
TASK QUARTERLY vol. 19, No 4, 2015, pp. 471–480

REAL-TIME CONNECTION BETWEEN

IMMERSE 3D VISUALIZATION

LABORATORY AND KASKADA PLATFORM

LUKASZ WISZNIEWSKI AND TOMASZ ZIOLKOWSKI

Faculty of Electronics Telecommunication and Computer Science

Technical University of Gdansk

Narutowicza 11/12, 80-233 Gdansk, Poland

(received: 8 June 2015; revised: 7 July 2015;

accepted: 17 July 2015; published online: 1 October 2015)

Abstract: Multimedia stream processing into two cooperative different systems (cluster plat-

form and virtual lab) is considered. The considered selected information about the system is

presented and the idea of its communication when executing the distributed application is pro-

posed. A general schema of the communication architecture is given. Tests of data transmission

quality are considered and their results are presented.

Keywords: multimedia, cluster computing, visualization laboratory, data transmission

1. Problem statement

During the development of the NIWA Project [1], it was decided to make

an interface between the newly built Immerse 3D Visualization Laboratory

(I3DVL) [2] and the supercomputer named TRYTON, on which the instance of

the KASKADA Platform [3] is running. The main aim of this connection is to

provide real-time communication between local IVS computers to use a large

high performance clustered computer and features provided by the KASKADA

platform, for instance, to render image streams on supercomputer nodes and then

project them in the I3DVL. The interface design is presented and its characteristics

are evaluated.

1.1. Immerse 3D Visualization Laboratory (I3DVL)

The task of creating a modern virtual reality laboratory, named Immerse

3D Visualization Laboratory, has been started at Faculty of Electronics, Telecom-

munication and Computer Science of the Technical University of Gdansk. One of

the main assumptions of the laboratory is to ensure the highest possible degree of



472 L. Wiszniewski and T. Ziolkowski

immersion of feelings (unrestricted freedom of movement and stereoscopic 3D pro-

jection) together with the least amount of equipment worn by users (e.g. virtual

helmets) to provide them with the maximum comfort and impression of natural

activity. [4]

The I3DVL is built with a transparent sphere rotating on rollers. A user will

be entered into the sphere through a special hatch opened from the outside. In

the case of projection on screens surrounding the rotary sphere, high transparency

and homogeneity of the sphere is required in order to prevent excessive distortion

of the observed image Figure 1. In the I3DVL the rotary transparent sphere with

a user inside will be placed in the centre of a cubic cave with edges of about

3.4 meters each. The cave consists of four vertical acrylic flat screen-walls and

a horizontal glass screen-floor and a glass screen-ceiling with special coating for

highest brightness uniformity. To allow access to the cave, one of these screen-

walls will be an automatic sliding door. The 360 degree view will be achieved via

the stereoscopic rear projection on the all six flat screen faces forming the cube

structure of the cave around the sphere.

Figure 1. Visualization of the rotary sphere inside the cave

This solution requires projection from six different directions The whole

image surround will be displayed by 12 digital projectors – two projectors per

screen-wall (floor, ceiling). These three-chip DLP projectors themselves have

a resolution of 1920×1200 pixels (WUXGA) and thus a final resolution of single

screen-face will be 1920× 1920 pixels. Therefore, the square pixel edge length

will be 0.067 in (0.17mm). A luminous flux of the projectors equal to 7000 ANSI



Real-Time Connection between Immerse 3D Visualization Laboratory. . . 473

lumens implies (taking into account the losses caused by the edge blending) the

total luminous flux above 11000 ANSI lumens per screen-wall.

The three-dimensional vision is related to the fact that the eyes of the

observer are located at some distance from each other, and therefore each eye

catches a slightly different picture. The interpretation of these images takes

place in the observer’s brain, resulting in the impression of depth. Creating an

impression of depth in this manner, requires generation of pairs of images seen

from a slightly different perspective, and directing them (e.g. by special filter

glasses) to the left and right eye of the observer. The stereoscopy with separation

in time implemented in the I3DVL uses radio-based active stereo nVidia 3DVision

Pro shuttering at 120Hz. Today’s active shutter glasses use polarization, so there is

some risk of incorrect operation of glasses caused by possible change of polarization

by the rotary sphere material. Therefore, the stereoscopy with spectrum channels

separation will be available as an alternative. It will be Barco active Infitec+ using

high-quality dynamic color filtering to produce from one projector separate images

for the left and the right eye. Visualization is supported by the sound generated

by Bose and Apart speakers. The position of the user’s head is measured by the

ART IR-optical tracking system.

1.2. KASKADA platform and its Framework

The KASKADA Framework [3] is a set of libraries enabling developers

to easily implement and deploy data processing algorithms for the KASKADA

Platform. Framework-based programs can be executed by the Platform on the

Galera’s computing nodes. The Framework provides significant functionality for

data stream processing, i.e.:

• Transmission of KASKADA processing tasks;

• Multimedia stream decoding and encoding;

• Presenting decoded multimedia data samples (along with meta-data) to algo-

rithm implementations, in a form which is easy to analyze and process;

• Converting event streams to their XML representations and sending them to

the message broker for further processing.

As both the stream dispatcher and the KASKADA Framework are used

for heavy processing, they are written in the C++ language, which allows

low processing overhead and low-level access to hardware. Much of the code

responsible for the stream processing is shared between the dispatcher and the

Framework.

The KASKADA Binary Protocol (KBIN) [5] is a protocol designed for

transmitting binary data object streams in the KASKADA Platform. Due to its

flexibility, KBIN is used not only to transmit custom data objects, but for all data

stream transmission within the Platform. This means that multimedia, event and

object streams transmitted between processing tasks are all treated in the same

unified way. This fact greatly simplifies the design of data processing algorithms

which are deployed in the Platform. KBIN uses the InfiniBand network for data



474 L. Wiszniewski and T. Ziolkowski

transmission. As KBIN was designed to be easily extensible, it can be used with

different existing data transmission interfaces (RDMA, TCP over InfiniBand, MPI

over InfiniBand). As mentioned earlier, KBIN transmits data in the form of data

objects, i.e. objects of various C++ classes. There is a set of predefined classes

(e.g. Image for video streams, AudioFrame for audio streams and Event for event

streams), but developers are free to extend these types or create new ones from

scratch. The message broker must mediate between the sender and the receiver

during the connection establishment, as some crucial information is unknown to

the tasks at launch. It might be, for example, the port number on which the

sender listens for connections – it is chosen randomly when the sender initializes

its communication channels and must be then sent to the receiver through the

message broker. Another reason to use the message broker is that the tasks are

initialized in an unspecified order – the message might be sent by the sender before

the receiver is ready to accept it. In such a situation, the message would be buffered

by the message broker until the receiver finishes its initialization. Once the

receiver knows which port to use for the connection, it opens its communication

channel and signals the sender (init-connection-ack) through the message broker.

It should be noted that this last message cannot be sent to the sender directly

through the newly opened KBIN channel, as all KBIN communication channels

allow only one-way transmission. The above procedure is valid for connections

in complex services – it must be ensured that all communication channels have

been properly initialized before the actual data processing (and thus data flow

through the channels) can begin. It would be unsuitable, however, to apply the

same connection procedure to the stream dispatcher. The dispatcher provides

multimedia streams to all services which request it – its lifecycle is independent

of the life-cycles of the services. Hence, unlike tasks in complex services, the

dispatcher does not know in advance what tasks will require data from him.

Therefore, it would be unable to send proper init-connection messages. Instead,

the connection parameters for the dispatcher (e.g. the port numbers) are stored

in the Platform’s database. When a service is launched, these parameters are

fetched and passed to the new tasks. This way the tasks know what port to use

for establishing the connection. By using this procedure, the dispatcher supports

dynamic task connection and disconnection. The Platform supports two stream

processing modes:

• Synchronized mode In the synchronized mode, all data must be processed in

real time. This is often the case when dealing with live stream sources, such

as surveillance equipment. When working in the synchronized mode, a certain

amount of data is buffered by KBIN channels. In the case of the buffer overflow

(when the processing is taking too much time), the excessive data is dropped.

Although some data may be lost, this procedure prevents service failures in case

of high system load;

• Resynchronized mode In the resynchronized mode, data is processed at the

maximum speed allowed by the computing power available to the service. This



Real-Time Connection between Immerse 3D Visualization Laboratory. . . 475

means that if the system is under heavy load, data is processed at a lower

speed. On the other hand, if enough resources are available, the processing

speed is increased. This mode is often used when analyzing data from the

stream archive, as in many such cases it significantly reduces the analysis time.

In the resynchronized mode, KBIN channels do not buffer any data. Instead,

data may be sent at different speeds. In this mode, it is guaranteed that no

data will be lost during transmission.

In some cases, the C++ object serialization used by the KBIN protocol can

cause portability issues. For example, programs built with different compilers or

on different hardware platforms may serialize objects in a slightly different way.

Therefore, they would be unable to successfully communicate through a KBIN

channel in a regular way. For this reason, KBIN supports a portable communication

mode. In this mode, KBIN uses serialization routines which are portable between

various platforms, at the expense of a possible performance loss.

1.3. Requirements for data transmission

Two scenarios for two different types of data were specified. In the first case

(called model) same small data from the I3DVL will be send to the KASKADA

Platform. Data will be computed on a supercomputer and the results (also as

small data) will be sent back to Laboratory. The received data will be processed

for proper projection in the cave. Total bandwidth used here is about dozen of

Mbps. The second case (called rendering) is more complex. Computers will send

data (also small amounts)from the I3DVL to KASKADA. Data will be used to

render multimedia streams which will be sent back to the Laboratory and than

presented on screens in the I3DVL. The band which is needed here is:

1 for 2D images:

• 34Gbps (12 streams @ 1920×1080px 60 fps);

• 30Gbps (6 streams @ 1920×1920px 60 fps);

2 for 3D images:

• 68Gbps (12 streams @ 1920×1080px 120 fps);

• 60Gbps (6 streams @ 1920×1080px 120 fps).

As we can see, the required bandwidth in the second case is very high. These

calculations were made for raw, uncompressed data. In real implementation we

can use some compression algorithms, but we want to achieve a real-time (or semi

real-time) connection, so that algorithms should not provide too much latency.

2. Interface description

The projected interface is built with two logical layers. The higher and most

important level is the functional one, the lower one is the communication level.

2.1. Functional level

This layer must be designed to provide an API which is easy to use for

developers, in real-time systems. It must be independent from the communication



476 L. Wiszniewski and T. Ziolkowski

Figure 2. Main idea for exchanging data between I3DVL and KASKADA Platform

level and reduce latency. Figure 2 shows the main idea of data transmission

between the I3DVL and the KASKADA Platform.

2.2. Communication level

For the projected connection, we have to use the hardware which is already

installed both in TRYTON and I3DVL, and take into account the field obstacles.

Academic Computer Centre TASK (where the supercomputer TRYTON is located)

and the I3DVL are located in two different buildings, which are 100 meters apart

from each other. The connection will be built using a fiber cable.

We can use two transmission technologies and the topology of their con-

nection shown in Figure 3.

2.2.1. Based on Ethernet

The first attempt was to build an Ethernet connection based on the 10Gb

technology [6]. The maximum bandwidth between nodes (computers) and switches

is 1Gbps. All nodes in TRYTON are equipped with 1Gbps interfaces. For the first

type of data (model) those speeds are sufficient. For the second case (rendering)

the necessary bandwidth between the I3DVL computers and the switch is in the

range 2.5–6Gbps (one computer needs 1/12 of the total bandwidth specified in

section 1.2). As we can see this solution is not efficient.

2.2.2. Based on InfiniBand

The second attempt was to try to build a connection based on the In-

finiBand Standard [7, 8]. In this case the minimum bandwidth in the proposed

network is 40Gbps which is sufficient for connection between nodes and switches.

It is too small for sending raw 3D streams. Nonetheless, it should be sufficient for

2D streams, or 3D streams with a lowered frame rate.

2.2.3. Cooperation between I3DVL and KASKADA Platform

As Figure 4 presets, projected infrastructure based an layered model.



Real-Time Connection between Immerse 3D Visualization Laboratory. . . 477

Figure 3. Topology of Ethernet/InfiniBand connection

Figure 4. General schema of proposed architecture

On the KASKADA platform there is an algorithm, designed by users, which

runs on the KASKADA platform and uses KASKADA API. All the send and receive

methods are implemented in API and provide the algorithm developer with a set

of methods to manage the sending of data. Below KASKADA API there is an

operating system which is responsible for data transmission. On the other end,

the architecture in the I3DVL is similar. The user application runs on the operating

system, and uses I3DVL API, which is responsible for rendering and projection of

images on the cave walls. The operation system is also responsible for managing

data stream transmissions.



478 L. Wiszniewski and T. Ziolkowski

3. Testbed and tests

For further development it was necessary to build an experimental testbed,

in which some tests and development could be made. For both technologies

(Ethernet and InfiniBand) separate testbeds were created. The main aim was

to achieve an architecture as much similar to the real life as possible.

3.1. Testbed Architecture

3.1.1. Testbed for Ethernet

It used one TRYTON node, one normal desktop computer to pretend to be

an I3DVL (called “I3DVL”) and two 10Gbit Ethernet switches.

3.1.2. Testbed for InfiniBand

It used four TRYTON nodes. Two of them were used to simulate I3DVL

computers and two as KASKADA platforms.

3.2. Testbed experiments

Two tests were performed in the designed testbeds for both transmission

technologies. The first test was to measure the latency and the second to verify

the bandwidth.

3.2.1. Verify latency

In the Ethernet technology two transmission protocols can be used: TCP

and UDP. Both protocols were tested. The test scenario began when the computer

which pretended to be an I3DVL started to exchange some data with a TRYTON

node. The aim was to measure the latency between the time of sending from

“I3DVL” to the TRYTON node and then back to “I3DVL”. The tests were

performed for UDP and TCP protocols. We used three portions of 10B, 1KB

and 10KB data.

Similar tests were performed for the InfiniBand connection. The test

scenario began when node 1 started to exchange some data with node 3. We

also used three portions of 10B, 1KB and 10KB data.

3.2.2. Verify bandwidth

Theoretically we had up to 1GBps of a bandwidth.

The TRYTON node was sending data stream increasing their bandwidth

from 10Mbps to 2Gbps in a 10Mbps step. The “I3DVL” computer was receiving

this data and measured the current data flow. The measured value was the total

bandwidth.

Theoretically we had up to 40Gbps of bandwidth. Nodes 1 and 2 were

generating a simple stream to fill the bandwidth. 50 tests were performed. In

every test both node 1 and 2 were increasing the transmitted data from 1Gbps

up to 50Gbps (1Gbps in the first test, 2Gbps in the second test, etc.). Nodes 3

and 4 were receiving those streams and validated the steam bandwidth.

Maximum bandwidth in Ethernet was measured to 1Gbps and for Infini-

Band to 35Gbps.



Real-Time Connection between Immerse 3D Visualization Laboratory. . . 479

Figure 5. Results for latency in UDP and TCP protocols

As we can see from the above results, both transmission technologies provide

very small latency. It seems to be better in InfiniBand, because the standard

deviation is smaller than in Ethernet – the results are more similar. The measured

maximum bandwidth in InfiniBand is smaller than the theoretical one. The

problem is with encoding when sending data. The InfiniBand network uses about

20% of the latency for encoding.

4. Further works

Our aim is to modify the KASKADA Framework to allow programmers to

have an easy way to establish connection between the KASKADA Platform and

the I3DWL. For the Ethernet base connection there is a need to propose a new

protocol to build in the KASKADA Framework. The main idea of communication

with this protocol is presented in Figure 4. In a properly designed architecture it

should not matter which type of transmission we decide to use. A low-level API

which is responsible for managing the transmission must be transparent for high-

level user applications. As we can see from the results – the bandwidth in both

technologies is too small to send raw streams. There are two possible solutions of

this problem: data compression or link aggregation. Data compression will provide

some extra latencies in data transmission – firstly it is necessary to compress data

before sending, then to decompress them on receiving. Another solution is link

aggregation – both Ethernet and InfiniBand technologies support aggregation of

several physical links into one logical connection. The maximum bandwidth in

this case increases linearly to the number of aggregated links. An optimal number

for this connection seems to be 3 links (approx. 105 Gbps)

References
[1] Centrum Doskonałości Naukowej Infrastruktury Wytwarzania Aplikacji (CD NIWA),

http://niwa.gda.pl/

[2] Lebiedz J and Mazikowski A 2014 Innovative Solutions for Immersive 3D Visualization

Laboratory, WSCG2014 Conference on Computer Graphics, Visualization and Computer

Vision



480 L. Wiszniewski and T. Ziolkowski

[3] Supercomputer Platform for Context Analysis of Data Streams in Identification of

Specified Objects or Hazardous Events, http://kaskada.gda.pl

[4] Lebiedz J and Mazikowski A 2013 Proc. of the 3rd Polish Conference on Computer

Games Development WGK 3 53 (in polish)

[5] Ziółkowski T 2011Management and processing of data streams in the KASKADA platform

[6] IEEE 802.3TM-2012 IEEE Standard for Ethernet

[7] Pentakalos O I 2015 An Introduction to the InfiniBand Architecture, O’Reilly

[8] Pfirster G F An Introduction to the InfiniBandTM Architecture


