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Abstract: In this paper, the existence of positive solutions to fractional differential equations

with delayed arguments and Stieltjes integral boundary conditions is discussed. The convergence

of successive iterative method of solving such problems is investigated. This allows us to improve

some recent works. Some numerical examples illustrate the results.
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1. Introduction

Put J = [0,1], J0 = (0,1), IR+ = [0,∞). In this paper, we are interested in
the existence of positive solutions to the boundary value problem:















Dqx(t)+f
(

t,x(α(t),x(α(t))
)

=0, t∈J0, n−1<q≤n, n≥ 3

x(i)(0)= 0, i=0,1,· ··,n−2
[

Dkx(t)
]

t=1
=λ[x], k is fixed and k∈ [0,n−2]

(1)

where Dq is the standard Riemann-Liouville derivative. Here, λ denotes a linear

functional given by:

λ[x] =

∫ η

0

x(t)dΛ(t), η ∈ (0,1] (2)

involving the Stieltjes integral with a suitable function Λ of bounded variation.

The functional is not assumed to be positive for all positive x.
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Fractional differential equations have been of great interest recently. It is

caused both by the intensive development of the theory of fractional calculus itself

and by some applications in various fields of sciences and engineering. Recently,

many papers have dealt with the existence of positive solutions to the boundary

value problems of fractional differential equations. To the author’s knowledge,

there are several papers in the literature concerning the existence of research of

positive solutions for some high order nonlinear fractional differential equations

with integral boundary value conditions.

In [1], the authors studied the following higher-order boundary value

problem of fractional differential equations























Dqx(t)+f
(

t,x(t)
)

=0, t∈J0, n−1<q≤n, n≥ 3

x(0)=x′(0)= ·· ·=xn−2(0)= 0

x(k)(1)= p

∫ η

0

x(s)ds, p≥ 0, η ∈ (0,1]

(3)

where integer k is fixed and k ∈ {0,1,· · ·,n− 2}. They showed the existence of
positive solutions, by using the fixed point index theory. In problem (3), k is

the integer, but in considered problem (1), k is any fixed number from the

interval [0,n−2].
In [2, 3], the authors investigated the above problem for n = 4, k = 0,

by using Krasnoselskii’s fixed point theorem in a cone or the fixed point index

theory. In [4], the authors discussed the above problem for p= 1, n= 4, k = 0,

by constructing two iterative sequences showing their convergence. See also

Example 1 connected with the above mentioned papers. Some papers have studied

the equation from (3) with the boundary condition x(1)= p
∫ η

0
x(s)ds replaced by

x(1)=λ[x] or a special case of it, see for example, [5–9]. For the case where q is an

integer, see for example [10]. In [11], the author studied problem (1) with λ[x] = 0,

k ∈ [1,n−2], by using Krasnoselskii’s fixed point theorem in a cone. Note that,
in all the above cited papers, fractional differential equations without deviating

arguments α have been investigated.

Motivated by the above works, in this paper, we establish new exis-

tence results for positive solutions to quite general boundary value problems

of type (1), by using the method of successive iterations. Some error estima-

tions are given, see Theorem 1 and Example 3. It is worth indicating that

the Stieltjes integral boundary condition in problem (1) covers m-point bound-

ary conditions and integral boundary conditions too. We do not suppose that

λ[x] ≥ 0 for all x ≥ 0, but we allow dΛ to be a signed measure, so we extend
the m-point case to allow some coefficients ai of both signs, see Examples 2

and 3.
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2. Preliminaries

By Dqx, we denote the Riemann-Liouville fractional derivative of order

q > 0, and by Iqx, the Riemann-Liouville fractional integral of order q > 0,

see [12–14], so

Dqx(t)=
1

Γ(n−q)

(

d

dt

)n∫ t

0

(t−s)−q+n−1x(s)ds, n= [q]+1, q > 0, t < 1

Dnx(t)= y(n)(t), n∈{1,2,3,· ··}

I
q
1x(t)=

1

Γ(q)

∫ t

0

(t−s)q−1x(s)ds, q > 0, t < 1

(4)

where [q] means the integer part of q.

We require the following assumptions:

H1 : f ∈C(J× IR+× IR+,IR+), α∈C(J,J), α(t)≤ t,
H2 : Λ is a function of bounded variation on [0,η], η ∈ (0,1], n−1< q≤ n, k is
fixed, k∈ [0,n−2], n≥ 3 and

∆=Γ(q)−Γ(q−k)
∫ η

0

tq−1dΛ(t) 6=0, G(s)=
∫ η

0

G1(t,s)dΛ(t)

G1(t,s)=
1

Γ(q)

{

tq−1(1−s)q−k−1−(t−s)q−1, if s≤ t
tq−1(1−s)q−k−1, if t≤ s

(5)

Consider the following boundary value problem:










Dqu(t)+y(t)= 0, t∈J0, n−1<q≤n, n≥ 3
u(i)(0)= 0, i=0,1,· ··,n−2
[

Dku(t)
]

t=1
=λ[u], k is fixed and k∈ [1,n−2]

(6)

Lemma 1. Assume that Assumption H2 holds. Let y ∈ L(J0,IR). Then,
problem (6) has the unique solution given by the following formula

u(t)=

∫ 1

0

G(t,s)y(s)ds (7)

where

G(t,s)=G1(t,s)+
Γ(q−k)
∆
G(s)tq−1 (8)

Proof. The general solution of (6) is given by

u(t)=−Iqy(t)+c1tq−1+c2tq−2+ ·· ·+cntq−n (9)

Indeed, c2= c3= · ··= cn=0 in view of conditions u(i)(0)= 0, i=0,1,·· ·,n−2, so

u(t)=−Iqy(t)+c1tq−1 (10)

Hence, in view of the property DkIq = Iq−k,

Dku(t)=−DkIqy(t)+c1Dk[tq−1] =

=− 1

Γ(q−k)

∫ t

0

(t−s)q−k−1y(s)ds+c1
Γ(q)

Γ(q−k) t
q−k−1

(11)
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This and condition [Dku(t)]t=1=λ[u] give

− 1

Γ(q−k)

∫ 1

0

(1−s)q−k−1y(s)ds+c1
Γ(q)

Γ(q−k) =λ[u] (12)

Finding from this c1 and substituting to (10) we obtain

u(t)=
Γ(q−k)
Γ(q)

tq−1λ[u]+

∫ 1

0

G1(t,s)y(s)ds (13)

In the next step, we have to eliminate λ[u] from (13). If u is a solution of (13),

then

λ[u] =
Γ(q)

∆

∫ 1

0

G(s)y(s)ds (14)

because
∫ η

0

(
∫ 1

0

G1(t,s)y(s)ds

)

dΛ(t)=

=
1

Γ(q)

∫ η

0

(
∫ 1

0

tq−1(1−s)q−k−1y(s)ds−
∫ t

0

(t−s)q−1y(s)ds
)

dΛ(t)

=
1

Γ(q)

∫ 1

0

(
∫ η

0

tq−1dΛ(t)

)

(1−s)q−k−1y(s)ds

− 1

Γ(q)

∫ η

0

(
∫ η

s

(t−s)q−1dΛ(t)
)

y(s)ds=

∫ 1

0

G(s)y(s)ds

(15)

Substituting it to formula (13) we finally get the assertion of this lemma.

Remark 1. Note that G is the Green function of problem (1).

Remark 2. In view of Assumption H2, it is easy to see that there exists

a positive constant d such that

0≤G(t,s)≤ dtq−1 (16)

3. The main results

Define the operator T , by

Tu(t)=

∫ 1

0

G(t,s)f
(

s,u(s),u(α(s))
)

ds (17)

In view of Lemma 1, problem (1) is equivalent to the operator equation x= Tx,

and we show that it has a solution.

Let

P =
{

x∈C(J) : x(t)≥ 0, t∈J
}

(18)

Indeed, P is a cone. We define a sub-cone of P , by

D=
{

x∈P : there exists a positive constant K such that x(t)≤Ktq−1
}

(19)
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Theorem 1. Let Assumptions H1, H2 hold with ∆> 0, G(s)≥ 0, s∈ [0,1].
Moreover, we assume that maxt∈J f(t,0,0)> 0, and

(i) there exist nonnegative constants A, B such that

|f(t,u1,u2)−f(t,v1,v2)| ≤A|v1−u1|+B|v2−u2| (20)

(ii) d(A+B)<q, where d is taken from Remark 2.

Then the sequence of functions defined by

u0(t)= 0, un+1(t)=Tun(t), t∈J, n=0,1,·· · (21)

converges uniformly to the unique solution u∗ ∈D. Moreover, we have the error
estimation

|u∗(t)−un(t)≤Ktq−1ρn, n=0,1,· ·· (22)

where

ρ=
d(A+B)

q
, K =

Md

1−ρ , M =maxt∈J f(t,0,0) (23)

Proof. Indeed, un ∈C(J,IR+). Put
wn(t)= |un(t)−un−1(t)|, n=1,2,· · · (24)

Then,

wn+1(t)=
∣

∣Tun(t)−Tun−1(t)
∣

∣

≤
∫ 1

0

G(t,s)
∣

∣f
(

s,un(s),un(α(s))
)

−f
(

s,un−1(s),un−1(α(s))
)
∣

∣ds
(25)

so using condition (i),

wn+1(t)≤ dtq−1
∫ 1

0

[

Awn(s)+Bwn(α(s))
]

ds, t∈J, n=1,2,·· · (26)

Indeed,

w1(t)= |Tu0(t)|=
∫ 1

0

G(t,s)f(s,0,0)ds≤Mdtq−1

w2(t)≤ dtq−1
∫ 1

0

[

Aw1(s)+Bw1(α(s))
]

ds≤Mdtq−1ρ
(27)

because 0≤G(t,s)≤ dtq−1, α(s)≤ s.
Now, we have to prove that

wn(t)≤Mdtq−1ρn−1≡ zn(t), n=1,2,· · · (28)

Assume that (28) holds for some integer n=m> 1. Using (26) and wm(α(s))≤
zm(s), we obtain

wm+1(t)≤ dtq−1
∫ 1

0

[

Awm(s)+Bwm(α(s))
]

ds

≤ d(A+B)tq−1
∫ 1

0

zm(s)ds= zm+1(t)

(29)

This and the mathematical induction show that (28) holds.
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Now, we have to show that the sequence {un} is convergent. First, we note
that

un(t)=u0(t)+

n
∑

j=1

[

uj(t)−uj−1(t)
]

, n=1,2,· · · (30)

In view of (28), we see that

∞
∑

j=1

wj(t)≤Mdtq−1
∞
∑

j=1

ρj−1=Mdtq−1
1

1−ρ <
Md

1−ρ =K (31)

Using the Weierstrass test, this shows that the series

u0(t)+

∞
∑

j=1

[

uj(t)−uj−1(t)
]

(32)

is uniformly convergent. This asserts that the sequence {un} is uniformly conver-
gent too. Indeed, u∗(t)= limn→∞un(t) and u

∗ ∈C(J,IR+). Obviously, taking the
limit n→∞, we see that u∗(t) = Tu∗(t), t∈ J , so u∗ ∈C(J,IR+) is a solution of
problem (1).

Moreover,

0≤un(t)≤
n
∑

j=1

wj(t)≤
∞
∑

j=1

wj(t)≤Ktq−1, n=1,2,· · · (33)

This proves that un, u
∗ ∈D, n=0,1,·· ·.

Now, we have to prove that u∗ is a unique solution of (1) in D. Suppose

that v is another solution distinct from u∗ and v ∈D. Put V (t) = |u∗(t)−v(t)|.
Then

V (t)=
∣

∣Tv(t)−Tu∗(t)
∣

∣

≤
∫ 1

0

G(t,s)
∣

∣f
(

s,v(s),v(α(s))
)

−f
(

s,u∗(s),u∗(α(s))
)
∣

∣ds

≤ dtq−1
∫ 1

0

[

AV (s)+BV (α(s))
]

ds

(34)

so

V (t)≤ 2dtq−1K(A+B)
∫ 1

0

sq−1ds=2Ktq−1ρ (35)

because

V (t)≤ 2Ktq−1 (36)

This and the previous relation on V give

V (t)≤ 2Ktq−1ρ2 (37)

Repeating it, we can show, by induction, that

V (t)≤ 2Ktq−1ρn, n=1,2,· · · (38)

so ρn→ 0. This immediately shows that u∗ is the unique solution of (1) in D.
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Now, we need to obtain the error estimation. Put Zn(t) = |u∗(t)−un(t)|.
Then

Zn+1(t)= |Tu∗(t)−Tn(t)|

≤
∫ 1

0

G(t,s)
∣

∣f
(

s,u∗(s),u∗(α(s))
)

−f
(

s,un(s),un(α(s))
)∣

∣ds

≤ dtq−1
∫ 1

0

[

AZn(s)+BZn(α(s))
]

ds, n=0,1,· ··

(39)

Hence

Z1(t)≤ dtq−1
∫ 1

0

[

Au∗(s)+Bu∗(α(s))
]

ds≤Ktq−1ρ (40)

because u∗(t)≤Ktq−1.
By induction in n, we can show that Zn(t)≤Ktq−1ρn, so

|u∗(t)−un(t)| ≤Ktq−1ρn, n=0,1,·· · (41)

This ends the proof.

4. Examples

Example 1. Let dΛ(t) = c dt, c≥ 0. Indeed, G(s)≥ 0, s∈ [0,1]. Moreover,
∆> 0 provided that

0≤ cη
q

q
<
Γ(q)

Γ(q−k) (42)

If k∈{0,1,· · ·,n−2}, then (42) takes the form

0≤ cη
q

q
< 1 if k=0 (43)

0≤ cη
q

q
<

k
∏

i=1

(q− i) if k∈{1,2,· ··,n−2} (44)

Condition (43) appeared in papers [2, 3] for n= 4; in [4] for c= 1, n= 4.

The case with c≥ 0 has also been discussed in paper [1] for k ∈ {0,1,· ··,n−2}
with conditions (43) and (44).

Example 2. Let

λ[x] =
m
∑

i=1

aix(ηi), ai ∈ IR, i=1,2,· ··,m, 0<η1<η2< · ··<ηm≤ η < 1 (45)

Then

G(s)=
m
∑

i=1

aiG1(ηi,s) (46)
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so

G(s)= 1

Γ(q)



































































m
∑

i=1

aiW1(ηi,s), 0≤ s≤ η1

a1W2(η1,s)+

m
∑

i=2

aiW1(ηi,s), η1<s≤ η2
·· ·, · · ·
m−1
∑

i=1

aiW2(ηi,s)+amW1(ηm,s), ηm−1<s≤ ηm
m
∑

i=1

aiW2(ηi,s), ηm<s≤ 1

(47)

where

W1(t,s)=
1

Γ(q)

[

tq−1(1−s)q−k−1−(t−s)q−1
]

if s≤ t

W2(t,s)=
1

Γ(q)
tq−1(1−s)q−k−1 if t≤ s

(48)

We need G(s)≥ 0, s∈ [0,1] which is automatic if ai≥ 0, i=1,2,·· ·,m, because H1
and H2 are nondecreasing. Now, we also need ∆> 0, which holds if

0≤
m
∑

i=1

aiη
q−1
i <

Γ(q)

Γ(q−k) (49)

Example 3. Now, we consider the sign changing case. Let λ[x] =

2q−1x
(

η
2

)

−x(η), η ∈ (0,1). Then G(s)= 2q−1G1
(

η
2 ,s
)

−G1(η,s), so

G(s)=











2q−1W1
(

η
2 ,s
)

−W1(η,s), 0≤ s< η2
2q−1W2

(

η
2 ,s
)

−W1(η,s), η2 ≤ s<η
2q−1W2

(

η
2 ,s
)

−W2(η,s), η≤ s≤ 1
(50)

where W1 and W2 are defined as in Example 2. It is easy to verify that G(s)≥ 0,
s∈ [0,1]. Moreover,

∫ η

0

tq−1dΛ(t)= 2q−1
(η

2

)q−1

−ηq−1=0 (51)

so ∆=Γ(q)> 0.

5. Numerical example

Consider the following problem










Dqx(t)= g(t)+asinx(t)+bx(
√
t)≡ f

(

t,x(t),x(α(t))
)

, t∈ (0,1)

x(0)=x′(0)= 0,
[

Dkx(t)
]

t=1
= c

∫ η

0

x(s)ds
(52)

with g ∈C
(

[0,1],IR+
)

, g(0)= 1, q= 72 a,b,c∈ IR+, a+b=5, k= 12 , η= 34 . Hence

∆=Γ(q)−cΓ(q−k)
∫ η

0

tq−1dt=
15

8

√
π−c27

√
3

224
(53)
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If we assume that

c<
140
√
π

9
√
3
≈ 15.918 (54)

then ∆> 0. Moreover, M =1, A+B=5, and

G(s)≤ 9
√
3

280
√
π
c, G1(t,s)≤

8

15
√
π
t
5

2

G(t,s)≤
(

8

15
√
π
+

168
√
3 c

35(140π−9
√
3π c

)

t
5

2 = dt
5

2 , d= d(c)

(55)

Assume that condition (54) holds. Then, in view of Theorem 1, problem (52)

has a unique positive solution u∗ ∈D. This solution is the limit of the sequence
of functions defined by

u0(t)= 0, un+1(t)=Tun(t), t∈J, n=0,1,·· · (56)

and we have the error estimation

|u∗(t)−un(t)| ≤Kt
5

2 ρn, n=0,1,· ·· (57)

with

ρ=
10d

7
, K =

d

1−ρ (58)

The estimation (57) depends on c, because d= d(c). Now, we are going to

discuss the estimation (57) for c=1, c=5 and c=10.

1. Put c=1. Then, d≈ 0.321, ρ≈ 0.459, K ≈ 0.593. Moreover,

0≤u∗(t)≤ 0.593t 52 ,
∣

∣u∗(t)−u5(t)
∣

∣≤ 0.002t 52 (59)

2. Put c=5. Then, d≈ 0.439, ρ≈ 0.627, K ≈ 1.176. Moreover,

0≤u∗(t)≤ 1.176t 52 ,
∣

∣u∗(t)−u5(t)
∣

∣≤ 0.114t 52 ,
∣

∣u∗(t)−u10(t)
∣

∣≤ 0.003t 52 (60)

3. Put c=10. Then, d≈ 0.594, ρ≈ 0.848, K ≈ 3.912. Moreover,

0≤u∗(t)≤ 3.912t 52 ,
∣

∣u∗(t)−u5(t)
∣

∣≤ 1.715t 52 ,
∣

∣u∗(t)−u10(t)
∣

∣≤ 0.752t 52
∣

∣u∗(t)−u20(t)
∣

∣≤ 0.145t 52 ,
∣

∣u∗(t)−u50(t)
∣

∣≤ 0.001t 52
(61)

Conclusion. The results presented above demonstrate that we have quite

good estimation for c=1 finding only the iterations un from 1 to 5, however, the

iterations un from 1 do 50 are needed to get a similar order of estimation for

c=10.
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