
TASK QUARTERLY vol. 19, No 4, 2015, pp. 455–470

KOALA GRAPH THEORY

INTERNET SERVICE

TOMASZ GOLUCH, KRZYSZTOF M. OCETKIEWICZ

AND KRZYSZTOF GIARO

Department of Algorithms and System Modeling

Gdansk University of Technology

Narutowicza 11/12 80-233 Gdansk, Poland

(received: 4 June 2015; revised: 6 July 2015;

accepted: 15 July 2015; published online: 1 October 2015)

Abstract: KOALA has been created with the idea of C++ library templates, implementing

a broad set of procedures in the fields of algorithmic graph theory and network problems in

discrete optimization. During the C2NIWA project, a library has been greatly extended, the

code refactored and enclosed with the internet service available in the public repository of

the project. Today it contains interconnected educational materials in the form of Wikibook,

documentation and sample codes, a multifunctional web-based application for edition of graphs,

a collection of over 100 web services which offers a library of selected procedures to be run on

the BeesyCluster system.

Keywords: algorithmic graph theory, discrete optimization, C++ template library, web-based

application, educational vortal

1. Introduction

An internet vortal focused on the graph theory and discrete optimization

was created in the framework of the KOALA project, developed within the C2NIWA

(Centre of Competence for Novel Infrastructure of Workable Applications). The

whole project was divided into five parts, which have been described in detail in

the following sections of this article.

The first part is a template library, initially developed within the research

project (No. NN519 405837) of the Polish National Science Centre.

The second part is a documentation library which has been divided into

three parts: (1) the KOALA Theory and User Manual (the aim of this part is

to easily introduce the user to theoretical issues related to the library and its

implementing aspects), (2) the Reference Manual (an advanced manual created

in Doxygen, fully describing all the functionalities of the library), and (3) KOALA

456 T. Goluch, K. M. Ocetkiewicz and K. Giaro

code examples (collection of sample codes to use the procedures of the library in

an easy and proper way).

The third part of the KOALA project is an advanced editor of graphs

(ZGRED), prepared as a web-based application (executed in a browser) which

allows the user to create complex structures and run the algorithms of the library

on these graphs.

The fourth part is a service that provides the majority, namely 116, of

library methods as Web services. These services are used, inter alia, by the ZGRED

graph editor mentioned before.

The fifth and last part of the KOALA project is a sample application

depicting the problem of a Chinese postman in the form of a computer game.

A public repository has been created within the KOALA project including:

• KOALA library sources (C++ templates) [1];

• Internet documentation:

– The KOALA theory and User Manual (Wiki on Redmine) [2];

– The API (Doxygen) library documentation [3];

– Code examples [4];

• Advanced graph editor – ZGRED [5];

• A set of webservices running on the BeesyCluster [6];

• Demo application for local and mobile platforms (the Chinese postman puz-

zle) [7].

2. KOALA library

There are many solutions available on the market which are similar to the

KOALA library, however, their scope is limited, the assumptions are simplified and

their nature is rather commercial (e.g. LEDA [8]). Moreover, they usually have

a difficult and unergonomic “expert friendly” programming interface (e.g. the

Boost Graph Library [9]). KOALA is a library of C++ templates, implementing

a broad set of procedures and data structures in the fields of algorithmic graph

theory and network problems in discrete optimization. In its construction, the

KOALA is based on paradigms of object-oriented programming [10] and generic

programming [11]. The basic KOALA project assumptions are:

• versatility of the library – its procedures are adapted to a wide range of various

thematic areas of graph algorithmics;

• user-friendly interface procedures;

• easy and quick creation/experimenting with new procedures;

• possibility of convenient modification;

• supplying the user with tools which facilitate work with graphs.

Owing to that, KOALA reconciles two apparently contradictory priorities:

the created code uses (and also allows the user to use) modern, advanced C++

language mechanisms and at the same time the KOALA codes may be used

by programmers who have only basic knowledge of object oriented C++ and

KOALA Graph Theory Internet Service 457

templates. Library algorithms are available as static methods of classes which

group them into coherent thematic blocks. They usually occur in several versions

(overloading of names) with slightly different functionalities. KOALA offers its

advanced user a possibility of flexible modification of the behavior of some

procedures and modification of types of their internal data structures - which

can have an impact on the effectiveness of their implementation (a policy-based

programming paradigm [12] with policy classes for template procedures have

been applied). The main data structure is a template of a class of a mixed

(i.e. with directed and/or undirected edges) multigraph. This template contains

over 150 methods for performing various operations on vertices and edges. The

implemented algorithms cover various parts of the algorithmic graph theory and

discrete optimization, i.e.:

• The chromatic graph theory. Vertex and edge coloring: classical, list, interval

models;

• Analyzing the graph structure. DFS, BFS and Lex-BFS traversing, the topolog-

ical order and the Hasse diagram for acyclic digraphs, connected components,

2-connected and strongly connected components (for digraphs), modular de-

composition, searching the Eulerian cycle and path;

• Optimization problems for multigraphs with numerical weights on edges: The

Dijkstra (simple or with a priority queue), Bellman-Ford, Johnson and Floyd

algorithms (i.e. allowing negative weights), Kruskal’s algorithm, shortest and

longest paths in an acyclic digraph (critical paths tree);

• Flow problems. Maximal flow, the cheapest maximal flow or with a given

capacity, a minimal edge and minimal vertex cut, the Gomory-Hu tree, the

largest set of paths, which are internally vertex- or edge-disjoint with given

ends;

• Task scheduling on parallel identical processors in the following models

(expressed with three-field notation, see [13]): −|prec|Cmax (critical path),

P2|pj =1,prec|Cmax, P |pj =1,intree|Cmax, P |prec|Cmax (2-approximation),

1 |pj =1,prec,pmtn|Lmax, P |pj =1,intree|Lmax, P | |ΣCi, 1| |ΣUi;

• An independent set in a graph. Edge maximum (matching), stable matching in

a bipartite graph, vertex maximum (11 polynomial heuristics);

• Graph creation, recognition and transformations;

• Standard classes of graphs and algorithms dedicated to them;

• Input and output for graphs and vertex/edge parameters: 4 text formats;

• Specific container class templates.

The created software is open source. The KOALA library is consistent with

the C++ ISO/IEC 14882:2003 standard. In some cases specific mechanisms from

ISO/IEC 14882:2011 may also be used. However, proper modifications are always

implemented in order to meet the C++03 standard.

The Library was tested with the use of the following compilers: GCC v. 4.4.7

and newer, Intel 12.0, VisualStudio 2012, 2013 and CLang 3.5. It consists of: 72

458 T. Goluch, K. M. Ocetkiewicz and K. Giaro

source files, over 2MB of sources and about 50,000 lines of code [1]. In the whole

project, the specific version of the camelCase naming convention was used.

3. KOALA manual

Each library as comprehensive as KOALA can easily overwhelm the user

with all the features and diversity. However, a comprehensive documentation has

been created and attached to the library in order to help the user. The aim of

that documentation is to introduce inexperienced programmers to the world of

theory covered by the library and allow them to start the implementation quickly.

It can provide the user with a quick answer to the question - Is it possible to solve

a given problem by means of the library and how to implement it? The whole

documentation has been divided into two major complementary parts describing

various aspects of the project (see Section 3.1).

The first part is related to the KOALA Manual which describes the mathe-

matical apparatus for KOALA (the KOALA Theory) and the user’s manual which

describes basic algorithms and data structures of KOALA (the KOALA User Man-

ual). To avoid a redescription of concepts and issues which are well known, the

user, if possible, is also referred to external sources, e.g. scientific publications,

English-language Wikipedia, Wolfram MathWorld.

The second part consists of the so-called Reference Manual. It describes

precisely all the elements of the library. The two parts of the library can be easily

distinguished from each other as they have been created with the use of two

different tools: wiki of Redmine application [14] and Doxygen [15]. Additionally,

sample codes, described in detail in the last Section 3.3, have been added to

enable quick implementation. Sample codes are available in both parts of the

documentation. There are many links between the two parts and they refer to

each other. This allows the user to become familiar with the detailed description

of a given component and with the relevant theory.

For example, if the user wants to check whether the library allows him/her

to find the shortest path between two selected vertices in a weighted graph,

he/she should choose Chapter 7 of the KOALA Theory, entitled “Problems of

discrete optimization in weighted graphs”. In this chapter there is information

about the theory of weighted graphs and in particular the shortest weighted

path problem. Then, by clicking the “Shortest-path” link he/she is transferred

to the KOALA User Manual where he/she can learn about several approaches

to this issue. By choosing the first one – the Dijkstra class – the user gets

a description of its basic methods. He/She can read about the class in more

detail by clicking the “Dijkstra” link. However, providing that he/she is interested

in the “findPath” method, he/she can either directly get the information on

the sample code by clicking the “see code examples” link or find a detailed

description of this function by clicking the “findPath” link which transfers

him/her to the Reference Manual. After choosing the first option, apart from

a sample code, in most cases he/she will also see the runtime text output of

KOALA Graph Theory Internet Service 459

Figure 1. Visited elements while working with the Manual

a compiled example and visualization of graphs used in the program. Sample

screen snapshots together with the order of visits marked by arrows are shown

in Figure 1.

A diagram that shows the structure of the internet service is shown in Fig-

ure 2. The arrows represent the relationships between its different parts (i.e. the

direction of links between them). External sources of information (publications,

Wiki, MathWorld) are represented by the “Internet” box.

Figure 2. Structure of the KOALA vortal

460 T. Goluch, K. M. Ocetkiewicz and K. Giaro

3.1. KOALA Wikibook: Theory and User Manual

The KOALA Wiki Manual [2] is a place where the user begins his/her visit

to the library. It includes links to all the parts of the service, such as the source

code, the reference manual, the ZGRED advanced graph editor, webservices and

the Chinese postman puzzle. It is divided into two main parts: the KOALA Theory

and the KOALA User Manual.

The KOALA Theory is a guidebook explaining the mathematical concepts:

the basics (set algebra, functions, relations), a graph theory, task scheduling and

computational complexity - along with links to external sources of information.

The described problems are divided by subject into the following groups:

• Graph traversal, structure examination;

• Algorithms for weighted graphs, polynomial time discrete optimization prob-

lems;

• Matchings;

• Graph coloring (various models);

• Hard optimization problems: independent set, maximum clique, vertex cover;

• Flows, cuts and transportation problems;

• Deterministic task scheduling.

The KOALA User Manual is general information on the structures and

algorithms of the library, along with links to overall Doxygen documentation.

In other words, it is an easy introduction to KOALA. It consists of 41 articles,

among which we can indicate the main sections such as:

• Graph, creating and management;

• Programming concepts;

• Data structures – container class templates;

• Graph algorithms, discrete optimization;

• Classes of graphs – creation, recognition and dedicated algorithms;

• Graph transformations;

• Graph serialization, input and output formats.

As mentioned before, the WikiBook was published using the Wiki tool

of Redmine application [14]. Owing to its popularity and intuitive operation,

it is ideal as a base to include information related to the library. An additional

attribute was the abundance of plugins available in the Redmine application which

allowed to describe patterns and figures in Latex (plugin PGF/TikZ [16], see

Figure 3).

3.2. KOALA Reference Manual

The Reference Manual [3] was written based on the Doxygen documentation

generator [15] which enables the documentation to be kept current with the latest

version of the code relatively easy. This is especially important due to a large

number of different versions that appeared during the development process. The

Reference Manual describes the API of the library. It is detailed and extensive

information on all public elements of the KOALA interfaces. The Reference Manual

KOALA Graph Theory Internet Service 461

Figure 3. Example of PGF/TikZ plugin in action

describes approx. 2,300 elements, i.e. classes and their methods, as well as types

and constants. It consists of approx. 1,400 files containing a total of 20MB of

data. Like the Wiki Manual, it contains links to a number of elements associated

with the library (the KOALA Wiki Manual, KOALA sources, the ZGRED graph

editor, KOALA Web Service documentation).

3.3. KOALA code examples

The KOALA code examples [4] is a set of short sample codes to facilitate the

launch of the implementation. This is an extension of the documentation which

is connected with the User Manual and the Reference Manual. As shown earlier

in Figure 1, the user has an opportunity to review the input data (text) and the

results of calculations. Moreover, in most of the examples, there are additional

windows that display graphs, edge weights, scheduled tasks, etc. Furthermore,

a graph sometimes can be displayed in two ways – in a window or in ZGRED. The

latter way enables its edition and starting KOALA algorithms. The sample codes

were written using the HTML + JavaScript (JQuery) technology. By applying

scripts for the SED stream editor [17], the process of adding new examples was

simplified. The user only has to select a sample C++ code, give appropriate tags

in comments and attach supporting graphic files which are to be displayed.

Currently, 249 files with sample codes, 455 text files with the output, 132

files with graph figures and 6 files with graphs in the GraphML format have been

included in the documentation.

4. Advanced graph editor ZGRED

There is a large amount of graphical software for creating graphs (like

Microsoft Visio, Dia [18], CorelDraw to name a few). However, all this software

is not dedicated to drawing graphs (as in graph-theory graphs) – they focus

on general purpose diagrams or just vector graphics. This makes creating and

editing graphs far less convenient – if an editor lacks the notion of parallel edges,

it cannot present or render them appropriately, if it does not understand what

a component is it will not allow the user to select or move it. A diagram is

composed of shapes, a graph is composed of vertices and edges. Adding something

to a diagram, e.g. a circle, requires giving its position and radius. Adding

462 T. Goluch, K. M. Ocetkiewicz and K. Giaro

something, e.g. a vertex to a graph requires just giving its position. A vertex is

represented by a circle, but by default all vertices have the same radius. Moreover,

changing the radius of a vertex is a very rare activity, hence, forcing the user to

specify it with every vertex would be seen as an obstacle. To summarize, the main

difference between the majority of current diagram drawing tools and ZGRED [5]

is the difference in the amount of information provided by default and the grasp

of the concept of the graph itself.

Figure 4. Example of a graph edited in ZGRED

Figure 5. Advanced commands in ZGRED menu

Like all software it has to be effective in doing what it does. For ZGRED it

means being able to create graphs quickly – if we want to check quickly if a given

graph is planar, we would not want to spend time fighting with an editor to create

KOALA Graph Theory Internet Service 463

it. We want to click a few times, select an option and be done with it. On the

other hand, most graphs are drawn by scientists who often want to include them

in publications. Therefore, there has to be a way of customizing the appearance

of the drawing and including it in a publication should be as easy as possible.

Another design goal of ZGRED was that it should be possible to run it in

an offline mode, after saving the web page to a disk. Therefore, the online version

of ZGRED is composed of a single HTML page, a couple of CSS style sheets and

a JavaScript code of the application. All resources are embedded inside the source

code which not only makes them always immediately available (and does not

depend on the browser fetching and storing them in a cache) but also reduces the

page load time – all images are small, two or three color icons and inlining them

is more bandwidth-friendly than requiring a browser to fetch (or just ask about

their modification) about a hundred images.

ZGRED does not use any additional toolkits or libraries. This was an

intentional choice. Most of the ZGRED code base focuses on the program logic,

i.e. handling a graph. None of the available JavaScript toolkits provide such

functionality. On the other hand, the user interface part, where such toolkits could

prove useful, required a very specific functionality, like multicolumn property lists

which was too specific to be provided by a general-use toolkit. While this meant

more time spent on developing the user interface and providing a cross-browser

compatibility, the relative amount of this time was not significant as the user

interface code was only a small fraction of the total code size.

The main goal of ZGRED is to present and allow modification of graphs.

Therefore, graphs have to be drawn and graphs have to be interactive. There

are two major ways of creating two dimensional images inside web browsers:

a CANVAS tag and a SVG image. The CANVAS tag essentially provides a bitmap

with given dimensions and the API for drawing a bitmap into this. The provided

API consists of a set of functions that are typically available when dealing with

vector graphics: drawing simple shapes (lines, ellipses, polygons, Bézier curves),

line width and color, filling the color selection, viewing transformations (scale,

translate, rotate and general matrix transformation) and text rendering. It is

enough for ZGRED as vertices are drawn as circles, edges as straight lines or semi-

circles and loops are rendered as Bézier curves. The SVG technology provides

essentially the same rendering functionality but wraps it with a DOM tree and

allows to attaching event handlers to different objects. While event handling would

appear to be a desired property, proving useful during implementing the graph

interactivity, SVG events share one an undesirable feature with virtually all the

diagram drawing software – an object is hit only when it is pointed directly with

a mouse cursor. This, along with the usual lack of highlighting of a currently

pointed object often leads to frustration while the user is trying to hit a one-pixel

wide line.

For ZGRED we have decided that the currently pointed object will be

highlighted which gives the user a visual cue which object will be selected after

464 T. Goluch, K. M. Ocetkiewicz and K. Giaro

pressing the mouse button. Moreover, the object does not need to be hit precisely

– it is enough to click a point that is sufficiently close to it. If multiple objects

satisfy this condition, the one that is closest to the clicked point is selected. Such

a selection method, while being convenient for the user, is almost impossible to

be implemented by means of SVG events. While a hit-margin could be simulated

by covering objects with invisible and thicker “hit shapes”, the select-nearest rule

cannot be implemented as SVG resolves conflicts with the z-order (and there is

no notion of a closer–further relation as the object is either hit or not).

If SVG cannot help us with hit testing and the performance is not a dis-

tinctive feature (there is no essential difference in rendering the speed), the only

choice is between using the API drawing directly or via a DOM tree. Therefore,

we have chosen the CANVAS element.

The method of rendering a graph is rather sophisticated in order to achieve

the efficiency of operation. On the one hand, vertices and edges pointed by the

mouse cursor should be highlighted, which requires some drawing operations after

every mouse movement event from the browser, on the other hand, a full redraw

of the drawing area is extremely costly – a decent CPU and an up-to-date browser

are able to render only a few hundred styled curves in a reasonable time (about

100ms) and any text drawing (e.g. vertex or edge labels) makes it even more

costly.

This problem was solved by dividing the drawing into four layers (see

Figure 6). The first layer handles the graph background – the grid, if shown; the

background image, if set, the bounding box and the background color. The second

layer represents the drawing of the graph without any highlighting – plain vertices

and edges and their labels. The third layer contains any highlighting applied to

the graph – selected edges or vertices and hit indicator (vertex or edge is hit if

it is pointed by the mouse cursor). Finally, the fourth layer contains additional

shapes not connected to the graph like the selection area or the resize/rotate box.

Every layer, except the first, has a transparent background and the final image is

obtained by drawing layers in the same place in their sequence order (actually this

is done automatically by the browser as every layer is represented by a CANVAS

tag, placed in the same area of the web page and properly ordered by their z-

order). If an object (vertex or edge) is highlighted, it is drawn twice – once on the

second layer in its default drawing style and second time on the third layer using

the “highlighted” style.

Such a scheme complicates the drawing operations, but the gain outweighs

this additional work by a large margin. Events like a mouse movement can be

handled by redrawing only the third and fourth layers, which usually contain

only a few objects to be drawn.

Moreover, multiple redraws are batched – if handling the user input requires

redrawing multiple elements, these redraws are not done immediately. Instead, the

affected layers are invalidated and only invalidated layers are redrawn in the next

redraw cycle. Since layers depend on those below them, we have implemented the

KOALA Graph Theory Internet Service 465

Figure 6. A small graph with two vertices and an edge selected and with a grid enabled, as

seen by a user (a); (b)–(e) show layers that compose the image (a)

following invalidation rule: if a layer n is invalidated, then all layers with numbers

greater than n are also invalidated.

If the first (background) layer is invalidated, then the most probable cause

is that the view has been changed (moved or scaled). Such an operation requires

redrawing of the entire graph, hence, the second (graph) layer should also be

redrawn. Invalidation of the second layer means that the graph has been modified

in some way, e.g. its layout has been changed or the graph has been modified. This

leads to invalidating the third layer – if a highlighted vertex has been moved, its

representation on the third layer should also be modified. The third layer contains,

inter alia, highlights of the selected objects. If this layer has been modified, then

possibly the layout of the selected objects has been changed, so the fourth layer

might also need redrawing, as in such case it will contain a box outlining the

selected objects.

Having rendered a graph, we need to provide interactivity. This means that

we need to find an object that is closest to a certain point. For most objects

(vertices and edges) this is pretty straightforward – all we need is to compute the

distance from a circle to a point or the distance from a line to a point. Loops

466 T. Goluch, K. M. Ocetkiewicz and K. Giaro

are more tricky. While it is possible to compute such a distance analytically, it

is neither easy nor fast to do so. Instead we have approximated the curve with

two straight lines and a semi-circle. The distance from the curve is computed

as a minimal distance to one of these three objects. While the computation is

not mathematically precise, the hit margin makes it hard to spot any noticeable

differences.

The size of the ZGRED source code is about 700KB and counts about 22,000

lines.

4.1. ZGRED as a desktop application

During the development of the web-based ZGRED another requirement

appeared. There was a need for an offline version of ZGRED. This need arose

from the limitations of a sandboxed environment inside a web browser. Firstly,

a web application has no access to the system clipboard (at the time when ZGRED

was being developed there was no universally supported Clipboard API). Secondly,

a web application is not effective enough to handle large graph databases (with the

graph count of the order of hundred thousands). Moreover, batch computations

on a large number of graphs are impossible with the KOALA Web Service due to

its low throughput. Thirdly, a web application cannot be easily used as a “graph

visualizer”, for example, for debugging purposes.

How to create a non-web application without rewriting the whole code base?

A simple wrapper for a browser control does not help here – a browser control

is still a browser and runs all JavaScript codes inside a sandbox, so we solved

nothing. We solved this problem as follows. The user interface and input/output

code (e.g. opening and saving files, calling webservices) was separated from the

program logic and provided in a form of a set of defined interfaces. The online

version of ZGRED became a platform independent program code and a browser

based implementation of required interfaces (using HTML, CSS and JavaScript).

Then, all that was needed to create an offline ZGRED was a JavaScript engine

and an offline application based implementation of the required interfaces.

The JavaScript engine of choice was Google’s V8 [19]. We tried Mozilla’s

SpiderMonkey [20] at first, but at the time of ZGRED development its documenta-

tion was very unreliable. Different versions of the engine required different usage

patterns and the API changed rapidly. Online documentation containing exam-

ples of a few old versions did not prove helpful. To be fair, the official online

documentation of V8 is extremely sparse [21–23] but the code base is partially

documented in the Doxygen format, so a semi-usable (as many functions are not

documented) reference can be generated.

To provide the portability of the user interface code the wxWidgets

toolkit [24] was chosen. The main arguments for this toolkit were: the project

maturity, good documentation [25], and earlier experience with it. The toolkit

provided not only portable user interface controls but also, inter alia, file system

access, which helped with the graph visualization mode and the threading model,

used while performing computations on a graph database.

KOALA Graph Theory Internet Service 467

The graph database handling was simplified by the existence of SQLite [26].

It is a mature, portable, in-process SQL database engine. A ZGRED graph

DataBase (ZDB file) is essentially a SQLite database.

Using ZGRED as a graph visualizer had to be as simple as possible. From

earlier discussions with the users who actually needed this feature the following

method of visualization was developed. Entering a “visualization mode” requires

providing a file name. Then, the program begins observing the file and rereads

it after every change. If, after a read, the file contains a valid graph in one of

the supported formats, then it is displayed and made available for editing. In the

visualization mode ZGRED keeps track of positions of all vertices that appeared

at some point of time. This makes it easier for the user to keep track of changes

in the visualized graph – if the first graph shown has 3 vertices and the user

arranged them in a readable way, then when the graph contains four vertices

after rereading, the layout of the first three vertices will be preserved.

5. KOALA WebServices

One of the goals of the KOALA project was to provide a widely available

webservice containing selected functions from the KOALA library [6]. The webser-

vice had to be run on NIWA [27] servers and essential computations needed to be

run via the BeesyCluster [28] service. This setup turned out a bit tricky to han-

dle. While BeesyCluster provides a webservice to access its resources, it requires

a user authentication and does not allow creating custom webservices. Therefore,

a proxy webservice is needed. Its sole purpose is to expose a user friendly webser-

vice that handles user requests by logging into a BeesyCluster account, invoking

computations and passing the result to the user. For this purpose the PHP lan-

guage and NuSOAP toolkit [29] were used to provide an independent and easy to

use webservice server. However, NuSOAP was unable to communicate with Beesy-

Cluster. The webservice on the BeesyCluster side was implemented using an older

version of AXIS that contains various quirks that prevent many SOAP tools from

interfacing with it. Fortunately the gSOAP toolkit [30] is not among them and

can fluently speak the language that AXIS requires. Unfortunately, it is a C++

toolkit, so the PHP proxy needs to be assisted with a small C++ program that

receives all the requested information, routes it to the BeesyCluster webservice

and returns the obtained response (Figure 7).

Figure 7. KOALA webservice architecture

Interfacing with a webservice is quite simple. A typical webservice method

takes the following arguments: a string containing the graph in the GraphML

468 T. Goluch, K. M. Ocetkiewicz and K. Giaro

format, a string naming the vertex and edge identifiers (only when necessary) and

additional arguments depending on the algorithm to be invoked. The identifiers

are used to identify objects. For example, if a user wants to find the shortest

path between two vertices, he/she must supply these vertices to the call. He/She

does that by supplying a property named e.g. “id” and setting the “id” property

of a starting vertex to “start” and target vertex to “target”. When invoking

a webservice method, he/she provides “id” as the identifier name, “start” as the

source vertex and “target” as the target vertex:

findPathBFS(‘‘graph in GraphML’’, ‘‘id’’, ‘‘’’, ‘‘start’’, ‘‘target’’).

Obviously, the GraphML identifiers of these objects can also be used:

findPathBFS(‘‘graph in GraphML’’, ‘‘’’, ‘‘’’, ‘‘v0’’, ‘‘v3’’) .

Needless to say, almost all methods available in the webservice can also be invoked

from ZGRED.

6. Chinese postman puzzle

The last element associated with the KOALA library is the Chinese postman

puzzle which reflects the Chinese postman problem as an optimization gameplay.

The problem of the Chinese postman is based on finding a cycle that allows

travelling all the roads (edges) at least once and at the lowest cost. The cost of

traveling each edge is described by its weight. Edmonds was the first person who

named it the Chinese Postman Problem [31].

The presented application [7] allows the user to deal with the problem in

practice. This application consists of several boards representing different types

of roads (edges) and crossroads (vertices). The traveling begins from a randomly

selected crossroad (vertex). The goal is to travel all the roads and return to the

starting point. When starting each level you get a certain period of time which is

proportional to the length of the optimal path plus a constant value (see Figure 8).

The Chinese postman puzzle is a web-based application executed in

a browser. It was tested on the following browsers: Firefox, Chrome, Opera and IE;

and was created with the use of technologies such as: graphics SVG + JavaScript.

In the puzzle, a total of 16 boards (graph structures) has been divided into 8

levels of difficulty. There are several hundred to several thousand different sets of

weights (tasks) corresponding to each board, which makes every gameplay unique.

7. Summary

The KOALA project has evolved from a simple graph library to an extensive

vortal dedicated for algorithmic graph theory and discrete optimization. It offers

both the platforms for analyzing graph and network structures (serviceable for

direct application in practice, or as a research tool), as well as a broad educational

material devoted to this topic. We would like the KOALA and its accompanying

elements to become a widely used standard, competitive with popular solutions

such as the Boost Graph Library [9].

KOALA Graph Theory Internet Service 469

Figure 8. The application: the Chinese postman puzzle

References

[1] KOALA library http://koala.os.niwa.gda.pl/koala.zip

[2] KOALA, the main page of the service http://koala.os.niwa.gda.pl

[3] KOALA, documentation of the library’s API http://koala.os.niwa.gda.pl/api/index.html

[4] KOALA code examples http://koala.os.niwa.gda.pl/api/examples.html

[5] KOALA – ZGRED graph editor http://koala.os.niwa.gda.pl/zgred/zgred.html

[6] KOALA webservices on the BeesyCluster http://koala.os.niwa.gda.pl/ws/ws.php

[7] KOALA Chinese postman puzzle http://koala.os.niwa.gda.pl/toy/index.html

[8] Mehlhorn K and Ngher S 1989 LEDA, a Library of Efficient Data Types and Algorithms,

MFCS 89, LNCS 379 88

[9] Siek J, Lee L-Q and Lumsdaine A 2002 The Boost Graph Library: User Guide and

Reference Manual, Addison-Wesley

[10] Sarang P 2006 Object-Oriented Programming with C++, PHI Learning

[11] Garcia R, Järvi J, Lumsdaine A, Siek J and Willcock J 2007 An Extended Comparative

Study of Language Support for Generic Programming, Journal of Functional Program-

ming 17 (2) 145

[12] Alexandrescu A 2001 Modern C++ Design: Generic Programming and Design Patterns

Applied, Addison-Wesley

[13] Błażewicz J, Lenstra J and Rinnoy Kan A 1983 Scheduling subject to resource contrains:

classification and complexity, Disc. Appl. Math. 5 11

[14] Wiki of Redmine http://www.redmine.org/projects/redmine/wiki

[15] Doxygen main page http://www.stack.nl/˜dimitri/doxygen/

[16] Mertz A and Slough W 2007 Graphics with PGF and TikZ, Proceedings of the Practical

TEX 2006 Conference

470 T. Goluch, K. M. Ocetkiewicz and K. Giaro

[17] McIlroy M D 1987 A Research Unix reader: annotated excerpts from the Programmer’s

Manual, 1971-1986 (Technical report), CSTR. Bell Labs., 139

[18] Dia Diagram Editor http://dia-installer.de/

[19] Google’s V8 JavaScript engine https://developers.google.com/v8/

[20] Mozilla’s SpiderMonkey JavaScript engine

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

[21] Google’s V8 JavaScript engine, online documentation (1)

https://developers.google.com/v8/get started

[22] Google’s V8 JavaScript engine, online documentation (2)

https://developers.google.com/v8/embed

[23] Google’s V8 JavaScript engine, online documentation (3)

https://developers.google.com/v8/profiler example

[24] wxWidgets, cross-platform GUI library http://wxwidgets.org/

[25] wxWidgets documentation http://docs.wxwidgets.org/3.0/

[26] SQLite database engine http://www.sqlite.org/

[27] Centre of Competence for Novel Infrastructure of Workable Applications

http://www.niwa.gda.pl/

[28] BeesyCluster platform

https://projects.os.niwa.gda.pl/projects/cd-niwa/wiki/BeesyCluster

[29] NuSOAP – SOAP Toolkit for PHP http://sourceforge.net/projects/nusoap/

[30] gSOAP toolkit for SOAP and REST XML Web services

http://www.cs.fsu.edu/˜engelen/soap.html

[31] Edmonds J 1965 The Chinese postman problem, Operations Research, Suppl. 1 13 373

