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Abstract: Several novel techniques have been combined to improve protein structure predic-

tion, structural refinement and quality assessment of protein models. We discuss in brief the

development of four-body potentials that take into account dense packing and cooperativity of

interactions of proteins, and its success. We have developed a method that uses whole protein

information filtered through machine learning to score protein models based on their likeness to

native structure. Here we consider electrostatic interactions and residue depth, and use these for

structure prediction. These potentials were tested to be successful in CASP9 and CASP10. We

have also developed a Quality Assessment technique, MQAPsingle, which is a quasi-single-model

MQAP, by combining advantages of both “pure” single-model MQAPs and clustering MQAPs.

This technique can be used in ranking and assessing the absolute global quality of single pro-

tein models. This model (Pawlowski-Kloczkowski) was ranked 3rd in Model Quality Assessment

in CASP10. Consideration of protein flexibility and its fluctuation dynamics improves protein

structure prediction and leads to better refinement of computational models of proteins. Here

we also discuss how Anisotropic Network Model (ANM) of protein fluctuation dynamics and

Go-like model of energy score can be used for novel protein structure refinement.

Keywords: protein structure prediction, model quality assessment, structure refinement

1. Introduction

Recent progress in the mass-scale sequencing projects has produced enor-

mous numbers of protein sequences, for which crystallographic structures have not
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yet been determined. Additionally, despite the huge investments in high through-

put protein crystallography and the important efforts of Protein Structure Initia-

tive (PSI) Centers, the gap between the number of experimentally solved protein

structures, and the number of known sequences continues to widen. The knowl-

edge of protein structure is critical to comprehend their function, for understand-

ing of molecular mechanisms of disease, and for development of new generations of

medicines based on the computer-aided drug design. Therefore, there is an urgent

need to improve the existing computational methods of structure prediction to

reach ultimately the accuracy comparable to crystallographic or NMR structure

determination resolution. Another extremely important aspect of the improved

structure prediction is computational design of completely new proteins with de-

sired properties that haven’t been yet created naturally by evolution. In the last

decade we have witnessed the rise of synthetic biology, including de novo design

of proteins that were first theoretically conceived, and then synthesized. Possi-

ble improvement of this groundbreaking methodology might have a transforma-

tive effect on protein science, biomedicine and engineering in the 21st century.

Computational protein structure prediction and design usually lead not only to

a single model, but to many alternative models corresponding to local, nonnative

energy minima. Thus it becomes critical to develop potentials, scoring functions,

model quality assessment and refinement programs that may identify the struc-

tural model that is the closest to the native state, and successfully refine it.

Statistical potentials or knowledge based potentials are getting more pop-

ular compared to physics based methods. Statistical potentials relay on struc-

tural, biological and evolutionary information from structures of experimentally

solved proteins deposited in Protein Data Bank (PDB). The “physical” energy

functions expresses our current (limited) understanding of the forces guiding the

protein folding process. However it has been shown that “statistical” potentials

are more successful and useful in CASP [1–6]. The physical energy functions, both

atomic-detailed and coarse-grained remain impractical for template-free model-

ing of proteins, or for models with remote homology because of the inability to

reproduce the funnel-like shape of the energy function. On the other hand, sta-

tistical potentials have been shown to model the funnel-shape energy landscape

for a much larger (and practically useful) range of models. Most of potentials

currently used in protein modeling are pair-wise. The one most widely used in

the assessment of protein models are the Miyazawa-Jernigan potentials [7–16].

It has been demonstrated that pair-wise potentials are insufficient as a tool for

accurate modeling [17]. As an alternative, multi-body potentials are able to take

into account more complex three dimensional interactions that have significant

contribution to energy in the densely packed protein core. Importantly they can

capture the strong cooperativity operative within protein structures [18, 19], and

were demonstrated to perform better than two-body potentials. The four-body

contact potentials developed by us [20] incorporated sequence information with

levels of solvent accessibility of the residues and details of the interactions between
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backbones and side chains through a simple geometric construction. We have im-

proved these potentials by combining the four-body sequential [20] with the four-

body non-sequential potentials [21] and with short range potentials [22]. We used

this optimized potential [23] in the identification of protein native structure, and

tested them with a great success in 2010 in CASP9.

An extremely important problem for protein structure prediction is the

development of better potentials. For models that are several Angstroms away

from the native state, atomic potentials (force-fields) are completely useless

and we must rely on coarse-grained potentials. There is a need to develop

potentials that could scale continuously from the coarse-grained to the atomic

as we approach the native state during the process of refinement of structural

models. Additionally almost all potentials used in protein structure prediction are

for pairs of interacting points. In our opinion, because of the high cooperativity

of interactions of densely packed residues in protein structures, a much better

approach is the use of multibody potentials. In 2007 we proposed four body

potentials [20] that improve the discrimination of the native structure among

decoys. Since four points give the simplest representation of packing in 3D space,

our four body potentials reflect the nature of dense packing of residues in protein

cores. Recently we have significantly improved these potentials (4B OPT POT) [23]

by combining two types of four body potentials (sequential and non-sequential

ones) with pair-wise interactions and by optimizing weights of each term using

Particle Swarm Optimization [24] (see Table 1).

Table 1. Threading results for optimized 4-body potentials vs. other potentials for modeled

targets see [23]; Pearson Correlation Coefficient, Z-score and RMSD of the top

ranked models are shown. Both RMSD for template-based and template-fee is lowest

for the optimized four-body potentials (4B OPT POT)

Template-based Template-free
Potential

Pearson ρ Z-score RMSD Pearson ρ Z-score RMSD

4B OPT POT 0.4 1.33 3.7 0.17 1.3 7.5

BT 0.49 1.5 4.1 0.16 2.14 7.7

4B POT 0.38 1.29 4.6 0.12 2.02 8.4

SKJG 0.43 1.41 4.6 0.14 1.2 9.1

MJ3 0.4 1.29 4.6 0.13 1.98 9.2

VD 0.43 1.4 4.6 0.14 1.7 9.3

We had the opportunity in 2010 to test our approach, and prove their

improvements by comparing them with other modeling approaches at CASP9.

We have participated in CASP9 as the prediction group 4 BODY POTENTIALS.

According to Nick Grishin, who was the assessor of free modeling techniques

at CASP9, 4 BODY POTENTIALS was one of few most successful groups in free

modeling (see Figure 1) despite the fact that we submitted only predictions for

20 FM targets (out of 26 total). Free modeling is the most difficult and most
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Figure 1. Ranking group performance in free modeling at CASP9. Our

4 BODY POTENTIALS (no 300) was ranked 3rd both for best models (red) after Zhang (96)

and Keasar (408), and for first models (blue) after Dong Xu (MUFOLD, no 386)

and Zhang (96) [Courtesy of Nick Grishin]

challenging problem in protein structure prediction, when the sequence of the

protein has only a low sequence identity. We obtained predictions at CASP9 from

several servers that performed well in CASP8. These servers include Zhang, Baker,

Raptor, HHPred, Tasser, Pcons and SAM servers. All the predictions from each

of these servers were taken, which amounts to 30 structure predictions in total.

Optimized four body potentials were applied to each of these structures and the

minimum energy structure was identified as the best fit to the native. However,

because of highly coarse-grained nature of these potentials they performed very

well for template-free modeling, but their performance in template-based modeling

in CASP9 was less satisfactory. Since electromagnetic (EM) interactions are the

most important physical forces for biological processes (gravitational, strong

and weak nuclear interactions are irrelevant) the detailed consideration of these

interactions is of critical importance for successful protein structure prediction.

Here we propose a completely new approach to deal with these interactions.

All “physical” force-fields contain Coulombic terms (that describe very well

also hydrogen bonding) by using predetermined partial atomic charges. The

partial atomic charges are either estimated from various experiments (including

dipole moment measurements) or from quantum mechanics computations of the

electron density for individual amino acids or small peptides. Here we propose

a completely different approach with partial atomic charges being parameters

that are optimized for the recognition of the native structure among decoys. The

hydrophobic interactions that also have EM nature are included in this scheme

(24). The combination of the multibody coarse-grained packing potentials with

detailed electrostatic interaction has been tested in 2012 in CASP10 and led to

excellent results both for template-based modeling and template-free modeling.
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Our prediction group was officially ranked as 3rd (for the top model prediction)

for all targets, and 2nd for hard (freely-modeled) targets. See Table 2.

Hence, the proposed combination of coarse-grained potentials that include

multi-body packing with detailed electrostatic interactions is the most promising

approach to support protein structure prediction methods of the future.

Going further we then combined these multibody potentials with entropies

from elastic network models in order to obtain free energies of structures. We

have shown that these free energy changes based models improve coarse-grained

modeling of protein structure and dynamics [25]. Using these free energy based

models we were able to show enhanced selection of native like structures for

CASP9 decoys. We were also able to pick the best docking poses from high quality

docking poses [26]. The major problem in high-accuracy protein structure mod-

eling based on templates with remote homology is the discrimination of model

accuracy. The most successful Model Quality Assessment Programs (MQAPs)

according to CASP are those that compare different models (constructed with

> 100 different programs) with each other and identify the consensus. However,

consensus-based prediction is possible only within CASP, since running > 100

different methods to collect alternative models is impractical for many reasons,

including the unavailability of most CASP methods outside the CASP experi-

ment. Nonetheless, there exist methods that do not use a consensus or utilize

only a handful of models, and they have been demonstrated to perform rea-

sonably well in CASP. It has been clearly shown in CASP9 that protein model

refinement is an extremely difficult problem in protein structure prediction, and

among all participants in this prediction category only two groups were able to im-

prove (and only slightly) the initial starting models provided by protein structure

prediction servers, while all other participants only degraded these predictions,

mostly because of the inability to discriminate between parts of the model that

are “essentially right” and those that need further refinement, and the inability

to predict the appropriate direction of modification that would bring the model

toward the native structure. Recently a significant progress in structure refine-

ment was achieved by Michael Feig who developed physics-based protein struc-

ture refinement through multiple molecular dynamics trajectories and structure

averaging using structural constraints [27]. In this paper we present some newly

developed Model Quality Assessment techniques as well as structure refinement

techniques.

2. Methods

2.1. Protein structure refinement

Getting biologically relevant structural models of proteins is a problem

involving several resolution scales. Usually we start the modeling from a coarse-

grained model and try to refine it by using more atomic details. For some

biological interactions a detailed picture of both the static and dynamic nature

of the proteins may be necessary. For this case one would need to refine a model
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structure, and select proper candidates from the ensemble of structures generated.

For these purposes specifically designed scoring function could be advantageous

for a general use. Our goal is to modify our Seder methodology to apply it for the

structural refinement.

By construction Seder is a modular algorithm and hence can be modified

with relative ease. Simple ways of improving Seder would be to increase the

size of the training database to include recently resolved structures and unique

decoy models. Since Seder learns from both native and non-native structures, it

is uniquely positioned to perform such a task. Another possible improvement for

Seder can come by increasing the types of inputs. This can be done by partitioning

descriptive features based on the distance involved in their interaction and

other unique descriptors. Additionally, higher order expansion of the underlying

electrostatic sums that make up Seder can be employed. At its current form,

Seder sums information of the first and the third inverse power of distance. These

account for interactions involving bare charges and dipole moments. One can

expand this description to include higher order moments, capturing the finer scale

of interactions.

Thermal motions of atoms in the protein native state, i.e. the fluctuations

about the minimum of the global free energy, are well reproduced by the simple

elastic network models (ENMs) such as the anisotropic network model (ANM).

Elastic network models represent protein dynamics as vibrations of a network

of nodes in which the spatially close nodes are connected by harmonic springs.

These models provide a reliable representation of the fluctuational dynamics

of proteins and RNA, and explain various conformational changes in protein

structures including those important for ligand binding. A study done by our

group presented results where we discuss how elastic network models provides the

basis for protein structure refinement [28].

We have developed a novel protein structure refinement procedure based

on Anisotropic Network Model (ANM) of protein fluctuational dynamics and

Go-like model of energy score. The starting structures were models from past

CASP experiments. We changed positions of C-alpha atoms using ANM, creating

a new set of 250 structures from the initial model and computed energies of these

structures using Go-like energy score. The top 6 coarse-grained structures were

fully rebuilt with BBQ and Scrwl4. To remove bond stretches and the excluded

volume clashes, short molecular dynamics simulations (up to 10000 steps) were

performed with OPLS-AA force field and implicit solvent GBSA-OBC. There was

an improvement of RMSD of each of the 6 structures after 50 iterations. For each

step, the structures from the last iteration (5 decoys) were taken (except for the

first step where only 1 structure is available). Based on these, NM (normal modes)

are calculated for every decoy, and 250 new decoys are generated (with the average

deviation from the original decoy 1 Å). Then 5 of the best structures are chosen for
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further processing. The top 5 decoys are chosen based on Go-like energy functions

which are described in the following relationship.

E=
∑

〈i,j〉

E(d∗ij)

E(d∗ij)=
10

1+exp
(

5(d∗+1)
)+

1

1+exp
(

3(−d∗+1)
)−1.0

(1)

where d∗= rij−r
0
ij+1.

rij is an instant distance between ith and jth particles and r
0
ij is a distance between

ith and jth particles in the native structure.

2.2. Quality assessment techniques

Recently we have developed a method, called MQAPsingle, for ranking and

assessing the absolute global quality of single protein models. The current version

of MQAPsingle submits the target sequence to the GeneSilico Fold prediction

metaserver [29] to collect approximately one hundred of 3D models for the target

protein, These models are later used as reference models.

In parallel, the MQAPsingle executes the following three modules. First

module predicts secondary sequence, solvent accessibility and contact maps for the

target sequence using third-party methods. These predictions are compared with

values of the corresponding features calculated directly from the 3D structural

models by the DSSP program [30]. These (dis)agreement terms, together with

in-house implementation of the DFIRE [31] statistical potential and the number

of unsatisfied hydrogen bond donors/acceptors, are used to estimate GDT TS

score [32] of each of the input and reference models. The second module calculates

the all possible pairwise comparisons between the input models and the reference

models only. Two measures of similarity between a pair of models are applied:

GDT TS and Q-score [33, 34], the latter measures the structural similarity between

two models by comparing their internal residue distances.

Then, 3D-Jury algorithm [35] is applied to calculate the consensus scores

of the input model(s). The third module is based on an assumption that values of

“pure” single-model scoring function, on average, decrease as models become more

similar to the native structure. Thus, the model that is the closest to the native

structure should provide the highest correlation coefficient of a score (provided by

such a single-modelMQAP) versus distance, when used as the reference in pairwise

comparisons with the remaining models [36]. MQAPsingle applies this idea by

comparing the input model(s) to the reference models, and then calculating

such a correlation coefficient for the input model(s), and then MQAPsingle uses

the correlation coefficient as an additional score of the model(s) correctness.Our

method uses two sets of such Pearson’s correlation coefficients between the single-

model based scores provided by the first module and either GDT TS or Q-score.

Finally, to predict the GDT TS score of the input model(s), the primary scores

provided by the above-mentioned three modules and a linear regression algorithm

are used.
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3. Results and discssion

3.1. Protein structure refinement

We have tested Seder modular algorithm and modifications on the CASP10

hard target T0624. We began by unfolding the protein from its native structure

generating 10,000 structures this way. These structures were then used to train

a neural network to predict the TM-score to native of a given model. We call

this version Custom Seder. In Figure 2 we give the results. DFire 2.0 is a popular

knowledge based energy function DFIRE2 [31, 37]. One should note that DFire2

ranks lower energy as more fitting to native and hence the significant positive

correlation is misleading, as actually a negative correlation should be observed if

DFire2 was useful for this target. Seder [38] is a knowledge based scoring function.

It shows some overall correct correlation albeit small. Custom Seder on the other

hand shows a significant positive correlation.

Figure 2. TM-Score as a function of Fit-to-native score; red, green, and blue points

correspond to correlations with DFire 2.0 (corr= 0.41), seder (0.10) and custom seder

(corr= 0.60) developed for our refinement purposes, respectively

We tried to apply elastic network models to refine structural models using

methodology described in [28]. Table 3 shows, for each structure the length,

starting RMSD and the RMSD after 50 iterations. dRMSD is also shown. The

whole structural refinement process was performed iteratively leading to the

improvement of average RMSD from 3.8 Å to 2.6 Å in 50 iterations. Figure 3 shows

the RMSD of the models (TR464, TR469, TR517, TR530, TR594, and TR624)

with the iteration number. The whole structural refinement process was performed
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Table 3. For the 6 structures used, RMSD of the starting structure and the RMSD of the

structure after 50 iterations are shown; length and dRMSD values are also shown;

it can be seen that for all of the 6 structures RMSD has improved after 50 iterations

Name length RMSD(0) RMSD(50) dRMSD

TR464 69 3.032 2.06 −0.972

TR469 63 2.181 1.321 −0.86

TR517 159 4.645 4.016 −0.629

TR530 80 1.987 1.332 −0.655

TR594 140 1.817 1.726 −0.091

TR624 69 5.202 2.664 −2.538

Figure 3. Figure shows the RMSD of the models (TR464, TR469, TR517, TR530, TR594

and TR624) with the iteration number up to 50 iterations; Tte whole structural refinement

process was performed iteratively leading to the improvement of average RMSD from 3.8 Å

to 2.6 Å in 50 iterations

iteratively leading to the improvement of average RMSD from 3.8 Å to 2.6 Å in 50

iterations. It is clear from this figure the decrease of RMSD with each iteration

performed.

3.2. Quality assessment techniques

The current version of MQAPsingle was tested in the latest CASP10 ex-

periment. According to the benchmark published by CASP10 assessors [39],
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MQAPsingle was among the best performingMQAPs for ranking models for a given

target according to their similarity to the native structure (Figure 4). This ap-

proach results in higher accuracy compared to the state-of-the-art single-model

MQAPs. Notably, the prediction for a given model is the same regardless if this

model is submitted to our server alone or together with other models.

Figure 4. The “best selector” performance of MQAPsingle and the best performing

non-clustering QA predictors in CASP10; the average difference in qualities of the top scored

model by a QA predictor and the model with the highest GDT TS score per target, which

implies that the better QA selectors of the most accurate models are expected to have lower

values of the GDT TS-loss parameter; the data are presented both STAGE1 and STAGE2

of the CASP10 experiment for single-domain targets

There is still more space for improvements to obtain more accurate MQAP,

compared to MQAPsingle in the future, for assessing the quality of a single model

It is important to analyze the performance of the all afore-mentioned QA metrics

in the context of modelling difficulty. This approach will be a key component

in creating specialized MQAPs to use them for free modeling, template-based

modeling, or protein refinement. The results of this analysis will be valuable in

terms of helping us understand why and how some model features make it very

difficult/easy to accurately predict the model quality. We believe that in contrast

to clustering MQAPs, MQAPsingle reflects the real life needs of those who want to

predict protein structure by using a few protein structure predicting servers, and

then choose the model ranked the highest according to a model quality assessment

program. We would strongly recommend MQAPsingle (GDT TS Z-score) for those

who would like to select the best models from ensemble of models, regardless

their quality. Our main motivation to develop MQAPsingle was the need of a clear

distinction between the quality assessment of internal domain structures and the

mutual orientation of domains in multi-domain proteins. Nevertheless, we believe
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that our benchmark is complementary to that of CASP10 and that the quality

assessment of individual domains could be used as a separate step in the structure

prediction of multi-domain proteins.
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