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Abstract: The need to interpret experimental results led to, first, an all-atom force field,

followed by a coarse-grained one. As an aid to these force fields, a new approach is introduced here

to predict protein structure based on the physical properties of the amino acids. This approach

includes three key components: Kidera factors describing the physical properties, Fourier

transformation and UNRES coarse-grained force field simulations. Different from traditional

homology modeling methods which are based on evolution, this approach is physics-based, and

does not have the same weaknesses as the traditional homology modeling methods. Our results

show that this approach can produce above average prediction results, and can be used as

a useful tool for protein structure prediction.
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1. Introduction

The field of protein structure prediction, currently an area of intense

theoretical and computational interest, originated from an effort to understand

experimental data. Protein titration and related biophysical experiments indicated

that 3 of the 6 tyrosyl residues and 3 of the 11 carboxyl groups of bovine pancreatic

ribonuclease A (RNase A) have abnormal pKa’s, suggesting that they might be

involved in hydrogen bonds. With 19,800 ways to pair these possible donors

and acceptors, subsequent biochemical and biophysical studies [1] provided the

following unique pairing: Tyr25. . .Asp14, Tyr92. . .Asp38, and Tyr97. . .Asp83,

which was then actually observed in the subsequently – determined x-ray crystal

structure of RNase A. This information, together with knowledge of the location
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of the four disulfide bonds of the protein, provided distance constraints that

motivated the development of a computational approach to predict the structure

of RNase A from its amino acid sequence [2]. Further development of this

computational framework [3] resulted in the ECEPP (Empirical Conformational

Energy Program for Peptides) all-atom force field [4]. ECEPP was used initially

to compute the structures of fibrous proteins, such as collagen and collagen

models [5], and globular proteins such as the 46-residue protein A [6].

Recognizing that such a detailed force field could not be extended to

globular proteins containing many more than 50 residues, a physics-based coarse-

grained (UNRES, UNited RESidue) force field was developed [7]. One of its

first successful applications, in CASP3, elucidated 80% (or 61 residues) of the

structure of HDEA within an RMSD of 4.2 Å [8]. Following this success with

UNRES, molecular dynamics was introduced, in order to compute not only protein

structure, but also the folding pathways of single-chain [9] and multiple-chain [10]

proteins. A recent successful application of UNRES was to a 205-residue CASP10

target with two-fold symmetry [11], providing a result that was much better than

other predictions of the structure of this protein, obtained by using knowledge-

based methods.

Regrettably, even coarse-grained ab initio computational methods are not

yet sufficiently advanced to predict the structure of a protein reliably from its

sequence alone. The most reliable method for predicting the structure of a target

protein from its sequence remains homology modeling [12, 13]. In this approach,

sequence comparison methods are used to find proteins of known structure whose

sequences are similar to that of the target. The structures of those proteins

are then used as starting points for modeling that of the target. For example,

from a comparison of helix probability profiles from the helix-forming tendency

of the naturally-occurring amino acids, it was predicted that α-lactalbumin is

homologues to lysozyme [12]. This was later demonstrated [13] with ECEPP

calculations. Even homology modeling, however, is not completely reliable, a fact

which is reflected in two well-known phenomena:

1. Any large group of proteins known to fold to similar structures is likely to

contain pairs of molecules whose sequences are not related by any known

criteria [14].

2. Sequences are known to exist in which single-site mutations cause a com-

plete change in the fold of the protein [15]. These sequences are not identi-

fiable by current methods.

The principal current method for determining the similarity quantitatively

between two sequences involves pairwise alignment of those sequences, followed by

evaluation of a penalty function which accounts for the degree of correspondence

between matched amino acid residues, and for the presence of insertions and

deletions in one sequence relative to the other. This approach, whose use in the

field is so prevalent, suffers from a number of intrinsic limitations [16]. As a result,

work has been in progress for some time [17–22] on an alternative approach to
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the sequence comparison problem. In the present work, we combine this sequence

comparison approach with the united-residue method in order to increase the

reliability of homology modeling.

2. Method

This approach is based on Fourier analysis, and rests on two important

ideas which are not incorporated into alignment-based approaches:

• Representation of the amino acids by orthonormal, statistically complete

(but non-redundant) numerical factors based on their physical properties,

rather than residue names; and

• Representation of the sequence of the protein by parameters which contain

information about the entire sequence, rather than local information alone.

A numerical, physically-based representation of amino acids was developed

by Kidera et al. [23, 24] who showed that all the known physical properties of the

20 amino acids can be represented by 10 property factors (shown schematically in

Figure 1). These factors together carry 86% of the variance of the entire dataset

of amino acid properties, and therefore the physical characteristics of each amino

Figure 1. A schematic representation by which analysis of 188 property sets attributed

to the 20 amino acids leads to a complete, orthonormal numerical representation in terms

of 10 property factors [23]
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acid are well represented by a 10-vector. An N -residue sequence of amino acids

can therefore be represented by a set of 10N -member numerical strings, each of

which describes the values of one property factor, as a function of position, over

the length of the protein.

The second idea is based on the observation by Lattman and Rose [25]

that the determinants of folding must be distributed throughout the sequence of

a protein. In order to properly encode these determinants, one must be able to

write the sequence of the protein in terms of parameters which contain information

about the entire sequence. We realize this goal by Fourier transforming the 10

numerical strings which together represent the protein sequence. The resulting

(sine and cosine) Fourier coefficients {a
(l)
k
} are characterized by two indices – the

wave number, k, and the index l (1≤ l≤ 10), which identifies the property factor

whose string has been transformed as shown in Figure 2. By the definition of the

discrete Fourier transform, each Fourier coefficient contains information about

the entire sequence. In this connection, we note that the k = 0 (cosine) Fourier

coefficient for the lth string provides the average value of the lth property factor

over the sequence, but contains no information about the linear arrangement of

amino acids along the chain. That information is encoded in Fourier coefficients

with k > 0.

Figure 2. A schematic representation of the process by which the 10N -member numerical

strings which describe an N -residue sequence are Fourier transformed [17, 18], to give

10 strings of Fourier coefficients for each value of the wave number k

In recent work [16], we defined a distance function between sequences, based

on characteristics of the Fourier sequence representation previously observed [22].

We examined the ability of that distance function, using only sequence informa-

tion, to match distances between proteins based only on their structural char-

acteristics. The inter-structure distance function used in that work was adapted

from earlier work on the classification of protein structures [26, 27], and did not

rely on sequence information in any way. It was shown that there is very high

correlation (R≈0.8; see Figure 3) between sequence-based and structure-based

distances. (This correlation, which is a sine qua non for correct homology de-

tection, cannot be calculated at all within alignment-based approaches, because

neither the sequence nor structure distances can be satisfactorily defined for very

dissimilar molecules.) It was further shown [16] that the ability of the Fourier
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Figure 3. The process by which the correlation between inter-sequence and inter-structure

distances is demonstrated [16]

distance function to correctly classify sequences is much greater than would be

expected on a purely random basis, and that the algorithm performs very well in

identifying homologs of actual targets of molecules of interest.

In the present work, we continue to develop the application of the Fourier

representation to the identification of candidate homologs of a specified target, in

conjunction with the coarse-grained UNRES force field. The Fourier representation

of a target sequence was used to identify the 30 candidates closest in sequence

space from the CATH database [28]. PSIPRED [29] was then used to select 5

out of those 30 candidates based on secondary structure agreement between the

PSIPRED prediction of the target and the secondary structure of the candidate.

Initial structures were built based on each of the 5 final candidates, and these were

subsequently simulated using UNRES with MREMD. Then, a cluster analysis was

carried out on the MREMD results, and the final 5 clusters selected as structural

candidates for the target protein.

3. Results

The methodology was tested on a CASP8 target, T0476 (Figure 4), which is

a single domain protein consisting of 108 residues. It contains three α-helices

and a β-hairpin. Traditional homology modeling methods cannot predict the
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Figure 4. (a) One example of a candidate structure obtained by Fourier analysis and

PSIPRED selection based on the CATH database; (b) Experimental structure of CASP8

target T0476

Figure 5. (a) Overlap view of the lowest rmsd structure (blue) from UNRES MREMD

simulation with respect to the experimental structure (red); (b) GDT-TS plot of all models

submitted by all groups for Target T0476 (The GDT-TS plots have been reproduced with

permission from the CASP9 web site www.predictioncenter.org/casp8/results.cgi);

(c) GDT-TS plot of the UNRES predicted structure shown in (a); the GDT-TS was calculated

using GDT-TS server: proteinmodel.org/AS2TS/LGA/lga.html

correct structure of this protein, as shown in the GDT-TS plot of Figure 5 (b),

released by the CASP8 website. Based on the Fourier and PSIPRED results, we

selected five candidates. One candidate (among five) is shown in Figure 4 (a),

and the experimental structure of T0476 is on the right (Figure 4 (b)). Starting

from the structure shown in Figure 4 (a), 2,000,000 steps of MREMD simulation

were performed over 32 temperatures ranging from 250K to 500K, and two

parallel trajectories under each temperature were used in the UNRES simulation.
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The lowest rmsd structure obtained in the UNRES MREMD simulation that

overlapped with the experimental structure, is shown in Figure 5 (a). The GDT-TS

plots of all models submitted from all groups is shown in Figure 5 (b). It can be

seen that the best model from all groups can predict ∼ 95% of the whole chain

at a 10 Å cut-off. The GDT-TS plot of the structure from our UNRES simulation,

shown in Figure 5 (a), can reach ∼ 97% at a 10 Å cut-off.

The combination of a Fourier analysis, based on Kidera factors, and UNRES

simulations can greatly reduce the computational cost of homology modeling and,

at the same time, provide high quality predictions. It should be pointed out that

all of this methodology is physics-based, and avoids the assumptions used in

traditional homology modeling methods.
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