
TASK QUARTERLY vol. 19, No 4, 2015, pp. 371–386

KASKADA PLATFORM

IN CLOUD ENVIRONMENT

HENRYK KRAWCZYK, JERZY PROFICZ

AND BARTŁOMIEJ DACA

Academic Computer Centre in Gdansk

Gdansk University of Technology

Narutowicza 11/12, 80-233 Gdansk, Poland

(received: 7 May 2015; revised: 15 June 2015;

accepted: 23 Juny 2015; published online: 1 October 2015)

Abstract: KASKADA is a computing platform for developing and running services and applica-

tions oriented to multimedia processing and data streaming. A solution for serving the platform

in the PaaS model is presented. The paper briefly describes the software for creating the private

cloud solutions and the components designed and implemented to enable hosting the platform in

the cloud environment based on the OpenStack software. The cloud has been deployed to a su-

percomputer working in C2NIWA at the Gdansk University of Technology. This article assumes

the reader’s basic knowledge of the KASKADA platform.

Keywords: KASKADA, cloud computing, PaaS, CD NIWA, OpenStack

1. Available software for the computing cloud

In order to enable the KASKADA Platform [1, 2] to be served in the

PaaS (Platform-as-a-Service) model [3], the OpenStack software has been used.

OpenStack is currently one of the most popular and most rapidly developing

environments for creating both public and private clouds. The OpenStack project

is supported by such companies as IBM, Intel and HP [4]. There are other

open-source products on the market, for instance OpenNebula, Eucalyptus and

CloudStack. All of them have many common features, but what distinguishes the

OpenStack from the other products is the development speed and the community

size. The four aforementioned projects and their monthly contributors count are

presented in Figure 1

The Juno version of the OpenStack software has been used for the purposes

of this project. As at the moment of writing this article, Juno is the latest version

of the software.



372 H. Krawczyk, J. Proficz and B. Daca

Figure 1. Contributors of the most popular IaaS open source platforms; source: [5]

1.1. The environment configuration

The whole project was carried out on the 16 servers of the Galera+

computing cluster, all of which used the Ubuntu 14.04.1 operating system. The

OpenStack software was installed on 14 servers. Additionally, one of the servers –

the access server – functioned as a gateway through which the connections (ssh,

rtsp, http) were redirected from the global network to the cluster local network.

The last server out of the aforementioned 16 was a storage server. Figure 2 presents

a server dependency diagram.

3 out of 14 servers on which the OpenStack software was deployed, were

used as management nodes:

• virtual network node – responsible for the network traffic management within

the cloud;

• storage provider – responsible for hosting virtual discs to virtual machines;

• the controller – managing other services.

Such a division is recommended by the OpenStack developers [6]. On the

other 11 nodes (known as the compute nodes), virtual machines are run by means

of the KVM hypervisor.

1.2. OpenStack software components

The OpenStack software is divided into particular services. Below, short de-

scriptions of the most important components are provided. Furthermore, Figure 3

depicts a diagram of communication between the components.

The keystone’s function is providing the authentication and authorization

of users. Moreover, it manages the catalogue of services in which the information



KASKADA Platform in Cloud Environment 373

Figure 2. The environment configuration

Figure 3. The OpenStack software architecture; source: [6]



374 H. Krawczyk, J. Proficz and B. Daca

concerning the addresses of services is stored. The Glance component stores and

manages the virtual machine images. It provides the images to the Nova service.

The image is a collection of files which are used to create or rebuild the virtual

machine. Images can be stored in the Swift component. Its key function is data

storage. The storage is highly fault tolerant and the data is stored in a distributed

way. The component is responsible for, i.a., replication of the stored data. This

component was not used in our project; it was replaced with the GlusterFS

distributed file system. The main aim of the Nova component is the management of

life cycles of the virtual machines in a computing cloud environment. Nova is also

responsible for appropriate distribution of the virtual machines on the servers. The

Neutron service manages the virtual networks, routing, ports forwarding, etc., and

provides network connectivity for virtual machines. Cinder allows managing disc

resources. Furthermore, it enables creating and deleting virtual discs and assigning

access to these discs to virtual machines. The Ceilometer component collects the

cloud usage statistics. The Horizon component provides a user interface for easy

management of all the services. It enables, i.a., virtual machines, networks and

storage management, as well as assigning public IPs to virtual machines and

checking the cloud usage statistics. The Heat component enables orchestration.

In order to do so, it requires an orchestration script in either the HOT format

(native for the component) or in the AWS CloudFormation format (developed

by Amazon).

2. Extra components implemented

For the purposes of the project, it was necessary to implement a few

additional components, as well as to modify the KASKADA platform in a certain

way. In this chapter, particular elements and modifications are described.

2.1. KASKADA platform instances database

Figure 4 presents a diagram of the database which stores information on

the KASKADA platforms deployed in the cloud. The database consists of three

tables:

• NETWORK – The table contains a list of virtual networks created for the needs

of the KASKADA platform;

• PLATFORM – The table stores general information on the deployed platform

instance: the platform’s name, owner, IP address and port of virtual access

server enabling SSH access to the virtual machines and IDs of two virtual

networks used by a given instance – the Ethernet network and the InfiniBand

network;

• CONSOLE VM – Contains information on KASKADA platform user consoles:

addresses of the platforms and the ID of the platform with which a given console

is connected.

On the basis of the information stored in the database, virtual networks for

the deployed KASKADA platforms are assigned, along with proper redirection of



KASKADA Platform in Cloud Environment 375

Figure 4. Database diagram

the network traffic to the user’s interface of these platforms. In this solution the

5.5 version of MySQL server was used.

2.2. Adaptation of the user console

Cloud environment can be divided into three major categories: Infrastruc-

ture as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS) [7]. This classification is presented in Figure 5. IaaS provides physical or

virtual machines, storage, load balancers, images, etc. In this project OpenStack

software deployed on the Galera+ supercomputer is responsible for the realiza-

tion of these features. PaaS provides a platform that can be used for developing

and/or running client software. The KASKADA platform belongs to this category

and hosting it in this model is the main goal of this project. The last category

– SaaS – provides access to the software, for example games, office suites or ap-

plications created on the KASKADA platform. Accessing any of these categories

is possible from devices connected to the Internet. In most cases, access can be

realized by applications such as terminal or web browser, but sometimes the client

has to install some dedicated software.

The user console of the KASKADA platform allows users, i.a., to create and

start new services and to monitor the resource usage of the started services. For



376 H. Krawczyk, J. Proficz and B. Daca

Figure 5. Cloud environment layers

administrators, the user console allows them to monitor, i.a., the resource usage

of the whole cluster, the currently running services or costs generated by certain

users. However, not all of the administrators’ tasks could be performed using the

user console, thus, certain adaptations of it were introduced:

• User management from the interface (available for the administrator only) was

implemented – hitherto, administrators used the LDAP server;

• Machine management was introduced – it is now possible to run a new machine

or to turn off the ones that are no longer needed. Additionally, the size of the

starting machine can be chosen (predefined configuration of the CPU number

and RAM size). The new computing nodes management panel is shown in

Figure 6.

Figure 6. New computing node management panel



KASKADA Platform in Cloud Environment 377

2.3. New artifacts

In order to use the OpenStack software to deploy the KASKADA platform,

it was necessary to create appropriate virtual machine images, as well as an

orchestration script which describes the platform’s deployment scenario.

Virtual machine images had to be created for the KASKADA platform to

be deployed in cloud:

• kaskada-db – this image contains preliminarily configured servers: LDAP and

the database. LDAP is employed by the rest of the machines (Linux user

authentication) and by the user’s console. The console uses the database as

well;

• kaskada-ev – an image of the machine with the ActiveMQ server installed;

• kaskada-uc – a server on which the user’s console is deployed;

• kaskada-cn – machines deployed from this image constitute virtual computing

and streaming nodes, on which the KASKADA platform runs its tasks;

• kaskada-ap – the access server’s image. Users of a given platform enter this

server using ssh. Furthermore, it serves for compilation of user algorithms.

The images are managed by the Glance component. Glance hosts the images

to Nova – the component which deploys virtual machines.

The orchestration script is executed by the Heat component of the Open-

Stack software. It describes the resources that create the infrastructure for a cloud

application. It can be written in the JSON or YAML format, thus it is readable

for standard users who do not know any programming language.

The script is implemented in the HOT format. It contains a definition of

input parameters. Providing these parameters is necessary to launch the procedure

of deploying the KASKADA platform in cloud. The parameters required from the

user are:

• the platform’s unique name;

• the name and surname of the person deploying the platform;

• the login and password of the administrator of the newly created platform.

Moreover, the OpenStack software administrator’s password has to be

provided in order to start the procedure of deploying the platform.

The most vital elements of the HOT format employed in the script [8] are

shortly described below:

• OS::Nova::Server – server specification. One of the parameters of this object is

a script which is activated immediately after the machine’s launch. As a result,

every server can be additionally configured as it is launched. Such a mechanism

is extensively employed during the deployment of the KASKADA platform in

cloud. It is used, i.a., in order to add the platform’s administrator (defined in

the input parameters) to the LDAP server;

• AWS::AutoScaling::AutoScalingGroup – server group definition. In the definition of this

element, it is crucial to provide a template of the server which will be deployed

in the group. With this component, the number of servers deployed within the



378 H. Krawczyk, J. Proficz and B. Daca

group can be easily modified. The mechanism is used in the KASKADA platform

to manage the number of deployed virtual computing nodes;

• AWS::CloudFormation::WaitCondition – a tool designed to enforce the machines de-

ployment order. When a given machine finishes its initialization, it reports the

task’s realization to this tool and, as a result, a deployment of the next machine

is launched;

• elements connected with virtual internet networks:

– OS::Neutron::Net/OS::Neutron::Subnet – objects representing a virtual network or

subnetwork;

– OS::Neutron::Router – a virtual router which enables connecting two virtual

networks;

– OS::Neutron::FloatingIP – an object representing the machine’s external IP

address. However, it is not an external address which can be accessed from the

internet network. What is meant by “external IP address” here is an address

which is accessible from the outside of the cloud (e.g. from the computing

nodes of the Galera+ cluster).

2.4. Supporting servers

In addition to the modifications of the KASKADA platform and the arti-

facts for the OpenStack software, it was necessary to implement several servers

supporting the cooperation between the platform and OpenStack. In this section,

the servers are briefly described.

The proxy server for the RTSP protocol was implemented in JavaScript. Its

function is to forward RTSP streams from the KASKADA platform to the internet

network. The server establishes two connections: one with a client who wants to

receive the RTSP stream, and the other with the server which exposes a given

stream. Afterwards, the server forwards the stream from the server to the client.

The information required by this server is provided by the following URL address:

rtsp://proxy:port/server IP/server port/hash

The elements of the address refer to:

• proxy and port – the address/domain name of the machine on which the RTSP

proxy server has been deployed and the port on which the server listens for

connections;

• server IP and server port – the IP address and port of the internal server which

exposes the RTSP stream;

• hash – the selector of the stream exposed by the internal server.

The StorageHelper server was implemented to enable dynamic adding and

removing remote disc resources inside the distributed file system GlusterFS. In

spite of the fact that the OpenStack software has tools to manage remote disc

resources, the KASKADA platform’s characteristics do not allow the tools to be

used. Unfortunately, the latest version of the OpenStack software does not support



KASKADA Platform in Cloud Environment 379

assigning the same remote disc resource to numerous virtual machines at the same

time.

The server provides two methods:

• /allocate/{storage name} – allocating 100GB of the storage, identified by the name

storage name ;

• /remove/{storage name} – removing the previously allocated storage.

The Apache server is employed to forward the HTTP traffic to the partic-

ular KASKADA platforms in cloud. The forwarding is conducted on the basis of

the domain name. All the platforms are accessible at the following address: <plat-

form name>.cloud.kaskada.task.gda.pl . The DNS servers forward the traffic connected

with the cloud.kaskada.task.gda.pl domain to the access server. Next, the Apache

server, depending on the <platform name> , forwards the traffic to an appropriate

virtual machine on which the platform user’s interface has been deployed.

A set of macros in the perl programming language was implemented in

order to automate adding new forwards. Each time a configuration of the Apache

server is loaded, the macros connect to the database, download the information

on the platforms and addresses of the deployed user’s interfaces, and then they

register the forwards. To enforce the Apache server to reload the configuration, it

is necessary to send a service httpd reload command.

It was vital to support the cooperation between the KASKADA platform

and the OpenStack software, as well as to implement the mechanisms allowing

us to circumvent the problem of one external address for the whole computing

cloud. These were the reasons for the CloudHelper server to be created. The server

provides REST API, the particular methods of which are described below:

• platform management:

– GET /platforms/<max size> – returns the orchestration script describing the pro-

cess of deploying the KASKADA platform. In the max size argument, a maxi-

mum expected number of virtual machines in the platform is provided. The

argument has been introduced to improve the choice of the virtual machine’s

mask. 3 sizes are supported: 254, 510 and 1022. The max size parameter does

not have to be equal to one of the sizes; the server will choose to value closest

to the required;

– POST /platforms – this method expects the definition of the platform in the JSON

format as a parameter. The definition has to contain information on the name

of the deployed platform, its owner and the address of the virtual access node.

The information is stored in the database. Moreover, a storage used by the

KASKADA platform is allocated. Subsequently, on the node functioning as

a gateway, the iptables tool register the redirections of ports, which enables

the access of SSH to the access node of the deployed platform;

– DELETE /platforms/<platform name> – this method results in deleting the plat-

form name platform and all of its elements: virtual machines, storage, virtual

networks, redirections/forwardings, etc.



380 H. Krawczyk, J. Proficz and B. Daca

• managing a given instance in the cloud:

– GET /platforms/<platform name>/flavors – the method returns the definitions of the

virtual computing nodes accessible for the platform name platform;

– POST /platforms/<platform name>/nodes – the function of this method is to deploy

new virtual computing nodes for the KASKADA platform identified by

platform name . The number and type of the new virtual computing nodes is

provided in the JSON format, in an enclosed message;

– DELETE /platforms/<platform name>/nodes – the method evokes turning off and

deleting some virtual computing nodes. The list of the chosen nodes should

be included in the message in the JSON format;

– POST /platforms/<platform name>/uc – a method which records the information

on the deployed user’s interface, stores it in the database and relates it

to the platform name platform. Then, it reports the need for reloading the

configuration to the Apache server on the node functioning as a gateway.

• file management:

– GET /resources/<file> – due to this method, a server sends a file file to the client,

provided that the file belongs to the set of the shared files. The method is

used for passing the scripts to the virtual machines during the deployment

of the KASKADA platform.

3. Architecture and modus operandi

The first part of this section presents the KASKADA platform architecture in

the PaaS model. It describes the role of each server and shows which components

communicate with each other. The next part describes in detail how the platform

is started/stopped and how the administrator can change the number of the

computing nodes.

3.1. Cloud architecture

The components described in section 1 have been deployed for servers

intended for the realization of this project in a way presented in Figure 7. To

ensure a clear view, the OpenStack software components and the connections

between the particular components of the KASKADA platform are excluded from

Figure 7. Below, a list of servers, components implemented on the servers and the

connections between these elements is provided:

• storage server – on this machine, the StorageHelper server has been deployed;

• gateway server – the server on which the proxy server has been installed for the

RTSP protocol, along with the Apache server which forwards the HTTP traffic.

The connections are as follows:

– The RTSP proxy server connects to the stream sources deployed on the

kaskada cn virtual machines of the KASKADA platform in cloud;

– The Apache server, using a set of macros, obtains the information on

the HTTP forwardings from the database and, subsequently, realizes the

forwardings;



KASKADA Platform in Cloud Environment 381

Figure 7. Deployment diagram of cloud architecture

• the OpenStack servers:

– controller – on this machine, apart from the OpenStack services, the Cloud-

Helper server and the database server have been deployed. The connections

are:

The CloudHelper server uses the StorageHelper component (implemented

on the storage server) to manage the storage for the KASKADA platform.

Furthermore, it stores the information on the deployed platforms in the

database;

– the computing nodes – by means of the OpenStack software, the virtual

machines belonging to the KASKADA platform are deployed on these nodes.

The images of the machines are managed by the Glance component;

– storage provider and network servers – servers on which the OpenStack

software services have been implemented. The services are indispensable for

the proper functioning of the whole environment.

The OpenStack software architecture is extensively described in [9].



382 H. Krawczyk, J. Proficz and B. Daca

3.2. Modus operandi of the KASKADA platform in cloud

environment

Launching the KASKADA platform in the PaaS model starts with down-

loading the orchestration script from the CloudHelper server. After receiving the

script’s input parameters from the user (the platform’s name, the administra-

tor’s name and password), the OpenStack software creates a separated virtual

network for the platform, and then it assigns the addresses to the particular ma-

chines which will be created in the next stages of the process. Afterwards, the

OpenStack software creates and deploys the first virtual machine (kaskada-db),

passing it the parameters provided by the user and the IP address reserved for the

kaskada-ap machine – the platform’s access server. Figure 8 depicts consecutive

stages of the platform’s deployment process.

Figure 8. Deploying KASKADA platform instances



KASKADA Platform in Cloud Environment 383

The kaskada-db server initializes its activity with downloading bash scripts

from the CloudHelper server (GET /resources/<file>). The scripts prepare the

database and the LDAP server for the KASKADA platform. Moreover, they register

the platform on the CloudHelper server (POST /platforms), passing the information

on the platform to the server. The information includes the platform’s name,

its owner and IP address of the access server. The CloudHelper server records

the obtained information in the database and instructs the StorageHelper server

to allocate shared storage for the platform. After the CloudHelper and Storage-

Helper servers finish their activity, the kaskada-dbmachine informs the OpenStack

software of the end of the initialization process.

Another virtual machine deployed by the OpenStack software is kaskada-ev

with an ActiveMQ server implemented on it. After the start, the server downloads

bash scripts (GET /resources/<file>) which then mount shared the storage dedicated

for the platform. When the scripts execution is completed, a method notifying the

OpenStack software of the end of the kaskada-ev server deployment is activated.

The third server created is kaskada-uc. On this server, the user console will

be started. In the first step bash scripts from CloudHelper server are downloaded

(GET /resources/<file>). This scripts are used to connect remote storage to the

server and to post-configure the Tomcat server (i.a. set the database and the

LDAP user and the password, set the name of the platform etc.). Next, the user

console is registered in the CloudHelper server (POST /platforms/<platform name>/uc).

The CloudHelper server stores the IP address of the user console machine in

database and delegate registering HTTP traffic forward and SSH tunneling to the

GatewayServer. From this moment, the user console can be accessed by users

via the HTTP address <cloud name>.cloud.kaskada.task.gda.pl . When the kaskada-uc

server is configured and registered, it informs the OpenStack services that the

next servers can now be started.

On the next step the OpenStack software starts two machines: virtual

computing node (kaskada-cn) and virtual streaming node (kaskada-sn). After

downloading scripts from the CloudHelper server (GET /resources/<file>), the remote

storage is mounted, servers connect themselves to the InfiniBand network and each

server registers itself in the user console. The kaskada-sn server launching process

ends with informing the OpenStack software about the end of the initialization.

Kaskada-ap is the last server that is launched by the OpenStack software. As

all the servers, it starts with downloading the bash scripts from the CloudHelper

server (GET /resources/<file>). The scripts are responsible for mounting the shared

storage. The last step of the initialization process is changing the active profile in

the KASKADA platform, which enables the starting of services on the platform.

The adding/deleting of the nodes to the KASKADA platform is shown in

Figure 9.

In order to add or remove nodes, the administrator of the KASKADA plat-

form must choose a proper option from the user console – Node Manager. In

the first step, the user console gets the available server sizes – predefined sets



384 H. Krawczyk, J. Proficz and B. Daca

Figure 9. Nodes count modification

of memory sizes and the core count – from the CloudHelper server (GET /plat-

forms/<platform name>/flavors). Then, the administrator chooses proper server size

and specifies modifier of nodes count. The modifier should be less than 0 if nodes

should be deleted, or greater than 0 if nodes should be added. The user con-

sole component sends a proper message to the CloudHelper server: POST /plat-

forms/<platform name>/nodes and a message in the JSON format containing the selected

size and modifier when adding nodes, or DELETE /platforms/<platform name>/nodes with

list of chosen servers to delete. List of servers is designated automatically by user

console.

When deleting nodes, the only thing that the CloudHelper must do is to

forward the list of the servers to delete to the OpenStack software. When adding

new nodes, CloudHelper server starts with getting the list of already started

servers of the chosen size (get servers()). Then it commissions the OpenStack

software to start the requested number of servers. When the OpenStack software

ends its work, the CloudHelper server gets the list of all started servers once again,

compares the received list with the one received at the beginning of this process

and determines the list of newly started servers. Then, it tests the state of all the

newly created servers. If all servers have started successfully (state RUNNING), it

returns the 200 code and the list of the newly created servers to the KASKADA

user console. If some of them have a FAILED state, it returns the 206 status and

the list of the servers which have started successfully. When no server has started

properly, it returns the code 400 and an empty list.

After adding/deletion of the nodes, the user console of the KASKADA

platform adds/removes servers to/from the list of the computing servers. After

that, the process of the node count modification ends.

The last process described in this section is platform removing. After the

KASKADA platform removal request (DELETE /platforms/<platform name>) the Cloud-



KASKADA Platform in Cloud Environment 385

Helper server orders the GatewayServer to deregister HTTP forwarding and SSH

tunneling connected to the requested platform (deregister forwards()). Then it asks

the OpenStack software to remove all the elements (servers, virtual networks, etc.)

from the KASKADA platform. After that, the CloudHelper server commissions the

StorageHelper server to remove the shared storage and all the data used by this

platform’s users. At the end it removes all the information connected with this

platform from the database and the procedure ends. This process is presented

in Figure 10.

Figure 10. Removing the platform

4. Further works

The KASKADA platform in the PaaS model was fully tested by a dedicated

team of testers. They executed over 500 use cases to ensure that the platform was

fully functional. Presently it still lacks a few features, i.a.:

• automatic scaling of the compute node count based on the actual load of servers;

• adding additional user console servers and load balancing;

• group management panel in the user console;

• automatic compiling and deploying of the user’s algorithms directly from the

SVN/GIT repository, with no need for manual copying of the source code and

compiling it on virtual nodes.

Adding these features will ease the administration of the KASKADA plat-

form in cloud environment. The automatic compiling and deploying feature will

allow removing the SSH access to the virtual machines. Moreover, this solution

has been deployed to the Galera+ cluster and in short time it should be moved

to the new Tryton supercomputer [10].

References

[1] Krawczyk H and Proficz J 2010 KASKADA – Multimedia processing platform architecture,

Proceedings of the 2010 International Conference on Signal Processing and Multimedia

Applications (SIGMAP) 26



386 H. Krawczyk, J. Proficz and B. Daca

[2] Krawczyk H and Proficz J 2012 Real-Time Multimedia Stream Data Processing in

a Supercomputer Environment, Interactive Multimedia, Ioannis Deliyannis (Ed.), InTech.

[3] Chang W Y, Abu-Amara H and Sanford J F 2010 Transforming Enterprise Cloud

Services, Springer 55

[4] Companies supporting The OpenStack Foundation , http://www.openstack.org/

foundation/companies/ (accessed on 08/07/2015)

[5] Qingye J 2015 CY15-Q1 Community Analysis – OpenStack vs OpenNebula vs Eucalyptus

vs CloudStack, http://www.qyjohn.net/?p=3801

[6] Openstack architecture , http://docs.openstack.org/juno/install-guide/install/apt/

content/ch overview.html (accessed on 08/07/2015)

[7] Buyya R, Broberg J and Goscinski A 2011 Cloud Computing: Principles and Paradigms,

Wiley Press 1

[8] OpenStack Heat Resource Types , http://docs.openstack.org/developer/heat/

template guide/openstack.html (accessed on 08/07/2015)

[9] Fifield T, Fleming D, Gentle A, Hochstein L, Proulx J, Toews E and Topjian J 2014

OpenStack Operations Guide, OpenStack Foundation, O’Reilly Media

[10] Krawczyk H, Nykiel M and Proficz J Tryton supercomputer capabilities for analysis of

massive data streams, Polish Maritime Research (to be published)


