
TASK QUARTERLY vol. 19, No 4, 2015, pp. 495–526

ACCEPTANCE TESTING

OF SOFTWARE PRODUCTS

FOR CLOUD-BASED ON-LINE DELIVERY

BOGDAN WISZNIEWSKI

Faculty of Electronics, Telecommunications and Informatics

Gdansk University of Technology

Narutowicza 11/12, 80-233 Gdansk, Poland

(received: 12 June 2015; revised: 14 July 2015;

accepted: 20 July 2015; published online: 1 October 2015)

Abstract: Software products intended for on-line delivery by distributors serving an open

community of subscribers are developed in a specific life-cycle model in which the roles of major

stakeholders are strongly separated, unlike in any other software development model known in

software engineering. Its specificity underlines the fact that a distributor of the final product,

responsible for its acceptance for publication and delivery to subscribers (users), is not a member

of the product development team.

Similarly, users of the product, who normally act as clients in other software development

models cannot participate in the process until it is published by a distributor. In the paper a test

methodology defined by the industrial IEEE standard is analyzed in the context of that on-

line delivery software development model and basic recommendation for the NIWA distribution

platform to be operated by the CI-TASK Academic Computer Centre at the Gdansk University

of Technology are formulated.

Keywords: quality attributes, acceptance policy, test procedure, testing automation

1. Introduction

Digital distribution of software, either in the form of an executable code

ready to install on a user device, or a remote service to be called from such a de-

vice, have become prominent in the past decade with the advancement of network

bandwidth capabilities and cloud computing centres, serving globally large com-

munities of users. Moreover, any member of such a community may develop an

application of any kind and submit it to the centre for immediate distribution

to other members. The life-cycle model of a software product developed in such

a manner is shown in Figure 1; it involves phases and stakeholders who have

significantly different objectives and roles, when compared to the classic software

models used in software engineering today [1].

496 B. Wiszniewski

Figure 1. A distributable software product life-cycle

Phases of the distributable software products are the following:

1. Registration – a community member accepts the terms of use of the distribution

platform and enrolls to the process;

2. Development – a registered community member builds his/her application with

the use of software development tools just recommended or physically provided

by the platform operator. In the latter case the tool may be downloaded by

the programmer to work off-line or used on-line as a remote service. Upon

completion of the application the programmer provides the platform with the

required data and uploads it to the indicated server for further processing;

3. Distribution – the submitted application is tested by the platform operator for

conformance with the publicly available platform standards. Some platforms

may provide programmers with a Beta-test facility, making the submitted

application available for a limited time to a qualified group of prospective users.

Upon successful completion of tests, the submitted application is accepted and

released to the public;

4. Exploitation – all community members served by the platform may download

and install the released application code on their devices or call it remotely on

selected servers of the platform. Throughout the rest of the paper these two

scenarios will be referred jointly as on-line software-product delivery, since the

NIWA platform is assumed to support user communities in either way.

There are three major types of stakeholders in the process specified above:

1. developer, the platform user who invents, builds and submits software applica-

tions for on-line delivery;

2. distributor, the platform operator, who controls the distribution phase and

solely decides on conformance of each submitted application to the standards

set up for the platform;

3. subscriber, the platform user who downloads the application code to run it

on his/her device or calls it on the platform server for the input data he/she

provides.

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 497

Each stakeholder listed above contributes to the final product quality

assurance, where testing plays the key role. However, due to the specificity of

the life-cycle model presented in Figure 1, overall organization of the quality

assurance process is different from classic approaches [2]. Before going into more

detail let us first review the basic terminology.

1.1. Testing terminology

In each phase of its life-cycle a software product is being subjected to

static and dynamic analysis. The former refers to its static components, such

as specifications, source code and other documentation, while the later involves

experiments with its executable code.

Basic activities that may be performed during static analysis include in-

spections, walkthroughs and audits. Inspection is performed by the evaluation

team to verify the consistency of the product source code and its related docu-

mentation. It incurs costs to the team, as the activity is time consuming, must

be planned and properly documented – including a complete list of all short-

comings found by the team. A walk-through is a less formal presentation of the

source code by the developer to his/her peers, who may ask questions and suggest

improvements, and may be easily implemented for on-line communities with the

Internet forum mechanisms. Finally, audit is very similar to inspections, except

that the evaluation team is independent of the product developers. The activity

is less costly, as analysis concentrates on a specific subset of issues compared to

the scope addressed by inspections.

The objectives of experiments with an executable code during dynamic

analysis are: testing, to check for errors of specific types, and measurements, to

determine various characteristics of the product.

The basic notion in testing is the test case, defined as a single element

from the enumerable set of all possible behaviors of the tested code that may

be observed during experiments. A model used by testers to represent that set,

along with a predefined criterion used to decide whether to conclude the test as

satisfactory or to continue it to look for more errors, is called a testing strategy.

Two basic classes of strategies may be considered when planning the test: white-

box or structural, when test cases are selected based on an internal structure of the

test item known to the tester beforehand (usually its source code), and black-box

or functional, when the only source of information on the expected behavior of the

test item is its formal requirements specification or user manual. Note that, since

during experiments with the test item its source code may be used, selection

of a testing strategy to evaluate the submitted item by the distributor in the

distribution phase may determine the formally required content of the submission

uploaded by the developer in the development phase (see Figure 1.

Testing strategies and their related sets of test cases constitute a test

scenario, which implies a systematic observation of the expected behavior of the

test item during execution of its code in the controlled mode [3]. By ’systematic’

we mean here planning of which test cases and in what order should be exercised,

498 B. Wiszniewski

and what should be the expected result returned by the test item for each test case,

whereas ’controlled’ execution implies proper configuration and instrumentation

of the test item execution code and its execution environment to register to the

logfile all important data, including the returned results, diagnostic messages,

exceptions, etc. A list of all required activities of the tester, including selection

criteria for test cases, configuration of the execution environment, test item code

instrumentation, logfile structure and test completion criteria constitute a test

procedure.

The above nomenclature has been introduced by the IEEE standard [4],

which defines formally all activities and documents required to perform testing

of software products in an orderly manner. In the context of product life-

cycle presented in Figure 1 some additional notions will be used further in the

paper. One is the acceptance test, involving experiments focused on evaluating

specific quality attributes of the product, important to its final users. Another is

a conformance test, being a sort of the acceptance test for the products aspiring

to a certain class of products, for which some quality standards as set high [5].

Finally, a beta test involves trial exploitation of a software product in its target

environment by a limited group of users. During beta tests the product is still

owned by its developer, i.e., has not been yet accepted by the distributor.

From the point of view of the final product quality, testing is a process

involving activities that are necessary to evaluate how good the product could be.

The decision, whether the product tested to be good (in terms of the adopted test

procedure) may be used in its target environment, is referred to as validation.

Validation in the context of the life-cycle model shown in Figure 1 has to

be performed by the distributor, acting as a third party with regard to both

developers and subscribers. We will argue later in the paper that this specificity

necessitates to narrow the focus of acceptance testing to the following set of quality

attributes:

• security, describing how well the evaluated product is protected against threats

external to it;

• safety, indicating to what extent the evaluated product can harm its environ-

ment;

• reliability, implying that the evaluated product functions properly:

• functionality, assuring that all functions serving the principal purpose of the

product are present;

• performance, including various quantitative characteristics of the product;

• usability, expressing how easy it is to operate the product interface by its user.

1.2. Quality attributes

Importance of individual quality attributes depends on the assumed stake-

holder’s perspective. Consider Table 1, where symbols ’X’ i ’±’ indicate ’high’

and ’moderate’ preferences, respectively, i.e., ’must be’ or just ’may be’ assured.

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 499

Table 1. Quality attributes for on-line software application delivery

Attribute Developer Distributor Subscriber

Security X X ±

Safety ± X ±

Reliability ± X ±

Functionality ± ± X

Performance ± ± X

Usability ± ± X

Certainly, a major concern of any developer should be ensuring security of his/her

code after submission, therefore, each distributor is expected to handle the code

properly and ensure protection of the developer’s IPR during evaluation and after

the code release.

The developer’s preferences on other quality attributes listed in the table

may vary, depending on the particular purpose and target users of the application.

On the other hand, top preferences of the subscriber would be functionality,

performance and reliability, over the remaining ones, depending on the application

semantics. In the context of this paper and the NIWA platform, the most important

attributes are security, safety and reliability attributes, as the distributor should

satisfy both, developers and subscribers, and yet to be forced neither to incur

expenses of the development of the submitted applications nor to bear any liability

costs after their release. Let us consider the developer’s perspective in more detail.

Security; A submitted application should always protect its prospective users

to some reasonable degree, which would depend on its purpose and functionality.

Qualification of this attribute by average subscribers may vary, especially when

they are not aware of what threats could be brought to them by modern software

applications working in the Internet. Therefore, distributors should exercise

caution and follow the principle of ”limited confidence” – their acceptance tests

should always involve a standard subset of test cases, no matter what intentions

are declared by the developer in the submission record and the related product

documentation. On the other hand, developers may reasonably expect protection

of their rights, what implies approval of the relevant terms of use of the platform

services by each developer upon registration, and providing the platform with

all respective security mechanisms to protect the submitted code, e.g. its digital

signature, secure passwords, encryption, etc.

Safety; Both developers and subscribers must be safe from any harm that

a submitted application could possibly affect them, and the responsibility to

prevent that can certainly be attributed to the former. As in the case of the

security attribute before, acceptance tests performed by the distributor should

also involve a relevant and standard subset of test cases, no matter what intentions

are declared by the developer in the submission record and the related product

documentation.

500 B. Wiszniewski

Reliability; Although the submitted application code should always execute

properly and return correct results, it would be unrealistic to expect the accep-

tance tests performed by the developer to cover a full range of functions specified

in its relevant documentation, simply because the distributor is not responsible for

the product development. However, acceptance tests may address some generic

reliability issues by registering such events as application crashes, system error

messages, unexpected shut-downs, hang-ups, etc. Moreover, distributors may in-

troduce mechanisms enabling remote monitoring of downloaded applications, ex-

ecuted outside of the distribution platform, or implement services to collect bug

reports from subscribers to make a decision on permanent or temporary with-

drawal of the accepted submission.

Functionality; A developer is free to specify the full range of functions performed

by the submitted application. The question is to what extent distributors would

be able to test all such functions. By the same argument as before, it would be

unrealistic to include a distributor in the development phase, and require him/her

to provide enough resources for that, and for the costs hard to predict. Therefore

the generic set of the acceptance test cases should focus on exercising each specified

function with some randomly generated input data just to check whether it

terminates properly, waiving verification of the returned result to the subscriber.

The latter would require services for collecting bug reports. Moreover, even if no

bugs are reported by subscribers, monitoring of the number of downloads (calls) of

each accepted application may indicate if its functionality is of potential interest

to subscribers.

Performance; Speed, memory consumption, response time and other character-

istics of this kind, which determine popular opinions on the product expressed by

the subscribers, are hard to standardize by the distributor. In consequence, se-

lection of the generic acceptance test cases may be difficult, due to the profound

diversity of requirements for various classes of applications, execution capabilities

of personal devices and multitude configuration options that may be set to use

them. One exception is when the application is to be run on one of the servers

of the distribution platform – satisfying some specified minimal values of selected

metrics might be one of the conditions to accept the submission by the distrib-

utor. Note that as far as the computational cloud platform is concerned, some

additional effort will be required from its operator (a distributor) to assure scal-

ability of the new service (submitted application) before it can be released. The

above mentioned standardization problems would be irrelevant for commercial

distributors, who are vendors of operating systems and other software dedicated

only to execution devices of the particular type and make. Acceptance criteria

would may include then concrete and measurable performance characteristics.

Usability; Arbitrary interaction patterns that may be implemented by developers

in their applications also make it difficult to define a standard set of the acceptance

test cases. In the context of the NIWA platform, usability of each submitted

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 501

application interface may take advantage of static analysis of its related screen-

shots to assess their legibility, graphical composition, and use of the commonly

understood widgets. Experimental evaluation of the usability attribute, e.g. by

measuring the percentage of errors made by the user when performing some

standard tasks, called the relative user efficiency (UEFF), or an average amount of

time to learn (ATL) [3], might be impractical, due to the additional workload that

the distributor would have to assign to the group of testers evaluating usability

of the submitted application interface. In the case of commercial distributors the

evaluations may be reduced to checking conformance to the obligatory layout and

functionality of the interface displayed on a screen. In other cases, only some

limited performance characteristics of the interface might be measured, such as

reaction time of the user gestures or opening and closing time of the application.

The related test scenario might involve measuring time that elapses between

pressing any button on the interface and observing some substantial change of

its appearance.

2. Distributor policies and procedures

Each submitted application must satisfy a predefined set of rules that form

the basis of the distributor’s acceptance policy. Before proposing such a set for

the NIWA platform let us first review policies of the key players in the global on-

line software delivery market, both commercial distributors and free repository

hosting services.

Commercial distribution platforms would require submissions to comply

strictly with the standards set by the host companies operating them, as each

accepted application may potentially become a part of the company’s offer. For

example, App Store operated by Apple Inc [6] distributes only applications that

run under the Mac OS X system, have a company defined user interface layout

and are dedicated to the specific execution device. Windows Store operated by

the Microsoft Corporation [7] distributes applications that correctly run under

the Windows 8 system, and like the former requires applications to comply with

the company defined user interface layout, but allows a wider range of execution

devices. Finally, Google Play operated by Google [8] distributes applications that

run under the Android system, is less restrictive with regard to the user interface

layout and allows a wider range of execution devices.

Policies of repository hosting service platforms are more relaxed, as their

principal objective is to serve open-source communities and public projects. No

particular operating systems, programming languages, execution device architec-

ture or user interface standards are imposed for the code to be accepted, nor are

any specific acceptance test of the submission performed. Roles of the developers

and subscribers are interchangeable, as platform users may search for specific code

items stored in the repository, incorporate them into their projects, open new ones

and invite other developers to join them. They provide various revision control

502 B. Wiszniewski

and source code management functionality for that. Examples include GitHub [9]

or SourceForge [10].

A short survey of the most important policies of on-line software distribu-

tors mentioned before will be used further in the paper as a point of reference for

policies of the NIWA platform.

2.1. Submission

Each submitted product has to be inspected first for conformance of its

content with the terms accepted by the developer upon registration. The most

common features that are considered in the surveyed policy documents are:

suitability ; user interface; objectionable content ; payments; privacy ; and legal

issues.

2.1.1. Application suitability

Certainly, a software product published on a distribution platform should

have a clear purpose. Products that have no reasonable purpose appreciated by

subscribers may affect its reputation and in consequence reduce the interest of

prospective developers. The following criteria are commonly used to decide on

suitability of the submitted application:

• lasting value – the most preferred products are applications and services that

are attractive and introduce new functionality compared to the current offer of

the distributor;

• duplicates – applications with user interfaces and functionality closely resem-

bling other products already offered by the distributor usually are not accepted;

• spam – multiple publication of the same product is not possible and submissions

of this kind are considered spam. One exception is a successive version of the

existing product, which may be withdrawn upon acceptance of its new version;

• demo – submissions that are intended to only demonstrate functionality of

future products are not accepted. It concerns also products that just mimic

any real functionality;

• code size – if the submitted code is intended to be installed on mobile devices,

or is otherwise considered to be too voluminous for download by subscribers,

the application is not accepted;

• advertisements – policies usually exclude or severely limit acceptance of prod-

ucts which sole purpose is to present users with any advertising or marketing

material. Special care is taken to check if the submitted application may re-

quire users to accept specific settings of their execution devices that enable or

simplify reception of any promotional material after installation;

• neutral to device – applications that attempt or request modification of the ex-

ecution device system or hardware settings are in general considered dangerous

and are not accepted. Sometimes it may be allowed that the application asks

users for permission to change some settings under the provision that it can

automatically restore them to the original values prior to termination;

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 503

• excessive content – for the sake of inspection costs incurred by the distributor,

no excessive material (descriptions or graphics) not related directly to product

functioning, implies rejection of the submission.

Besides that, a common sense must be applied by distributors not to promote

applications confined to any specific functionality class, technological platforms,

execution device architectures, etc. to prevent from narrowing the group of

prospective users, both subscribers and developers. All products in the offer should

be available to the wide spectrum of users, with no excessive costs of upgrading

the hardware or software, data transfers, effort to learn how to install and exploit,

etc. A notable example could be Softpedia [11], which is a library of free Internet

software of multiple purpose, formats, operating systems and execution devices.

2.1.2. User interface

Commercial distributors require submitted applications to provide user in-

terfaces with strictly defined layout and structure, conforming to the company’s

brand awareness strategies. The NIWA platform will be relieved from such con-

straints, nevertheless the following criteria are worth considering as a recom-

mended component of its policy rules:

• screen layout – there are some commonly agreed general rules for organizing the

content of graphical displays, making it intuitive and comprehensible to human

users, and easy to implement by developers with modern software development

tools. Inspection of the application screen layout may then rely on reviews

of screenshots included in the submitted material; applications with illegible,

confusing or otherwise poorly designed interfaces should be rejected;

• widget functionality – action buttons and other widgets, commonly associated

with such operations as “save file” “print”, “close window”, and so on, should

rather not implement other functionality that those suggested by their relevant

icons and placement in the screen. Moreover, graphical symbols should not be

confusing, misleading, fuzzy or inappropriate in any reasonable sense;

• content redirection – commercial distributors usually do not accept applications

that dynamically redirect users to some external content, not documented

by the submitted material. One reason for that is the inability to assess

appropriateness of the unspecified content by the means of static inspection, and

another is the potential of exposing the subscriber to any undesired marketing

material or introducing to the application some additional functionality hard

to control by the distributor.

2.1.3. Objectionable content

Distributors should not deliver any content that is not allowed by law,

inappropriate, or otherwise giving grounds for legal actions against stakeholders

listed before in connection to the lifecycle model specified in Figure 1. The most

common exclusions of the content include:

• promotion of bad habits, including consumption of alcohol, tobacco and drugs;

• pornography, according to its legal definition;

504 B. Wiszniewski

• discrimination of people on various grounds, violence and cruelty, including

animals;

• stalking with anonymous or prank phone calls and messages;

• missing parental control mechanisms for applications addressed to minors.

The exclusions listed above refer in the first place to distributors, but if the appli-

cation is supposed to be installed on the subscriber’s device also to the platform

user. Additional complication comes from the fact that downloaded applications

may be used in countries with diverse legal systems. To prevent that, distribu-

tors should be able to introduce the effective embargo mechanism for selected

countries, and accept increased costs of implementing a more sophisticated user

management functionality. For the NIWA platform it seems more reasonable to

exclude any potentially questionable content. Such a provision, however, would

require a relatively deep inspection of the submission, including all texts and

images that may be generated, and in the case of computer games also anal-

ysis of their story. One example is the popular game where users impersonate

drug-dealing gang members, steal cars and may score points by killing policemen

and innocent pedestrians. Another problem may be the proper rating of software

products to conform to the local jurisdiction of the subscriber. Because of that

it might be recommended to limit on-line distribution of software products by

the NIWA platform only to registered subscribers, for example students of Pol-

ish higher education institutions, companies of the ICT sector and administration

agencies.

2.1.4. Payments

Commercial activities of distributors considered in this paper imply them

to follow specific policies concerning payments and other financial operations

performed by subscribers. Typical operations of submitted applications not to

be allowed by the distributor include:

• payment asked without warning – the application does not clearly specify its

financial purpose to the user;

• third party goods offered – commercial distributors may not want to participate

in selling goods provided by its competitors;

• lotteries or gambling – applicable jurisdiction of the subscriber who wish to use

such an application must permit buying lottery tickets or real money gambling.

With regard to the open character of the NIWA platform, and the pro-

file of user communities (both developers and subscribers), it is reasonable to

assume that products submitted for distribution should not require users to

make any payments, neither directly by calling specialized Web payment ser-

vices, nor indirectly by displaying real bank account numbers, amounts and in-

structions how to make payment to the indicated accounts. Inspection of the

submitted source code and screen shots should be able to find all messages

of that kind.

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 505

2.1.5. Privacy

The meaning of the content displayed by each application may be evaluated

subjectively by various subscribers and extreme care must be taken by distributors

during inspection of the submitted material to avoid possible misinterpretation

of the content and potential rejection of the application by its users as violating

their privacy or personal freedom. Most important aspects in that regard are the

following:

• personal data – besides such clearly defined by law “sensitive” data as names,

surnames, birth-dates, tax identification numbers, etc., other data may also

be considered “sensitive”, depending on the context they are used by the

application. Examples include registration plates of cars filmed on the road

or faces of people caught in specific situations that the application may store

or disseminate;

• tracing and localization – automatic collection of such data has become a com-

mon practice with the advent of mobile devices. One example is automatic

georeferencing of photographs by personal devices and cameras. Applications

distributing photographs may contribute implicitly to tracing its users, not

mentioning those that do it on purpose;

• offensive language – clearly, any application displaying content that is likely to

disgust its users should not be accepted. Interpretation context, however, may

require thorough analysis of local laws and cultural norms of each targeted

group of subscribers;

• religious texts – translation, interpretation and comments of religious texts

may often cause confusion or irritation of various groups of users. Resolving

of a possible controversies may require inspection by specialists, employed for

that purpose by the developer.

Given the aspects listed above it seems reasonable for the NIWA platform to limit

the scope of submissions to the educational and scientific applications only, and

in the case of any potential controversy, to use a common sense approach of an

inspection team including reasonable academic persons.

2.1.6. External services

Any application or service available on-line may itself rely on other on-line

applications or services. Policies of commercial distributors mentioned before are

quite restrictive in that regard, and submissions that intend to take advantage

of applications and services not specifically indicated in the respective policy

document are normally not accepted. The following classes of external services

are usually considered:

• beta testing – relevant services may be supported by distributors (see Table 1)

to improve quality of the product before its final release;

• push notification – if any application wants to forward notifications to sub-

scribers on updates, new applications, to fetch user data, etc., it is supposed to

use the service specifically provided for that by their host platforms;

506 B. Wiszniewski

• game management – a distributor may provide a whole range of services to

support on-line gaming with applications installed on personal devices of the

platform subscribers;

• payments – only specific and trusted payment services may be allowed to be

called by the submitted application, either recommended or implemented by

the distributor;

• download and installation – commercial distributors may not accept applica-

tions that intend to download third party products distributed by other dis-

tributors;

• automatic upgrades – if the developer stipulates any improvement of the sub-

mitted product after its release the application code may implement automatic

download of the new version upon acceptance of the latter in the future. This

mechanism will be combined with the push notification service provided by the

developer.

The most valuable provision of the NIWA platform would certainly be the

Beta testing facility, which may help developers to improve their code in the target

environment before submitting the application for the final approval. The under-

lying “test flight” service should enable trial exploitation of the application by

a limited group of registered subscribers, who may perform their own acceptance

tests and relieve the distributor’s staff of testing the application’s functionality.

The level of interest generated by thus Beta tested application may help the

distributor to assess its potential for becoming of any lasting value, whereas sub-

scribers may contribute to that goal by indicating possible improvements to the

developer. Since the principal objective of the NIWA platform is to serve the open

community of independent developers, applications requiring external services

that support commercial activities should not be accepted, nor should services of

that kind be offered by the platform.

2.1.7. Legal issues

Extreme care has to be exercised by distributors to ensure that the

purpose, functionality and content of applications submitted for publication

comply with the national and local legal systems of the subscriber. This applies in

particular to medical applications, which usually are not allowed for distribution

unless authorized by the relevant certification agency. Consequences of using an

unauthorized medical application may reveal a long time after its publication

in the form of claim suits and other legal actions against the distributor for

damages caused to subscribers by a faulty medical application, e.g. a smartwatch

application incorrectly measuring blood pressure of its user. Another threat of

this kind is potential infringement by developers of some third party copyrights,

either directly or indirectly. Direct infringement involves a developer distributing

somebody’s else code, what should be detected by the distributor inspecting the

submission. Indirect infringement is more subtle and may be harder to detect

in the acceptance phase, if the application functionality can make subscribers

to unconsciously perform unlawful activities; they may later take legal actions

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 507

against the distributor, e.g. claiming reimbursement for a penalty imposed by

the subscriber’s taxation authority for distributing music of video files using

the BitTorrent protocol, or trading virtual objects for real money in computer

games [12].The following legal aspects regarding the submitted applications are

usually considered by commercial distributors:

• human health related purposes of the application, e.g. for performing alcohol

or drug sobriety tests, collecting various health parameters, controlling dosage

of medicines, buying or just advertising them may require certification of some

authority independent of the application distributor;

• copyrights of any third party logos, music, photos and video clips must not be

violated;

• similarity to other applications, posing a threat of suing the distributor for

plagiarism, is normally not accepted;

• file sharing, usually related to the use of some external service not provided by

the developer, is not advised, as it puts more workload on distributors to check

for possible violations of copyrights, privacy or security of subscribers;

• impersonation of others has a potential of laying the grounds for possible

wrongdoing and is generally not accepted.

Special consideration must be given to the form of licensing the published

code of accepted applications and the content they can deliver to subscribers.

Based on that it will be decided what legal aspects of the submissions will have

to be inspected.

2.2. Submission reception

Based on the policies of the key commercial distributors, outlined in

Section 2, the following components of the submission should normally be required

by the distributor:

• application source code and files with all text and graphics used by the

application during run-time for inspection – to exclude objectionable content

listed in p. 2.1.3;

• screen shots, made by the developer at some key moments of the application

run-time, to enable initial screening of submissions, and rejection of interfaces

with quality below the predefined threshold of acceptance – before the actual

testing of the submitted execution code can take place;

• installation package with the executable code, installation scripts, configuration

files, etc., enabling developers to reproduce the generation and installation path

of the submitted product.

By assuming that the average NIWA subscriber has basic computer pro-

gramming and administration skills, acceptance testing of each submission may be

reduced to a reasonable minimum: to check if installation scripts execute correctly

and the executable code is free of any common malware. If, however, submitted

applications are to be delivered as services by the platform, dynamic analysis of

508 B. Wiszniewski

the executable code will be more exhaustive. Further in the paper a more compre-

hensive approach will be proposed, based on the software industry standards [4].

2.3. Submission acceptance

Inspection (static analysis) of the submission content is not sufficient for

accepting it for publication, for the reasons given before, and certainly should

precede testing (dynamic analysis) of its executable code. Similarly to the static

analysis, its dynamic counterpart also requires careful selection of features to be

analyzed (tested). It is worthwhile to refer again to acceptance policies of the key

commercial distributors mentioned before and define such features for applications

intended for the NIWA platform. They should not put too much workload

on testers analyzing each submission, and at the same time should guarantee

a reasonable acceptance rate of published applications by the community of

subscribers. By accepting a submission its distributor gives subscribers a sort of

warranty that specific features listed in the relevant acceptance policy have been

checked. Such a warranty is for a limited time only, since during the exploitation

phase subscribers may discover defects not revealed earlier in the acceptance phase

or their interest in the application may gradually decrease below a reasonable

level.

A generic set of features to be tested during the acceptance phase of

applications submitted for distribution by the NIWA platform is proposed below.

Further in the paper several concrete testing strategies will be recommended and

illustrated with a realistic case study of a specialized software library – one of the

candidate products planned to be published there.

2.3.1. Acceptance criteria

According to the terminology introduced in Section 1.1 acceptance testing

requires testers to select a set of quality attributes that are used to assess

a software product of interest. By determining threshold values, or setting various

intervals to differentiate them, acceptance criteria are defined and used to formally

accept or reject the analyzed product [3]. Below we consider in more detail the

relevant features of software products submitted for distribution by NIWA that

will be tested to access attributes listed in Table 1.

Security; During each operation supported by the available functionality of the

application its users must be protected against any threat that may be posed

by its execution environment. Typically, features that may be tested in that

regard include: presence of viruses and malware in the code, collection of sensitive

(personal) user data by the application, dynamic modification of its code, logging

user activities or location, as well as handling of payments by it. Some of these

features might be analyzed already during inspection, e.g. by checking what

user data are collected or what services are used to handle payments, but only

systematic monitoring of the properly instrumented code during runtime may

allow testers of the application to verify clarity of intentions of its developer.

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 509

Safety; Execution of the application should also pose no threat to its operational

environment or user. Features to be tested in that regard usually include:

performing I/O outside of the designated memory space, inadvertent use of

execution device hardware, distraction of users operating various types of vehicles

(drivers or pilots) and system integrity. These features should be tested for each

product submitted for publication whenever possible. In particular no application

will be allowed to compromise integrity of its underlying operating system.

Reliability; A subscriber may reasonably expect each publication published

by the distributor to reliably perform its functions, specified in its respective

manual. The application should correctly respond to all legitimate user actions

and reject or diagnose the illegitimate ones. Assessment of this attribute during

the acceptance phase may be a demanding and costly task for the testing

staff, as applications may implement arbitrary functionality. Therefore, the only

reasonable support that distributors may provide to the open community of

subscribers is assuring stability of the published application code, implying

that during its execution it will not unexpectedly shut down, hang-up, fail,

or otherwise exhibit any visible and obviously erroneous behavior. For non-

commercial distributors some attention during acceptance testing may be given by

testers to portability of the code. This feature should be addressed by developers

in a submission record (see Figure 1), by specifying alternative execution devices

the submitted application may run on, operating systems, I/O devices, and so

on. During acceptance testing the developer’s staff should then be able to verify

that. If the range of possible execution devices is particularly rich, workload

for testing portability of the application may be significant. Distributors may

cope with that by providing the Beta testing facility mentioned before. An

interesting solution in that regard has been provided by Microsoft to Windows

Store developers, who may remotely access any device currently in the offer

by Nokia by calling a dedicated Web service, before actually submitting their

applications for publication [13].

Functionality; Besides reliable execution, the functionality of the application

should be complete and implemented in full, as specified in the manual or other

documentation, usually distributed with it. Testing the application functionality

is the sole responsibility of its developer, and should be completed before its

actual submission for acceptance and publication. Distributors rarely participate

in the development process of submitted applications, so acceptance tests that

they are able to design can focus only on some general features. One is the

added value that the application’s functionality can bring to the community

of subscribers – the application must perform some real computation rather

then mimic it (demos are not accepted), must not create a false impression

that it solves a real computational problem, should not mostly advertise other

products instead of performing any useful computation, and so on. Another

general functionality feature of submitted applications that may be tested by the

510 B. Wiszniewski

distributor is conformance of the graphical user interface and menu components

of submitted applications to the commonly understood functionality of standard

widgets used by them, like action buttons, sliders, combo boxes, etc. If the

distributor decides to perform yet more exhaustive testing, the next candidate

feature worth considering is correctness or precision of diagnostic messages

displayed by the application. Testing application functionality may also focus

on checking whether the observed behavior of the tested application is consistent

with the functionality class declared by the application’s developer, e.g., a text

editor really edits texts, a navigation tool displays locations on maps, etc.

Because of a very wide range of functionality classes of applications to be

accepted for distribution by the NIWA platform, testing of their functionality will

not have to be performed often – probably only when the NIWA staff is somehow

involved in the development phase. It may be expected that the community of

subscribers will be able to quickly verify the value of each published product;

applications that are not able to attract attention of the community, or loose it

after some time, may be simply withdrawn from the publication as not functional

enough.

Performance; Most popular applications distributed today are intended for mo-

bile devices, therefore performance related features that have to be tested during

the acceptance phase may be quite specific and related to certain operational limi-

tations of such devices. Typically they concern the size of the executable code that

must be downloaded via WiFi or cellular connection and installed on the device,

the bandwidth required for using the installed application, its time of reaction to

the user stimulus on the touch-up screen, battery load consumption, quality of

media playing, etc.

Performance testing of products submitted to NIWA for publication, may

focus on checking how the specific values of metrics declared by the developer

upon submission compare to values measured by the NIWA staff during acceptance

testing. The experiment would require configuring the execution environment for

the application as specified in its submission record, and next measuring the

indicated metrics. If the measured values are not worse than the declared ones,

the application may pass the test. Applications intended to run on a distributor’s

server would require more work on planning and executing performance tests,

especially if the distributor (in this case the NIWA platform) declares a specific

level of scalability.

Usability; Distributors prefer publishing a product that is usable, i.e., a level

of difficulty of using it by subscribers should not exceed their average level of

competency. Typical features that may be tested with regard to this attribute

include: understandability, reflecting how fast users can learn to use the applica-

tion, or what the error rate is when they use it, conformance of the application

interface to the standard (if any) for the class it belongs to, complexity of its

interface, its aesthetics, as well as support the developer can provide to users of

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 511

the application. In the case of commercial distributors, designing usability tests

is straightforward: each distributor requires submissions to conform to standards

set-up for all products with the distributor’s logo. Any product deviating from the

standard is considered by the distributor to be of lesser usability. For the NIWA

platform no specific interface standard can be defined, except for some general

guidance and commonly agreed good practices, namely aesthetics of the interface

and its minimal functionality, e.g., the undo and help buttons. Proper evaluation

of understandability and complexity of the interface may be left to subscribers

(application users), who may express their opinions and suggest improvements

on the product forum. Based on that the distributor may decide to withdraw

publication of the product from the NIWA platform.

3. Test scenarios

The specificity of the life-cycle model of the software product intended

for on-line delivery may affect the test scenarios to be considered by developers

in several ways. Firstly, communication between stakeholders is determined by

different distribution of their roles when compared to other life-cycle models.

Note that developers, distributors and subscribers do not form a single team and

their objectives are different: developers design and implement their applications

without any formal participation of users (who are clients in other models),

whereas distributors act as independent auditors, who normally do not suggest

improvements to the submitted software product and perform acceptance testing

without its future users. Secondly, acceptance testing of the same applications

is performed several times: by the developer, who wants the application to

be accepted, by the distributor, who checks the submitted code against the

acceptance criteria currently in force, and by the subscriber, who checks if the

published application can satisfy his/her needs. The developer usually cannot take

advantage of test results obtained by the distributor, on the other hand, crash

reports recorded by the distributor may be returned to the developer, who can use

them to improve the product. Crash reports may also be returned to developers

by subscribers, if only the application code enables that. Finally, the distributor

may provide the developer with meaningful data from the market, concerning

various statistics on the use of the published application. Gathering such data

directly by developers would incur costs and requires expanded infrastructures,

usually operated by big companies. One example of such support may be Google

Analytics, the Internet statistics service available to developers subscribing to

Google Play [14].

The life-cycle model of products to be published by the NIWA platform

includes four activities that involve static or dynamic analysis methods explained

earlier in the paper: application building during the development phase, and beta

test, submission and release in the distribution phase. Below we characterize

shortly test scenarios within the context of each activity.

512 B. Wiszniewski

3.1. Build application activity

Test scenarios considered by developers during the development phase

are beyond the scope of this paper, since they are practically free to choose

any software design patterns, development tools, implementation techniques

and languages, and of course acceptance testing strategies, when building their

applications. Commercial distributors, however, may provide developers with

specialized IDE tools to ease the process of application building and testing, as

well as request conformance to specific coding standards; they may also deliver

additional services to advice developers on various test design and implementation

issues. Although delivery of specific development tools is not planned by the NIWA

platform, support and advice may be provided by enabling a forum service for

exchanging opinions between developers and subscribers.

3.2. Beta test activity

A distributor may grant some resources (computation nodes, memory

space) to the developer willing to beta test his/her application with the help

of its future users. Releasing the application before submitting it for publication

has obvious advantages – to the developer, who can access a wider group of

subscribers at the distributor’s expense, and to the distributor, by reducing the

workload of its testing staff. Commercial distributors often take advantage of this

provision [6]. Clear distinction of the beta test activity in the distribution phase

from the execute activity in the exploitation phase may improve communication

between the developer and its subscribers, contribute to the level of maturity

the submitted product may get (mostly because of the potentially rich set of

testing strategies used by the community of subscribers), and reduce a time to

wait for acceptance of thus tested submission. In the initial version of the NIWA

platform the beta test facility enabling direct interaction between developers and

subscribers is not enabled, however, in a longer run such a service will have to be

provided.

3.3. Submit activity

As indicated earlier in the paper, a proper completion of the submit activity

requires a distributor to statically analyze the submitted material with regard to

the textual and graphical content, interface language, structure of the source

code and size of the binary code. Depending on the assumed depth level, the

content may be inspected, reviewed or audited to check if the submitted content

is appropriate and the application is written well (not necessarily correct). The

policy of the NIWA platform has not been yet formally set up, when writing this

paper – the results of the analysis of policies of the selected distributors, presented

in Section 2 should provide a base for that.

3.4. Release activity

Positive results of the static analysis performed during the submit activity

imply performing release activity as the final activity of the distribution phase. Its

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 513

completion requires making a decision on whether the execution code satisfies the

acceptance criteria set up in the relevant policy. If so, the product is released to the

exploitation phase with a warranty to subscribers that it conforms to the policy

rules published by the distributor. During the latter phase the product is still

being evaluated by subscribers, interacting with themselves and the distributor

using communication forum services, provided by the latter, to exchange opinions,

suggest improvements, indicate errors, even participating in the development of

somebody else’s code [11]. A distributor moderating the forum may decide on

withdrawing the publication from its offer and advise the developer to improve it.

Also developers may use such a feedback from subscribers to decide on submitting

improved versions of their applications. Subscribers may also directly interact with

developers, if the latter are included in their applications contact data.

The executable code may be exercised by subscribers in arbitrary ways on

their devices, but when executed on the distributor’s servers, additional services

for logging user actions may be provided, certainly more informative than crash

reports mentioned before.

If the underlying policy of the distributor requires performing acceptance

tests by its staff more effort is required to complete the release activity. Depending

on whether the submission included the design documentation and the code, or

just the code (source and executable), the distributor may choose to use black-box

or white-box strategies [3]. However, if the distributor’s staff did not participate

in the development of the submitted application, white-box testing may require

too much effort to analyze the semantics of the submitted source code. This is

because selection of test cases based on the source code is much more efficient when

testers can directly interact with the its programmers or designers, as anomalies

found in the code structure may have to be clarified before actually running the

test experiments; this kind of interaction is not provided by the life-cycle model

presented in Figure 1.

The prospect of providing developers with white-box test case selection

mechanisms by the NIWA platform, in the context of the beta test activity,

remains open. It will not imply participation of the distributor’s staff in the

product development process, as in the case of other life-cycle models [1]. One

important argument against white-box testing of a submitted application by

the NIWA staff, is its strong dependence of the required analysis on a language

in which the application code is written. Since no specific requirements on

implementation languages or development tools in the related acceptance policy

will be given by NIWA (quite the opposite to policies of commercial distributors),

automation of test case selection may be a demanding task, even for such

strategies straightforward to implement as branch or mutation testing [3]. For

each submission the NIWA staff would have to plan a separate test team or provide

expert support to developers.

Black-box strategies could be much more flexible in optimizing the distrib-

utor’s costs of acceptance testing: selection of test cases would not require source

514 B. Wiszniewski

code analysis, and its automation is fairly easy to implement, e.g. the Monte-

Carlo testing strategy [3]. In Section 5 examples of such strategies will be given

for one of the first submissions to NIWA. Another argument in favor of black-

box strategies for acceptance testing of applications submitted to NIWA is that

their features to be tested, explained in p.2.3.1, do not require analysis of the

application code semantics.

In summary, acceptance testing of each NIWA submission should be able to

check if its code:

• does not do anything not allowed by the platform’s policy (criteria of safety

and security);

• does not shut down unexpectedly, crash or hang-up (criterion of reliability);

• reacts to the user’s stimuli in a predictable time (criterion of performance);

• performs reasonable computations (criterion of functionality);

• delivers an understandable and logically structured user interface (criterion of

usability);

• does not require for its installation and execution any services or applications

not generally available, especially not published by NIWA (criterion of usabil-

ity).

4. Methodology

Features of the application code submitted to NIWA will be tested in

accordance to the methodology defined by the IEEE 829-2008 standard [4], which

specifies a set and structure of documents necessary to systematically plan,

execute and evaluate experiments. Implementation of this standard will involve

a predefined sequence of standard steps, implementing the NIWA acceptance

policy. Basic facets of the above mentioned methodology will include: test item

transmittal, test plan, test design, specification of test cases, specification of the

test procedure, test logging and incident reporting, and finally the test summary

and conclusions. Since submissions may consist of multiple components, e.g.

a library of functions [15], different testing models, test case selection strategies,

and test scenarios, may have to be considered and implemented for the same

software product; throughout the rest of this section we will refer to each tested

component briefly as the ’item’.

4.1. Test item transmittal

In order to be tested, items should be made available to responsible testers

at some specified location on the distributor’s server. They will be in a form

ready to use by testers, specified formally by the document called the test item

transmittal report. The report provides complete information enabling testers

to perform all the steps mentioned before. The NIWA platform may support

automation of these steps, based on such formal specification, with its workflow

management service; it would, however, require additional work to integrate some

third-party test automation tool with that service. The advantage might be

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 515

reduced effort spent on performing the test procedure, orderly execution of its

steps and repeatability of the entire process [16]; so far, all activities following the

test item transmittal must be performed manually by NIWA testers.

4.2. Test plan

Selection of features to be tested for each item, and their proper justifi-

cation, provides a basis for the test plan. In the model shown in Figure 1 the

features are already implied by the respective distributor’s policy and related ac-

ceptance criteria. Therefore, the NIWA tester will start the test planning activity

by selecting the most relevant (or all) features from the list specified in the previ-

ous section, and decide how the correctness of the test results should be verified.

In many cases the rule will be fairly simple, e.g., the tested item must launch

properly on a given device. For more complex features, e.g., a service reacts to

the user’s stimuli in a reasonable time, specific quality characteristics must be

defined, e.g., the service scales-up linearly [2].

In the case of implementing test automation by the NIWA staff it may

be useful to consider a standard catalog of recommended methods for checking

whether the obtained results are in agreement with the ones required (by the dis-

tributor) or declared (by the developer). Such standardization would be possible

and realistic, since the set of features to be tested for all submissions is fixed. If

NIWA testers are required to test also the functionality of applications being sub-

mitted, in particular to verify the correctness of their computations, a specialized

CAST tool may have to be acquired or developed; one example is the Rational Test

Workbench tool, well integrated with many operating systems and IDE tools [17].

However, introducing such a facility to the NIWA platform would not be econom-

ically viable. Instead, for its open character, the major role of NIWA functionality

testers should be attributed to the community of developers and subscribers, by

keeping responsibility only for the acceptance criteria underlying the remaining

quality attributes discussed in detail in the previous section.

4.3. Test design

Test items listed in the transmittal report – intended for testing according

to the assumed test plan – require testers to carefully design the test. This

step involves determining the features to be tested for each single item, defining

a relevant test case selection strategy for each feature and a method for evaluating

the results obtained for each case. Selection of test cases should be justified, based

on a comprehensive analysis of the product documentation and in a way enabling

evaluation of the results obtained for each case. The list of test cases must indicate

relevance to each feature to be tested and the respective decision rule for accepting

the result.

Four specific techniques are planned for the NIWA platform to exercise test

cases specified in the test designed for each item: virtualization of the application’s

target execution environment (sandboxing), exploration of functionality and

516 B. Wiszniewski

dynamic content of its user interface, and measurements of its selected physical

metrics.

4.3.1. Execution environment

The virtualization technology will enable effective separation of running

applications from the NIWA platform hardware and system. Such separation

is needed to protect subscribers from the yet untrusted code and to enable

its controlled mode of execution. As explained in p.1.1, this mode involves

instrumentation of the run-time code and its execution environment, which

enables monitoring and logging of various operations concerning access to the

CPU, RAM, system registers and communication ports of the application’s target

execution device, as well as input and output streams of the application. The

application is placed in a sort of a sandbox, and cannot affect the original system

of the distribution platform.

The underlying distributor’s system running the sandbox remains transpar-

ent to the virtualized execution environment, where the tested item is exercised.

Any event of interest generated by that item occurs only inside the sandbox and

may be easily registered to the test log without affecting the behavior of the item,

in particular without causing a probe effect – an unwanted phenomenon occurring

during execution of the instrumented code [3]. The test log content may later be

analyzed by testers to assess whether the tested item can really pose any threat

to its target execution environment. In extreme cases execution of the code inside

the sandbox may be interrupted and the item rejected.

Another advantage of using the virtualization technology for acceptance

testing of submitted items is the possibility to configure its target execution

environment exactly as specified in its transmittal report, and run experiments

with many items in parallel.

4.3.2. Exploration of interface functionality

Applications published by NIWA are supposed to communicate with users,

devices and systems in arbitrary ways, from textual or graphical user interfaces

up to software APIs and Web services. Their communication may involve events,

generated asynchronously and in any order, as well as single data or streams of

data. As argued before, the black-box approach will be used to provide a basis for

the test case selection, and product functionality will not be considered a primary

set of features to be tested. In consequence, the Monte-Carlo strategy seems to

be the best candidate for automatic selection of test cases – drawn at random

from the set of equally probable cases. Such selection is justified, given the fact

that events and data related to various features determining evaluation of quality

attributes considered in Subsection 1.2 are equally important from the acceptance

policy point of view. Moreover, their uniform distribution over the set of possible

cases to be exercised guarantees their systematic selection.

The Monte-Carlo strategy applied to test a graphical interface would imply

generation by testers (or a testing tool) of arbitrary sequences of events (gestures)

captured by the widgets present in the application’s window, as simple as mouse

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 517

clicks on action buttons, ticks of radio buttons, shifts of horizontal or vertical

sliders, or more complex, as selection of specific entries in pull-down or pop-up

menus. For each combination of such events the tested item should react reliably,

by performing some computation or returning a diagnostic message. CAST tools,

like the Rational Functional Tester [16], provide mechanisms for logging events

and data returned by the application under test in response to such test scenar-

ios, often implemented with specialized test scripts written or recorded by testers

before. A similar mechanism may be introduced to the NIWA platform: sequences

of user events could be generated randomly based on the initial sequence recorded

by a tester, and next provided to the application running in its sandbox to be

monitored for unreliable behavior. This class of test scenarios is fairly easy to

implement for application interfaces based on the popular Model-View-Controller

(MVC) [18] or Model-View-ViewModel (MVVM) [19] design patterns, which dis-

tinguish objects responsible for intercepting user generated events on the screen

from objects responsible for handling them. By monitoring the communication

between these two classes of objects, the logging mechanism would be able to

register all exceptions indicating any wrongdoing of the item under test. This

technique of a test pilot, as called in the literature for its resemblance to perform-

ing various maneuvers of the prototype plane to check its structural integrity,

enables exercising practically any possible combination of user gestures on the

analyzed interface; only the time available for the experiments could be a limit

here.

A variant of this technique for exploring the textual interface is also possible:

for user commands typed in terminals or streams of arbitrarily encoded data input

to Web service ports, as well as software APIs. In each case the underlying principle

is to generate a random sequence of, user commands, Web service calls or APIs,

respectively, and the subsequent execution of tested items in the controlled mode

in their respective sandboxes.

Besides dynamic exploration of an interface of each tested item, automation

of static analysis of its content may also be implemented by NIWA. First of all, the

source code and other related text files of submitted applications may be searched

for certain phrases of keywords. It may be assumed that developers will not

intentionally include any unlawful or inappropriate content in their submissions,

however, some analysis in that regard is recommended – to aid developers who

not aware of various cultural or linguistic nuances. Related texts could also be

spell-checked or even verified for their originality with the existing SowiDoc anti-

plagiarism tool to be integrated with NIWA in the near future [20].

A bigger challenge for NIWA testers could be analysis of the graphical con-

tent of submitted applications. The principal source of information in that regard

would be files with graphics used by the application and its screen-shots included

in the submission package. Verification of their content may require making screen-

shots when exploring the application functionality described before, and logging

them along with other data for comparison with the screenshots provided by the

518 B. Wiszniewski

developer. They may also provide material for assessing the appearance of the

user interface and conformance to the standards or recommendations for user

interfaces, if planned to be published by NIWA in the future.

4.3.3. Measurements

Dynamic analysis of tested items usually involves measuring their selected

physical parameters, and determining, if necessary, various characteristics of inter-

est [2]. They will enable testers to verify performances of the tested application

declared by its developer in the submission record and contribute to the over-

all assessment of its reliability. Black-box strategies to be recommended for that

are [3]:

• load tests, which call for data that are close to or exceed their type range

declared by the developer in the related user or installation manual. For the

former case the tested item should still be able to complete its operations,

whereas for the latter, it should reject the input;

• volume tests, which involve data of sizes from moderate to extreme. The results

enable testers to determine the scalability of the tested item and identify its

operational limitations;

• stress tests, which involve high intensity of input data or events. The tested

item should be able to handle them in the orderly manner and not to hang-up

or crash.

A properly instrumented sandbox, where the running item is tested using

the strategies listed above, could provide log data to analyze performance of

the tested item by testers and to generate automatically crash reports for the

developers. If the load, volume and stress tests are to be performed in the context

of the beta test activity supported by the NIWA platform, the crash reports

should be comprehensive enough to enable developers to identify, localize and

eliminate defects from their applications. Some distributors, e.g. AppStore [6],

enable developers to remotely configure sandboxes to individually control the

monitoring level of each application. This would be a realistic form of a direct

“costless” support to developers by NIWA.

4.4. Test case selection

The test design described in Subsection 4.3 relates test strategies with

features of the item to be tested. Based on that test cases may be systematically

defined and selected, including input data, expected results, pre- and post-

conditions describing the proper relation of the tested item with its execution

environment, events, interrupts, exceptions, triggers and other asynchronous

stimuli that the item should react to, and what these reactions should be.

Because the criterion of functionality would be of less importance to the NIWA

distributor that the other ones considered in Subsection 1.2, specification of test

cases may be much less formal than required by the mentioned IEEE standard.

In particular, no in-depth analysis of semantics of submitted applications will

be needed, described more or less precisely by developers in various pieces of

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 519

product documentation: specification requirements, architectural design, reference

and user manuals, even the source code. In fact, a developer and subscriber of

the NIWA platform would rather not be willing to prepare or submit such a rich

set of the product documentation for publication. Therefore, instead of formally

specifying test cases the NIWA testers will mainly be configuring the sandbox and

setting its selected parameters according to the following:

• values in a specific range or set, from which elements are drawn at random;

• time period in which the item is expected to return results and get ready to

perform another computation;

• minimal configuration settings declared by the developer for the given item

in its user manual or submission record, concerning CPU, RAM, disc space,

bandwidth, version of the operating system, other software installed, etc. Actual

settings should be recorded in the test log before starting the experiment.

Developers may also indicate when testers should step in the experiment

and perform some additional activity, e.g., switch off a physical device, or do

some additional processing of data recorded in the log after the experiment. For

the classes of applications considered by NIWA, however, such extras are expected

to be rare. Another issue is exercising test cases in some predefined order –

CAST tools can support that by providing scripting mechanisms to implement

test scenarios. For the NIWA platform such a scripting mechanism in not planned

in the near future, so implementation of more complex scenarios would require

increased workload of its testers. For example, acceptance testing of the KOALA

library submitted to NIWA for publication and discussed in the next section would

require considering interdependency of test cases.

4.5. Test procedure specification

Since the list of acceptance criteria for software products submitted to

NIWA for publication would be the same for practically all submissions, the test

procedures could be to a large extent automated. Owing to that, the workload

of testers could be optimized, the procedure made repeatable and assessment of

products of different developers unified. The steps of the procedure specified by

the IEEE standard will be:

1. Set-up the execution environment by configuring the sandbox, installing the

test item in it and generating a relevant set of test cases;

2. Start (launch) the test item;

3. Execute the first (next) test case from the generated set;

4. Log selected data in the test log (input data, results, metrics);

5. Suspend execution if unexpected events occur (shut-down or crash) and log

any other useful data, e.g., make a core dump. Depending on consequences

the procedure may have to be started again (step 2) or even the execution

environment may have to be reset (step 1);

6. Resume execution (step 3) if in the set generated in step 1 there are test cases

not yet exercised;

520 B. Wiszniewski

7. Close the test log file;

8. Conclude the test procedure and remove the sandbox.

The procedure listed above produces the test log file.

4.6. Test logging

Records of the test log file represent in a chronological order all events

registered during the experiment. Since the functionality criterion is of a secondary

importance to the distributor considering acceptance of submissions, information

collected in each respective record of the log file may be much less detailed as

required by the IEEE standard, unless the log content is planned to be analyzed

further by the developer in the beta test mode. A general recommendation to

NIWA is to provide the test log record structure with just as much information as

would be sufficient to properly justify possible rejection of the submission:

• Results, including the accepted range of values and the actual value of each

measured parameter, input data for the test case, relevant system messages,

exceptions, and user actions that were registered, etc.;

• Configuration specified by the respective settings of the execution environment

when recording the results;

• Incidents (unexpected events) observed by the tester, not described in the

relevant test scenario, which disrupted or even prevented proper conclusion

of the test procedure, along with other events observed immediately before

and after each event, and description of activities attempted to resume the

procedure, e.g. attempts to reset sandbox parameters, unknown error occurring

in the tested item, etc.

4.7. Test incident reporting

If incidents were recorded in the test log a comprehensive report based on

the recorded data must be prepared by testers. Each anomaly should be briefly

described, including the relevant step of a test procedure, the respective test

case exercised and operations attempted by testers to counteract it. Owing to

the role of the distributor in the life-cycle model shown in Figure 1 – who is

not responsible for the evaluated product development, suggestions on what the

origins of the reported problem could be, or what additional activities might be

performed by the developer to localize it in the code, as recommended by the

IEEE standard, will not be needed. Just for the internal use, the distributor may

include in the incident report information on who the testers were and what their

recommendation concerning the product approval was.

4.8. Test summary

A distributor makes its final decision on acceptance, rejection or resubmis-

sion of the software product based on the test log and incident report, in the

test summary document. The summary must be returned to the developer with

proper justification and include the following elements:

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 521

• Final conclusion including general assessment of the test items with references

to the transmittal report (list of items, versions, declared settings of the

environment), a test log and incident report;

• Completeness assessment of the acceptance test procedure indicating all tested

features and their relationships;

• General assessment including all anomalies observed and investigated further,

as well anomalies just noted down, with explanations, if necessary;

• Detailed assessment indicating specific test cases and all key results recorded

for them to characterize each respective quality attribute of the product with

its related criterion. If a modification and resubmission is to be requested, the

developer must specify what changes will be made, and possibly until when.

The risk of accepting the submission may also be assessed, if the test results

are not complete or reliable enough. In such a case the distributor may require

the developer to perform more testing before resubmission. The number of

resubmissions should be limited, to prevent developers from abusing resources

of the distributor, if the latter does not provide any beta test facility;

• Test wrap-up providing qualitative assessment of all test related activities

performed by the distributor, including time and effort of its testing staff, the

total volume of test logs, CPU time, etc.

If the submission is decided to be rejected or resubmitted the test summary

document should be returned to the developer with the information from what

location the latter may download files with test cases and a test log file.

5. Case study: the KOALA library

A methodology of acceptance testing of software products submitted for

on-line delivery by cloud-based distribution platforms considered before may be

illustrated with one of the first submissions to NIWA, the KOALA library [15].

This submission has all the features considered before: it may be used by the

community of NIWA subscribers as a library of classes to download and integrate

with a third party code to develop new applications, or as a Web service with

a high performance computing capability provided by the CI-TASK Academic

Computer Centre at the Gdansk University of Technology. It was developed by

an independent team of developers. Moreover, NIWA testers do not have time and

budget resources to perform in-depth functionality tests of it (as they would have

to if they were members of the KOALA development team), nor do they have

access to a complete documentation of that product.

Below we will review all facets of the proposed methodology, and we will

consider assessment of the functionality attribute of KOALA, as less important

than other attributes listed in Subsection 1.2.

Submission analysis; The KOALA library provides over 75 methods coded

in C++ and implementing most of the known algorithms for graph-theoretic

problems defined in discrete mathematics, listed in Figure 2.

522 B. Wiszniewski

avg,

bellmanFord,

bfsComponents,

bfsTree,

bfsVisit,

blocks,

cartesianProduct,

createBarAlb,

createCaterpillar,

createClique,

createCompBipartite,

createCompKPartite,

createCycle,

createEdgeIds,

createEmpty,

createErdRen1,

createErdRen2,

createFan,

createHorizPath,

createLineGraph,

createLineGraphDir,

createPetersen,

createRegTree,

createVertexIds,

createVertPath,

createWattStrog,

createWheel,

criticalPath,

deg,

deselect,

dfspostComponents,

dfspostTree,

dfspostVisit,

dfspreComponents,

dfspreTree,

dfspreVisit,

dijkstra,

edgeEnd,

edgeStart,

eulerCycle,

eulerPath,

finde,

findv,

get,

haskey,

hasseDiagram,

indeg,

isChordal,

isCochordal,

isComparability,

isDAG,

isInterval,

K,

lexbfsComponents,

lexbfsTree,

lexbfsVisit,

lexProduct,

map,

max,

maxFlow,

maxMatching,

min,

modules,

outdeg,

print,

randint,

random,

readG6,

sccComponents,

select,

spanningForest,

strongProduct,

tensorProduct,

topologicalOrder,

typeof.

Figure 2. The set of KOALA methods

Systematic testing of procedures from the above list requires a test plan for

exercising all respective methods in the library, and when required, also taking

into account their internal relationships.

Test plan; Each method in the submitted code will be tested with regard

to all the acceptance criteria listed in p. 2.3.1. For the version intended for

downloads by subscribers it will be reasonable to compile and exercise the code

on all the operating systems currently used by NIWA subscribers, or at least

on target systems explicitly indicated by developers, like Microsoft Windows 7.0

and 8.1, Linux Ubuntu 14.10 and Fedora 21, and Apple OS X 10.10. For the

Web service version of the library, the operating system may be selected by

the distributor, however, more effort may be required to assure scalability, if

high performance computing capability of the NIWA platform is made available

to subscribers. The submitted source code of the library will be compiled to

generate the executable code with customary compilers for each instance of

the operating system installed in its respective sandbox. Each method will be

repeatedly executed for automatically generated input data, and the results and

associated events recorded in the test log (results) and each respective operating

system log (events)

Testing strategies; Automatic generation of input data will use the Monte-

Carlo strategy. For each thus generated single input the results produced by all

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 523

operating system instances will be compared. All results produced for the same

input are expected to be identical, also behaviors (completion of each computation

in a realistic time, no hang-ups or crashes) should be similar. Any difference will

indicate potential reliability and portability problems.

Test cases; As indicated by KOALA developers in their submission, the principal

input data for its methods are graphs, specified in two formats: pure textual

(internal) format or marked-up (GraphML) format. The internal format was

described in the submission informally as a file of records, each one specifying

one node of the graph:

<no vertices>
<vertex id>’(’<vertex data’)’<no edges><direction>
<neighbor id>’(’edge data’)’

...
<vertex id>’(’<vertex data’)’<no edges><direction>
<neighbor id>’(’edge data’)’

where <direction> specifies edges as indirected (’−’), outgoing (’>’) and incom-

ing (’<’). For example, a graph in Figure 3 can be specified in the internal KOALA

format as shown in Figure 3.

4

0(x:260.0,y:101.0,label:A) 2 -1(label:11) >2(label:12)

1(x:335.0,y:232.0,label:C) 2 >2(label:10) -3

2(x:376.0,y:100.0,label:B) 1 <3

3(x:428.0,y:226.0,label:D) 0

Figure 3. Example graph representation in KOALA

Random generation of input data (syntactically correct textual specifica-

tions) would require testers to implement a procedure for that, what may cost

additional workload of the NIWA staff. Fortunately, in the submission the following

information could be found:

Class Creator implements methods

erdRen1 and erdRen2 for the Erdos-Renyi G(n,p)

and G(n,M) model,

barAlb for the Barabasi-Albert model,

and

wattStrog1 and wattStrog2 for the Watts-Strogatz model.

Based to that, no detailed knowledge on graph theory, and in particular on the

models for random graph generation, would be required from NIWA testers to

properly implement automatic generation of test cases using the Monte-Carlo

strategy. Otherwise, developers would have to provide additional training, or

at least some consultancy service, for the NIWA testers – and contradict the

524 B. Wiszniewski

underlying rule of the life-cycle shown in Figure 1, separating the roles of

developers and distributors.

Another issue is planning and execution of volume tests, which as indicated

in p. 4.3.3, would require generation of graphs with an excessive number of

vertices and edges. Despite of the declaration found in the KOALA submission

on the maximum allowed size of graphs, such a limitation may be determined

experimentally with the random graph generation methods mentioned above – by

successively increasing the required number of vertices and edges, until rejection

or failure of a generation method is recorded. Volume tests will be needed to

access performance (in particular scalability) of all methods for processing graphs

as their inputs, when run as NIWA Web services.

Test procedure and scenarios; The test procedure for KOALA should take

into account possible interrelationships between its methods. In order to relieve

testers of studying semantics of each method when doing that, a simple search in

the set indicated in Figure 2 for methods that process graphs, i.e. their inputs

accept graphs and outputs produce graphs. Next, random generation of sequences

(scripts) consisting only of such methods may provide automatic generation of

test scenarios in a quite straightforward way. A more elaborate implementation of

this method of automatic generating of test scenarios may consider classification

of the KOALA library methods with regard to their outputs and inputs, and

automatically generate only sequences in which types of outputs and inputs match

one another.

Logging results; Despite of the intended deployment of the KOALA library (a

downloadable application or a Web service), its developers should be granted

access to the log files at the level of detail sufficient to assess the reliability of

implemented methods. The preferred mode for generating these files should be

the beta-testing facility, run as a provisional Web service for graph processing.

Incidents; The incident report returned to the developers should comply to the

IEEE standard, i.e. provide customary information on the observed anomalies

(hand-ups, crashes, etc.) and describe activities performed by testers to counteract

them, and above that, also some non-standard stuff with suggestions on how to

improve the product. It may also be considered to recruit to the team of NIWA

testers a representative of the KOALA development team, to speed up the release

of the final product. Such a deviation from the model specified in Figure 1 would

be reasonable and cost-effective, given the fact that NIWA testers and KOALA

developers are employed by the same organization.

6. Conclusions

The analysis of the IEEE standard for software testing – presented in the

paper in the context of a new software model for development of applications

intended for on-line delivery – indicates that all cornerstone components of

the IEEE standard may be adopted at a relatively low cost. And it does not

Acceptance Testing of Software Products for Cloud-Based On-Line Delivery 525

matter much, whether the distributor acts on a commercial basis, or serves open

communities. The NIWA platform will serve its community in two ways – as

a repository of free software published for download by subscribers, and scalable

high-performance services installed on its servers and supplied by developers –

what makes it unique when compared to commercial distributors and repository

hosting service platforms. Quality attributes, used in the paper to formulate the

acceptance criteria, namely security, safety, reliability, functionality, performance

and usability, are sufficient to assess the product before its acceptance, and

the respective test procedures indicated by the standard may be implemented

with common black-box testing strategies, such as Monte-Carlo, fairly easy to

automate.

References

[1] Drozdowski K, Jarzemski J, Krawczyk H, Melzer M, Smółka M and Wiszniewski B 2005

A Cooperative Model for Implementing Complex Virtual Enterprises, Foundations of

Computing, Decision Sciences 30 (1) 39

[2] Krawczyk H and Wiszniewski B 2001 Chapter 9: Quality issues of parallel programs,

Parallel Program Development For Cluster Computing – Methodology, Tools and Inte-

grated Environments, Huntington, New York Cunha J C, Kacsuk P and Winter S Eds,

Nova Science Publishers, Inc.

[3] Krawczyk H and Wiszniewski B 1998 Analysis and Testing of Distributed Software

Applications, Research Studies Press, Wiley

[4] IEEE Standard for Software and System Test Documentation, IEEE Std. 829-2008

(Revision of IEEE Std 829-1998), http://standards.ieee.org/findstds/standard/

829-2008.html (Accessed: 2015-01-31)

[5] Garstecki L, Kaczmarek P, Chassin de Kergommeaux J, Krawczyk H and Wiszniewski B

2001 Testing for conformance of parallel programming pattern languages, Lecture Notes

in Computer Science 2328 323

[6] Apple Inc. 2014 App Distribution Guide, https://developer.apple.com/library/ios/

documentation/IDEs/Conceptual/AppDistributionGuide/AppDistributionGuide.pdf

(Accessed: 2015-01-31)

[7] Microsoft Corporation 2014 Windows and Windows Phone Store Policies,

http://msdn.microsoft.com/en-us/library/windows/apps/dn764944

(Accessed: 2015-01-31)

[8] Google Inc. 2015 Core App Quality, Essentials for a Successful App, Android Developers,

http://developer.android.com/distribute/essentials (Accessed: 2015-01-31)

[9] GitHub Inc. 2015 GitHub Terms of Service, https://help.github.com/articles/

github-terms-of-service (Accessed: 2015-01-31)

[10] Dice Holdings Inc. 2015 SourceForge Terms of Use Agreement,

http://slashdotmedia.com/terms-of-use (Accessed: 2015-01-31)

[11] SoftNews NET SRL 2015 Softpedia terms and conditions of use,

http://www.softpedia.com/user/terms.shtml (Accessed: 2015-01-31)

[12] Portela I M and Cruz-Cunha M M 2010 Information Communication Technology Law,

Protection and Access Rights: Global Approaches and Issues, Idea Group Inc.

[13] Nokia 2015 Remote Device Access service (RDA), http://developer.nokia.com/resources/

remote-device-access (Accessed: 2015-01-31)

[14] Google Inc. 2015 Google Analytics, http://www.google.com/intl/pl ALL/analytics/

index.html (Accessed: 2015-01-31)

526 B. Wiszniewski

[15] Giaro K, Ocetkiewicz K, Jastrzębski A, Turowski K, Janczewski R, Obszarski P,

Goluch T and Jurkiewicz M 2015 The KOALA Library, http://kaims.pl/koala (Accessed:

2015-01-31)

[16] IBM 2015 Rational Functional Tester 8.6.0, http://www-01.ibm.com/support/

knowledgecenter/SSJMXE/ (Accessed: 2015-01-31)

[17] IBM 2015 Rational Test Workbench 8.6.0.3,

http://www-03.ibm.com/software/products/en/rtw (Accessed: 2015-01-31)

[18] Hall G 1992 Applications programming in Smalltalk-80 – How to use model-view-control-

ler (MVC), ParcPlace, Palo Alto, CA, USA

[19] Burbeck S 2010 Pro WPF and Silverlight MVVM – Effective Application Development

with model-view-viewmodel, Apress, Berkely, CA, USA

[20] Sobecki A 2015 SowiDocs, https://sowi.pg.gda.pl/index.php/en/ (Accessed: 2015-06-30)

