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Abstract: Studies of efficiency of several methods for calculating the interaction potential of

a pair of two-dimensional hard cyclic multimers – molecules formed by hard disks (atoms) placed

at the vertices of a regular polygon – are reported in this work. Such hard-body particles, known

as hard cyclic multimers, constitute a class of important reference systems in modeling structural

and thermodynamic properties of molecular systems. A new method is proposed which can be

easily implemented to Monte Carlo simulations of two-dimensional cyclic multimers and which

is faster than the fastest method used previously.
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1. Introduction

An efficient method for calculating the interaction potential of any particle

is always desirable in computer simulations, especially using the Monte Carlo

(MC) method. During the simulation, the potential is calculated at each step of

the program and the speed of calculations of the potential has a critical impact on

the time needed to carry out the simulation. Thus, in order to be able to perform

a sufficiently long run (giving accurate results) of a large number of particles, one

needs a very efficient method for calculating the potential.

Particles which are considered in this work, further referred to as hard

cyclic multimers (HCM), are composed of n identical hard disks (atoms) of the

diameter d with centers forming a regular polygon with side σ (see Figure 1). The

considered particles can have different ratios of d/σ, which significantly affects

their properties. One of the reasons why HCM systems are of interest is that

in appropriate conditions (near close packing) they show auxetic [1] behavior
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(negative Poisson’s ratio [2]), what has been published earlier for n=3,4,6,7, i.e.

for trimers, tetramers, hexamers and heptamers [3–9].

Hard body interaction between particles implies that their potential can

result in only two different values: infinity, when any two bodies overlap, and

zero otherwise. MC simulations of such a system will therefore proceed in a fairly

obvious way – each trial move resulting in overlapping particles is rejected and

all others are accepted. Methods created within this paper are in fact designed

simply to verify if two neighboring HCM overlap or not.

Figure 1. HCM with few examples of n and ratios d/σ

2. The methods

This section describes various possible methods of checking if molecules

overlap.

Each method is based on four input parameters: ra, rb – positions of

two interacting particles on an axis connecting their centers (ra < rb) and ϕa,

ϕb ∈
[

−π
n
, π
n

]

– angles defining orientations of molecules relative to this axis (see

Figure 2).

Figure 2. Presentation of input parameters using example of two HCM of n=6

• Method #1: calculates mutual distances between pairs of atoms, and stops
when a pair of disks of infinite potential energy is found. It takes into account

all atoms (n2 pairs) of both particles.
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• Method #2: the same idea as in the case of method #1, but calculations are
done for only three atoms (32 = 9 pairs) which are the closest to the other

particle.

• Method #3: further improvement of method #1 – calculations are done for
only two atoms of each molecule, hence only the closest four pairs of disks are

taken into account.

• Method #4: four closest atoms (two per particle, see Figure 3) are selected
as in method #3, and then three mutual distances of centers of molecules are

calculated at given angles ϕa and ϕb, assuming that they are in contact by:

(a) atoms a1 and b1 (r11),

(b) atoms a2 and b1 (r21),

(c) atoms a1 and b2 (r12).

Figure 3. Example of situations a–c using method #4; red crosses indicate locations of

considered contacts of two molecules

The largest of these three distances is the minimum distance at which

molecules can occur at given angles.

Distances r can be obtained from the following formula:

rij(ϕa,ϕb)=R [cos(ϕai)−cos(ϕbj+π)]

+

√

d2−{R [sin(ϕai)−sin(ϕbj+π)]}2
(1)

for pairs of {i,j} : {1,1},{1,2},{2,1}, where: R = σ
2sin(C) , C =

π
n
, ϕa1 = ϕa

and ϕa2 =

{

ϕa−2C; ϕa> 0
ϕa+2C; ϕa≤0 , similarly for ϕb1 and ϕb2, however, one should

note that ϕb must be modified for an odd HCM. If the remainder of division

(ϕb+2C) by 2C equals ϕbmod, then:

ϕb=ϕbmod−C (2)
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The minimum distance at which molecules do not overlap at the given

angles reads:

rmin(ϕa,ϕb)=max







Re[r11(ϕa,ϕb)]
Re[r21(ϕa,ϕb)]
Re[r12(ϕa,ϕb)]







(3)

and the potential energy of two molecules is equal to:

U =

{

0; rb−ra≥rmin(ϕa,ϕb)
∞; rb−ra<rmin(ϕa,ϕb) (4)

Figure 4. Interaction surface and its projection on (ϕa,ϕb) plane of two HCM molecules of

n=6 and σ= d=1

• Method #5: the same idea as in the case of methods #1–#3, but the relative
angle between molecules is taken into account. Also a comparison of value of

their angles in relation to interval (−ϕCP,ϕCP) is made, where:

ϕCP=C−arctg







[

2ctg(C)+
d

σ

√

4−
(σ

d

)2
]

−1






(5)

is the angle at which two molecules are located at the absolute minimum

distance [10]. The main idea of this method follows from the analysis of Figure 4.

It can be seen that when orientations of both molecules are in the range of



A New, Effective Method for Computing the Interaction Potential of. . . 9

(−ϕCP,ϕCP), the problem is reduced to one continuous interaction surface. In
this case, it is sufficient to consider only one pair of disks (the most protruding

atoms toward the other particle) to check any overlap. Otherwise it is necessary

to consider an additional pair of disks. In such a case, for one of molecules not

one but two disks must be taken into account. Another part of the method

determines, for which of molecules the additional disk should be found. This

is done by comparing the orientations of particles: the additional disk must be

considered for this particle, which has a greater value of |ϕ|. The sign of its ϕ
indicates the specific disk of the molecule.

In conclusion, the function finds three disks-atoms (two for one particle and one

for the other one), and in situations where the HCM’s angles are both in the

range (−ϕCP,ϕCP), two disks (one per particle), for which the overlap check is
sufficient. The flowchart of the method #5 is shown in Appendix A.

• Method #6: corresponds to the analytical approach described in the litera-
ture [10].

• Method #7: the approach introduced in method #5 is implemented in
method #4. The maximum value in formula (3) is selected not among three

distances (1), but only two or even one (automatic selection). This modification

additionally increases the efficiency of method #4.

3. The efficiency tests

The efficiency of the described methods was examined by the tests discussed

below.

Sets representing large numbers of twom̄olecule HCM systems were gener-

ated, each characterized by four parameters as in section 2, i.e. ra, rb, ϕa, ϕb.

Then, the time required by a particular method for calculations of the potential

of all systems generated in a given set was measured. Sets were identical for each

method, and the calculations were made on a processor of the same computing

power.

The correctness of all methods were checked on the basis of the analytic

approach [10]. For each of the considered systems, each method always returned

the same value of the potential, as method #6.

Parameters were generated randomly, assuming:

• ra=0,
• rb∈[rmin(ϕCP,ϕCP),2R+d],
• ϕa, ϕb∈[−C,C].

It is only the selection of the rb range that requires a comment. This

parameter determines the distance between centers of particles (since ra = 0),

therefore its minimum value is defined by formula (3) assuming that ϕa = ϕb =

ϕCP. Lower values of rb would obviously result in an infinite potential energy

(overlapping particles). Considering the upper limit, for rb greater than the

presented above, each system would have zero potential energy. The described
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range of rb guarantees that, depending on orientations, the generated systems

can always take any of two possible values of the interaction potential.

Two tests were carried out: (1) using all the created methods except #6;

(2) using only the fastest methods from (1) and method #6. In the first case

particles of n=6 and ratio d/σ=1.0 were considered. In the second case, series

of tests were carried out for n= 4,5,6,19,20,21,97,98,99, in each case for three

different ratios d/σ=0.6,1.0,2.0.

4. Results

The results of the first test for a set containing 5 ·106 systems are shown in
Table 1. The advantage of methods #4, #5 and #7 over the rest of the methods

is clearly seen.

Table 1. Mean computation times of the described methods and their standard errors

for 5 ·106 randomly generated configurations of two molecules; HCMs with n=6
and d/σ=1.0 were considered

Method Time [s]

#1 21.1541(35)

#2 7.8023(21)

#3 3.8312(14)

#4 2.2516(16)

#5 1.8544(11)

#7 2.1909(12)

The main aim of the experiment was to compare the efficiency of different

methods for calculating the interaction potential of two HCMs. However, the

computations gave also a certain result concerning the frequency of configurations

of zero energy against all the generated configurations. The fraction describing this

contribution is approximated by 42.2. This result can be interpreted in such a way

that the average probability of a non-overlapping state in which two HCMs (n=6)

are located within the range
[

σ
√
7,3σ
]

, equals approximately 0.422. Obviously,

the probability that identical hexamers have zero energy at a distance larger than

3σ is equal to unity as the hexamers cannot overlap. With the distance reduction

below 3σ, the probability of occurrence of a state without an overlap decreases

and at distances smaller than
√
7σ the haxamers always overlap so the probability

of zero energy is then zero.

In the second part of the efficiency test in each case method #5 turned

out to be the fastest one, while methods #6 and #7 occupied different positions

depending on n. For small n (4, 5, 6) method #7 was faster than #6, but with

increasing n, method #6 began to overtake it. Examples of dependences obtained

in the test are shown in Tables 2 (n=4, d/σ=2.0) and 3 (n=21, d/σ=2.0). The

results obtained during other tests, for other combinations of n and d/σ, roughly

revealed the same character.



A New, Effective Method for Computing the Interaction Potential of. . . 11

Table 2. Mean values of duration of calculations of created methods and their standard

errors for 5 ·106 randomly generated systems; considered HCMs: n=4, d/σ=2.0

Method Time [s]

#5 1.6693(17)

#6 2.2159(8)

#7 1.8362(15)

Table 3. Mean values of duration of calculations of created methods and their standard

errors for 5 ·106 randomly generated systems; considered HCMs: n=21, d/σ=2.0

Method Time [s]

#5 1.8757(8)

#6 1.9336(6)

#7 2.1466(11)

5. Summary

On the basis of the efficiency tests performed, it can be concluded that

method #5 is the fastest, faster than the analytic approach – method #6 published

previously [10]. Method #5 is particularly advantageous at small n (4, 5, 6). For

large n the difference between the efficiency of methods #5 and #6 decreases.

It is worth adding that for small n (6 and less) also method #7 is found to

be better than the analytic approach described in the literature.

Appendix A

Flowchart of method #5 are shown in Figures 6–5. Variable names coincide

with those used in this paper.

S

Data: C, R,
na, nb, ra, rb, ϕa, ϕb

α := ϕa + na · 2 · C

xan := ra + cos α · R

yan := sinα · R

β := ϕb + nb · 2 · C

xbn := rb + cos β · R

ybn := sinβ · R

dx := xan − xbn

dy := yan − ybn

return:
√

dx · dx + dy · dy

E

Figure 5. Flowchart of procedure ‘getDisksDistance’ (used in subsequent flowchart)
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S

Data: n, C, R, ϕCP, d,
ra, rb, ϕa, ϕb

overlap := false

ϕa > ϕCP ?

ϕa > ϕb ?

ϕstart
a := ϕa − 2 · C

a := 2
ϕstart

a := ϕa

a := 1
ϕstart

a := ϕa

a := 2

ϕa > −ϕCP ?

ϕa < ϕb ?

ϕb > ϕCP ?

a = 2 ?

ϕstart

b := ϕa + (n − 2) · C
b := 2

ϕstart

b := ϕb + n · C

b := 1
ϕstart

b := ϕb + n · C

b := 2

ϕb > −ϕCP ?

a = 2 ?

i := 0

i = a ?

return: overlap

E

j := 0 j = b ?

getDiskDistance(C, R, i, j,
ra, rb, ϕstart

a , ϕstart

b ) < d ?

i := i + 1

j := j + 1

overlap = true

Figure 6. The flowchart of the method #5
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