p) assigned to the arc between p and t in marking M .

Transition t consumes tokens from its input places p and puts them into

output places q – the number of tokens transferred is described by the weights of

arcs. Firing of a transition changes the marking.

2.2.1. One Place One Conformation (OPOC) algorithm

In the OPOC algorithm one PN place will represent one conformation

of a molecule – a point in the conformational hyperspace. The conformation

of a molecule is represented here by positions of all Cα atoms. Conformations

are sampled from a classical, or steered, MD trajectory. The sampling frequency

depends on the user.

Thus, one PN place in the OPOC algorithm corresponds to the positions

of every Cα atom. Transitions represent possible changes between conformations.

The token marks the current conformation. As the molecule can be just in one

conformation at a given time point, one token only is present in our PN. The

network is generated using a special code developed in house and it depends on

the conformational space visited by the molecule during the simulation (or simu-

lations) used in the PN generation step. The “spatial” resolution of the network,

and therefore its complexity, depends on the RMSD distance cutoff used and the

parameter (Rd) that determines the “granularity” of the analyzed conformational

space. One PN may be generated from a larger number of trajectories of the same

protein.

2.2.2. OPOC protocol

The input data for the OPOC algorithm is: an MD trajectory (or multiple

trajectories), and the Rd threshold – its value is given by the user. Values from

the range of 0.75–5 Å were tested here. During the PN generation the OPOC

algorithm reads data from every input file, frame by frame. Every conformation

of the protein is represented by positions of all its Cα atoms. A place of a newly

generated PN is linked to the conformation identified as the first one forming

a new distinct point (or a cluster) in the reduced conformational space. When

the next frame is read-in, we check if the place appropriate for that structure

has already been obtained. The assignment of all conformations (frames) to PN

places is performed in chronological order. The RMSD measure and structural

alignment are used to compare the current conformation (from the current frame)

and previous conformations (from previous frames), which are already represented

by places in our growing PN. The current frame is aligned with every PN place

generated so far and the smallest resulting RMSD is compared, whether it is
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smaller than the threshold Rd or not. If it is smaller, the current conformation

is assigned to the respective place in the PN. Otherwise, a new place and a new

transition are added to the PN.

The PN generated using the OPOC algorithm is usually small. The size

of the network depends, of course, on the number and size of input trajectories

and the value of the RMSD threshold parameter. However, the main information

contained in these simple graphs is the span of the conformational space subject

to inspection. Such networks clearly represent “the journey” of a molecule across

the conformation space. Sequences of conformations as well as the relationship

between different trajectories are presented in the net as every place can be

associated with an MD trajectory frame, or a cluster of similar frames. For bigger

Rd thresholds the Petri net is strongly reduced and the OPOC analysis results

are similar to those obtained by standard clustering methods. It is expected that

all similar structures/fragments of trajectories will be assigned to one part of the

Petri net.

3. Results and Discussion

3.1. MD and SMD simulations

The structures examined are presented in Figure 1 (a). One can see that the

V30M and L55P mutations are located on the “outskirts” of the main protein core

and not on the interfaces between TTR monomers. Thus, the modulation of TTR

tetramer stability induced by these mutations is a long-range indirect effect. We

selected initial X-ray, random and distant (in terms of the RMSD) structures from

the 100ns TTR trajectory (see the RMSD plot in Figure 2). These are overlaid in

Figure 1 (b). One can see that during our simulations the tetramer did not exhibit

any substantial conformational changes. The VMD inspection of V30M and L55P

trajectories gave a similar picture. Thus, it was not possible to identify any large

scale (or functional) motions/rearrangements that might be linked with modified

stability of the tetramer. The OPOC algorithm is used in the next step of analysis

of the TTR conformational space. The results are described in the next section.

SMD is a useful technique for searching mechanical clamps in forced

unfolding of proteins [18]. Our studies of autism-related neural proteins [12, 19, 20]

have given valuable hints about unfolding paths and intermediates. The method

may be also used to check the mechanical stability of protein complexes. Our

preliminary results (to be published elsewhere) show that the maximum force

for WT TTR tetramer enforced dissociation into AB+CD and AD+BD dimers

is 3719pN and 2520pN, respectively. This trend is identical with experimental

observations [21]. The results for both mutants are similar, but not identical (for

V30M: 3500pN vs 3643pN for AB+CD case, preliminary data), Hopefully, better

statistics of SMD will show distinct stability in these complexes.

3.2. Petri Net representation of the TTR conformational space

The OPOC algorithm was used to create simplified graphical representa-

tions of the conformational space sampled during 100ns MD simulations of WT
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Figure 1. (a) Structure of TTR and localization of V30M and L55P mutations;

(b) X-ray structure, a random representative, one the most deformed structures in the 100ns

TTR WT trajectory

Figure 2. Root mean square distances (RMSD, in Å) between the examined structures and

pdb-based minimized initial structures; the distances were calculated for Cα atoms only

TTR and both mutants. The graphs show increasing complexity when the distance

radius parameter Rd used for the allocation of frames to a given place is getting

increasingly smaller. The real data generated for 3 WT 100ns MD trajectories

(total 3000 frames) is shown in Figure 3. It is up to the user to decide what level

of PN complexity is best suited for further analysis. Our preliminary experience is

that, for complexes similar to TTR, the Rd value of 2 Å gives sufficiently complex

graphs grasping main clusters and distributions of the representative states.

The PN graphs may be compared in terms of numbers of places p and

numbers of transitions t resulting from a given protein, the sampling protocol
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Figure 3. Comparison of PN representation of 300ns WT TTR MD trajectories generated

with OPOC algorithm using the decreasing Rd parameter of (a) 5 Å, (b) 4 Å, (c) 3 Å, (d) 2 Å

and the simulation length. Such p/t parameters may be easily extracted from

the OPOC output. In Table 1 we present data for WT TTR and both V30M and

L55P mutants. The higher the number of places for the same protein, the more

complex (extensive) its conformational space. The PN shape and the distribution

of transitions give another new characteristics of the regions allowed for the

examined system. This data itself describe the flexibility of the molecular complex

in a new and very concise way.

From the data presented in Table 1 we see that the p/t ratios for the richest

set (row 6) for WT and L55P mutants have very similar values: 240/323, 242/314.

However, a distinct (in terms of p) net is generated: p/t=263/313 for the V30M

mutant. Thus, the number of places is higher by 20 (10%) here. This means that

the conformational heterogeneity of the V30M mutant is clearly higher than in

case of the WT TTR and L55P systems. This observation alone does not explain

the amyloidogenic propensity of mutants, but it gives a useful hint for a further

detailed MD study of the particular V30M variant. When large sets of data are

analyzed, such PN based fast analysis helps focus further more elaborate studies

on a small subset of mutations and save computational time.

In Figure 4 we show representative WT TTR and V30M mutant PNs,

together with representative structures from selected p sites. A very careful

inspection of overlapped structures (Figure 4ab) is required to notice minute

changes in heterogeneity of the left parts of WT and V30M structures, probably

induced by a mutation. On the other hand, the PN graphs shown in Figure 4 (c)
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Table 1. Dependence of p/t (number of places p and transitions t) on the threshold (Rd,

in Å) used in the PN generation; data for an increasing number of frames is

presented (#Input files 2 has 1000 frames, #Input files 6 has 3000 frames)

WT

#Input files Rd=1 Rd=2 Rd=3 Rd=4 Rd=5

2 79/106 9/13 4/4 4/4 3/3

4 159/210 16/24 8/15 6/9 4/5

6 240/323 21/30 11/19 8/11 5/7

V30M

#Input files Rd=1 Rd=2 Rd=3 Rd=4 Rd=5

2 91/105 10/15 5/8 3/4 3/3

4 179/212 18/28 8/14 4/6 4/4

6 263/313 27/43 11/18 6/9 5/6

L55P

#Input files Rd=1 Rd=2 Rd=3 Rd=4 Rd=5

2 86/98 11/19 5/11 3/4 3/4

4 166/207 15/34 7/14 4/5 4/5

6 242/314 22/50 10/19 6/8 5/6

WT SMD

#Input files Rd=1 Rd=2 Rd=3 Rd=4 Rd=5

1, 10ns 35/35 14/13 9/8 7/6 6/5

and Figure 4 (d) are easy to interpret and one can see immediately that the plot

of the mutant (Figure 4d) is more complex than that of WT (Figure 4 c) since it

contains more places and transitions.

We compared our OPOC data with a standard clustering method based

on the Cα distance criterion. The number of clusters found grows substantially

with increasingly smaller RMSD cutoff used for clustering, making a compari-

son of all three trees (data not shown) almost impossible. Therefore, in Figure 5

we show only a part of this dependence. One can see that the classical cluster-

ing (1.3–2.0 Å RMSD range) predicts the number of clusters in mutants to be

slightly higher than in WT TTR. We inferred that mutations had led to more

scattered structures. This result is in perfect agreement with our OPOC-based

observations.

One should note that a PN graph alone does not allow direct assessment

of the stability of a given TTR variant (or another complex). However, when the

same methodology is applied to numerous protein variants, a comparison of graphs

helps classify the examined systems in groups of those having large heterogeneity

of the conformational space (low energy barriers between very distinct structures)

and those with conformations clustered into small basins of stable conformations.

The p/t fraction helps control whether the conformational space was

exhaustively sampled in a given MD study. If new trajectories added to the
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Figure 4. Comparison of selected structures from WT (a) and V30M (b) TTR trajectories

and PN graphs (Rd=2Å) for conformational spaces of these proteins (c) WT, (d) V30M;

places representing structures are marked in color

Figure 5. Results from classical clustering of TTR and its variant MD trajectories; the

dependence of the number of clusters found (#clusters) on the root mean square distance

(RMSD) cutoff is shown

OPOC input change substantially the p/f fraction, it means that the part of the

conformational space visited during simulations increases and those additional

calculations bring new data (for example, crucial for free energy calculations).
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If p/t in the PN remains almost constant, despite an increased number of frames

used for the PN generation, it means that the system remains trapped in the same

conformational region.

Figure 6. PN generated for 10ns SMD trajectory describing forced dissociation of WT TTR

Comparisons of different molecule/calculation schemes are even more use-

ful. For example, in Figure 6 we show a PN of a WT TTR tetramer stretched by

SMD into two dimers. Clearly the trivial shape of this graph is somehow antici-

pated since the RMSD rises in a systematic way in the SMD protocol and nothing

but just new places are expected to arise in the course of such simulation. This

example shows that OPOC-generated PNs correctly grasp the major features of

molecular conformational space.

4. Conclusions

TTR is a protein complex of high medical relevance. We performed extensive

MD and SMD studies of this tetrameric molecule and its two amyloidogenic

variants: V30M and L55P. Over 1000ns trajectories were analyzed. A new method

was proposed to facilitate the comparison of conformational spaces of WT protein

and its mutants. The Petri Nets – concise bipartite graphs were generated using

a newly developed OPOC algorithm. The method, initially used for an analysis of

autism-related chemokine MCP-1 [12] was used here to pinpoint major differences

in the conformational flexibility of three TTR systems. We have found that the

complexity of PN critically depends on the Rd distance parameter used for PN

generation. In our opinion, Rd of 2 Å gives a reasonable compromise between the

graph complexity and its informational content (a useful signal) encoded in the

graph. The inspection of PN indicates that the conformational space visited by the

V30M variant on 1000ns MD simulation scale is richer than that of WT and L55P

systems. This observation is consistent with more troublesome classical clustering

of MD trajectory frames. This shows that further modeling of TTR systems is

a promising research area.

We postulate that the PN and the OPOC algorithm may be useful tools

for fast scrutiny of conformation sets generated during biophysical computer

simulations.
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