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Abstract: In this paper, we give some new results for multiplicity of positive (nonnegative)

solutions for third-order differential equations with derivative dependence, deviating arguments

and Stieltjes integral boundary conditions. We discuss our problem with advanced argument

α and arbitrary β ∈C([0,1],[0,1]), see problem (2). It means that argument β can change the
character on [0,1], so β can be delayed in some set J̄ ⊂ [0,1] and advanced in [0,1]\ J̄ . Four
examples illustrate the main results.
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1. Introduction

Put J = [0,1], IR+= [0,∞) and
Fx(t)= f

(

t,x(α(t)),x′(β(t))
)

(1)

In this paper, we shall study the existence of multiple nonnegative solutions

to the following problems:
{

x′′′(t)+h(t)Fx(t)= 0, t∈J0≡ (0,1)
x(0)= 0, x′(1)=λ1[x], x

′(0)=λ2[x]
(2)

where λ1 and λ2 denote linear functionals on C(J,IR) given by:

λ1[x] =

∫ 1

0

x(t)dA(t), λ2[x] =
∫ 1

0

x(t)dB(t) (3)

involving Stieltjes integrals with suitable functions A and B of bounded variation
on J . It is important to indicate that it is not assumed that λ1[x] and λ2[x]
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are positive to all positive x. The measures dA, dB can be signed measures, see
Examples 1–4.

Recently, the existence of multiple positive solutions for differential equa-

tions has been studied extensively, for details, see for example [1–36]. In many

papers, problems without deviating arguments have been investigated, see for ex-

ample, [1–7, 13, 17–19, 22, 24, 25, 27–34]. Problems with derivative dependence

have been discussed for example in papers: [4, 15–18, 22, 24, 27, 33, 34]. From

the list [1–36], only papers [8–12, 14–16, 23, 26, 35] concern positive solutions

to problems with deviating arguments. Note that Boundary Conditions (BCs) in

differential problems have important influence on the existence of the results ob-

tained. It is important to indicate that Stieltjes BCs are quite general since they

can include both sums and integrals, so multipoint BCs and integral BCs are

special cases of Stieltjes BCs. Differential equations with Stieltjes BCs have been

discussed in some papers, see for example [6, 7, 13–16, 18, 28–32]. It is worth

mentioning that occurring measures in Stieltjes BCs can be signed.

A standard approach in studying the existence of positive (nonnegative)

solutions of boundary value problems for differential equations is to find the

corresponding Green’s function G and rewrite this problem as an equivalent fixed-

point problem for a Hammerstein integral operator T of the form

Tx(t)=

∫ 1

0

G(t,s)f
(

s,x(s)
)

ds (4)

in the cone P = {x∈C[0,1] : x≥ 0}. When seeking multiple positive solutions it
is convenient to work with a smaller cone, namely

min
[ξ,ξ̄]

∣

∣x(t)
∣

∣≥ ρ̄max
t∈J

∣

∣x(t)
∣

∣ (5)

with [ξ,ξ̄]⊂ [0,1] and a constant ρ̄∈ (0,1]. Usually, we need to find a nonnegative
function κ and a constant ρ̄ ∈ (0,1] such that G(t,s) ≤ κ(s) for t,s ∈ J ; and
G(t,s)≥ ρ̄κ(t) for t∈ [η,η̄]⊂ [0,1] and s∈J (see for example [28–31]) to work with
inequality (5). When we have problems with delayed or advanced arguments, then,

instead of [ξ,ξ̄] we have to use interval [0,η]⊂ [0,1) or [η,1]⊂ (0,1], respectively. It
shows that the approach from papers [28–31] needs some modification to problems

with delayed or advanced arguments. For problems with advanced arguments,

when α(t)≥ t, we have to find a constant ρ∈ (0,1) to work with the inequality

min
[η,1]

∣

∣x(t)
∣

∣≥ ρmax
t∈J

∣

∣x(t)
∣

∣ (6)

with a fixed η ∈ (0,1).
Problems with advanced arguments α have been investigated, for example,

in papers [8–12, 15, 16, 21, 26, 35] to second-order differential equations with
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corresponding BCs, and in [14] to third-order differential equations. In [15], the

Stieltjes BCs had the form:

x(0)=λ1[x], x(1)= ξx(δ)+λ2[x], ξ > 0, δ ∈ (0,1) (7)

with the assumption 0<ξ+λ2[p]< 1 for p(t)= 1; while in paper [14],

x(0)=x′′(0)= 0, x(1)= ξx(δ)+λ1[x] (8)

with a similar assumption 0<ξδ+λ1[p]< 1, ξ > 0, δ ∈ (0,1) for p(t)= 1. It means
that in [15] the terms ξx(δ) and λ2[x] are separated with ξ > 0, so ξx(δ) cannot

be included in λ2[x] while if α(t) = t, then, someone can put ξ = 0 which means

that in the case without advanced arguments the term ξx(δ) could be included

in λ2[x]. There is a similar situation in [14]. It is important to mention that in

Stieltjes BCs of problem (2) the term of the type ξx(δ) can be included in λ1[x]

or λ2[x] to obtain new results, so this situation is more general then, discussed

in [14].

Motivated by [28–31], in this paper, we apply the fixed point theorem due

to Avery-Peterson to obtain sufficient conditions for the existence of multiple

positive solutions to problems of type (2) with advanced arguments α. Function

f appearing in problem (2) depends also on argument β ∈C(J,J) which can be
both of an advanced, delayed or mixed type, too. Function f depends also on the

first order derivative. It is important to indicate that problems of type (2) have

been discussed with signed measures of dA,dB appearing in Stieltjes integrals of

functionals λ1,λ2. Exactly speaking, BCs in problem (2) with functionals λ1, λ2
cover some nonlocal BCs, for example:

λ1[x] =µ1x(ξ̄), λ2[x] =µ2x(η̄), µ1,µ2≥ 0, ξ̄, η̄ ∈ (0,1) (9)










λ1[x] =

m
∑

i=1

aix(ξi), λ2[x] =

r
∑

j=1

bjx(ηi)

0<ξ1< · ··<ξm< 1, 0<η1< ·· ·<ηr < 1
(10)

λ1[x] =

∫ 1

0

g1(t)x(t)dt, λ2[x] =

∫ 1

0

g2(t)x(t)dt (11)

for some constants ai,bi and some functions g1,g2. In our paper, the assumption,

that the measures dA,dB in the definitions of λ1,λ2 are positive, is not needed.
More precisely, one needs to choose the above constants ai, bj and functions g1,

g2 in such a way that Assumption H1 holds. It means that some coefficients of ai,

bj can be negative, and functions g1, g2 can change sign on J , see Examples [1–4].

The organization of this paper is as follows. In Section 2, we present

some necessary lemmas connected with our main results. In Section 3, we first

present some definitions and a theorem of Avery and Peterson which is useful

in our research. Also in Section 3, we discuss the existence of multiple positive

(nonnegative) solutions to problems with advanced argument α, by using the

above mentioned Avery-Peterson theorem. Four examples are given in the next

section to verify theoretical results.
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2. Some lemmas

Consider the following system:
{

u′′′(t)+z(t)= 0, t∈J0
u(0)= 0, u′(1)=λ1[u], u

′(0)=λ2[u],
(12)

where z ∈L1(J,IR).
Let us introduce Assumption:

H0 : A and B are functions of bounded variation and
∆≡ (1−B1)(1−A2)+B2(1−A1) 6=0 (13)

for

A1=

∫ 1

0

tdA(t), A2=
1

2

∫ 1

0

t2dA(t), L1(s)=
∫ 1

0

L(t,s)dA(t),

B1=

∫ 1

0

tdB(t), B2=
1

2

∫ 1

0

t2dB(t), L2(s)=
∫ 1

0

L(t,s)dB(t)
(14)

with

L(t,s)=
1

2

{

s[t(1− t)+ t−s], 0≤ s≤ t
(1−s)t2, t≤ s≤ 1 (15)

We require the following result.

Lemma 1. Let Assumption H0 hold and let z ∈ L1(J,IR). Then, prob-
lem (12) has a unique solution u given by

u(t)=

∫ 1

0

L(t,s)z(s)ds (16)

with

L(t,s)= 1
∆

[

t2

2
(1−B1)+ tB2

]

L1(s)

+
1

∆

[

t2

2
(A1−1)+ t(1−A2)

]

L2(s)+L(t,s)
(17)

Proof. Integrating the differential equation for u in (12) three times from t

to 1, we have

u(t)=C1(1− t)2+C2(1− t)+C3+
1

2

∫ 1

t

(s− t)2z(s)ds, C1,C2,C3 ∈ IR (18)

Using the BC: on u′(1) we see that C2=−λ1[u], so

u(t)=C1(1− t)2−(1− t)λ1[u]+C3+
1

2

∫ 1

t

(s− t)2z(s)ds (19)

Moreover, using BC: u′(0)=λ2[u], we see that

C1=
1

2

(

λ1[u]−λ2[u]−
∫ 1

0

sz(s)ds

)

(20)

so

u(t)=

(

t−1+ (1− t)
2

2

)

λ1[u]−
(1− t)2
2
λ2[u]+C3−

∫ 1

0

G(t,s)z(s)ds (21)
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with

G(t,s)=
1

2

{

s(1− t)2, 0≤ s≤ t
(1−s)(s− t2), t≤ s≤ 1 (22)

Now using the condition: u(0)= 0, we see that

C3=
1

2
λ1[u]+

1

2
λ2[u]+

∫ 1

0

G(0,s)z(s)ds (23)

so

u(t)=
1

2
t2λ1[u]+

1

2

(

2t− t2
)

λ2[u]+

∫ 1

0

L(t,s)z(s)ds. (24)

Now, we have to eliminate λ1[u],λ2[v] from (24). If u is a solution of (24),

then,














λ1[u] =A2λ1[u]+(A1−A2)λ2[u]+
∫ 1

0

L1(s)z(s)ds

λ2[u] =B2λ1[u]+(B1−B2)λ2[u]+
∫ 1

0

L2(s)z(s)ds
(25)

Solving this system with respect to λ1[u],λ2[v] and then, substituting to (24) we

have the conclusion of this lemma. This ends the proof.

Remark 1. Note that L is the Green function of problem (2).
Lemma 2. Function L has the following properties:

(i) L is continuous for t,s∈J and L(t,s)≥ 0, t,s∈J ,
(ii) max

t∈J
L(t,s)= 12s(1−s)≡ k(s), s∈J ,

(iii) min
t∈[η,1]

L(t,s)≥ η2k(s), η ∈ (0,1), s∈J .

Proof. Parts (i) and (ii) are true. Note that

min
t∈[η,1]

L(t,s)=
1

2

{

s
[

η(1−η)+η−s
]

, s≤ η
(1−s)η2, η≤ s≤ 1 (26)

Let

ρ(s)=











η(1−η)+η−s
1−s , s∈ [0,η]

η2

s
, s∈ [η,1]

(27)

Note that ρ is continuous on J and min
s∈J
ρ(s)= η2. It proves that

min
t∈[η,1]

L(t,s)= ρ(s)k(s)≥ η2k(s), s∈J (28)

This ends the proof.

Let us introduce the assumption:

H1 : A and B are functions of bounded variation and: ∆ > 0, L1 ≥ 0, L2 ≥ 0,
A1 ≥ 1, 0≤A2 ≤ 1, 0≤B1 ≤ 1, B2 ≥ 0, where ∆, L1, L2, A1, A2, B1 and B2 are
defined as in Assumption H0.
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Lemma 3. Let Assumption H1 hold. Then, the following relation

η2D(s)≤ min
t∈[η,1]

L(t,s)≤D(s), s∈J (29)

is satisfied, where

D(s)= k(s)+ 1
2∆
(1−B1+2B2)L1(s)+

1

2∆
(1+A1−2A2)L2(s) (30)

with k defined as in Lemma 2.

Proof. Using the definition of L and Lemma 2, we see that
max
t∈J
L(t,s)=D(s), t∈J (31)

Moreover,

min
t∈[η,1]

L(t,s)= 1
∆

[

η2

2
(1−B1)+ηB2

]

L1(s)

+
1

∆

[

η2

2
(A1−1)+η(1−A2)

]

+η2k(s)

≥ η2D(s)

(32)

This ends the proof.

Let E = C1(J,IR) with the norm ‖u‖ = max(‖u‖0,‖u′‖0), where ‖u‖0 =
max
t∈J
|u(t)|. Define the cone K by

K =







u∈E :u(t)≥ 0, t∈J, λ1[u]≥ 0, λ2[u]≥ 0
min
[η,1]
u(t)≥ η2‖u‖0







(33)

It is obvious that K is a cone in E.

Now we define the operator T as

Tu(t)=

∫ 1

0

L(t,s)h(s)Fu(s)ds (34)

It is clear that the existence of a positive solution for problem (2) is equivalent to

the existence of nontrivial fixed point of T .

Let us introduce the following assumptions:

H2 : f ∈C(J× IR+× IR,IR+), α, β ∈C(J,J),
H3 : h∈L1(J0,IR+) and h does not vanish identically on any subinterval of J0,
H4 : α(t)≥ t in J .
Lemma 4. Let Assumptions H1–H3 hold. Then, T :K→K.
Proof. First, it is clear that in view of Assumption H1, the Green function

L is nonnegative on J×J , so Tu(t)≥ 0, t∈J .
Note that

∫ 1

0

L(t,s)dA(t)= 1
∆

[

(1−B1)A2+B2A1
]

L1(s)+
1

∆
(A1−A2)L2(s)+L1(s)≥ 0 (35)

by Assumption H1. Hence L1[Tu]≥ 0, by Assumptions H2, H3. By a similar way,
we obtain L2[Tu]≥ 0.
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Finally, using Lemma 3, we see that

min
[η,1]
Tu(t)=min

[η,1]

∫ 1

0

L(t,s)h(s)Fu(s)ds≥ η2‖Tu‖0 (36)

It shows T :K→K. This ends the proof.

Remark 2. Let u∈C1(J,IR). If u(0)= 0 or u(1)= 0, then, ‖u‖0≤‖u′‖0.
Indeed,

u(t)=

∫ t

0

u′(s)ds≤‖u′‖0 if u(0)= 0

u(t)=−
∫ 1

t

u′(s)ds≤‖u′‖0 if u(1)= 0
(37)

3. Nonnegative solutions to problem (2) with advanced

arguments

Now, we present the necessary definitions from the theory of cones in

Banach spaces.

Definition 1. Let E be a real Banach space. A nonempty convex closed

set P ⊂E is said to be a cone provided that

(i) ku∈P for all u∈P and all k≥ 0, and
(ii) u,−u∈P implies u=0.

Note that every cone P ⊂ E induces an ordering in E given by x ≤ y if
y−x∈P .

Definition 2. A map Φ is said to be a nonnegative continuous concave

functional on a cone P of a real Banach space E if Φ :P → IR+ is continuous and

Φ
(

tx+(1− t)y
)

≥ tΦ(x)+(1− t)Φ(y) (38)

for all x,y ∈P and t∈ [0,1].
Similarly, we say the map ϕ is a nonnegative continuous convex functional

on a cone P of a real Banach space E if ϕ :P → IR+ is continuous and

ϕ
(

tx+(1− t)y
)

≤ tϕ(x)+(1− t)ϕ(y) (39)

for all x,y ∈P and t∈ [0,1].

Definition 3. An operator is called completely continuous if it is continuous

and maps bounded sets into precompact sets.

Let ϕ and Θ be nonnegative continuous convex functionals on P , let Φ be

a nonnegative continuous concave functional on P , and let Ψ be a nonnegative
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continuous functional on P . Then, for positive numbers a,b,c,d, we define the

following sets:

P (ϕ,d)=
{

x∈P : ϕ(x)<d
}

P (ϕ,Φ,b,d)=
{

x∈P : b≤Φ(x), ϕ(x)≤ d
}

P (ϕ,Θ,Φ,b,c,d)=
{

x∈P : b≤Φ(x), Θ(x)≤ c, ϕ(x)≤ d
}

R(ϕ,Ψ,a,d)=
{

x∈P : a≤Ψ(x), ϕ(x)≤ d
}

(40)

We will use the following fixed point theorem of Avery and Peterson to

establish multiple positive solutions to problem (2).

Theorem 1 (see [3]). Let P be a cone in a real Banach space E. Let ϕ and

Θ be nonnegative continuous convex functionals on P , let Φ be a nonnegative

continuous concave functional on P , and let Ψ be a nonnegative continuous

functional on P satisfying Ψ(kx)≤ kΨ(x) for 0≤ k≤ 1, such that for some positive
numbers M and d,

Φ(x)≤Ψ(x) and ‖x‖≤Mϕ(x) (41)

for all x∈P (ϕ,d). Suppose

T :P (ϕ,d)→P (ϕ,d) (42)

is completely continuous and there exist positive numbers a,b,c with a < b, such

that

(S1) : {x∈P (ϕ,Θ,Φ,b,c,d) : Φ(x)>b} 6=0 and Φ(Tx)>b for x∈P (ϕ,Θ,Φ,b,c,d);
(S2) : Φ(Tx)>b for x∈P (ϕ,Φ,b,d) with Θ(Tx)>c,
(S3) : 0 6∈R(ϕ,Ψ,a,d) and Ψ(Tx)<a for x∈R(ϕ,Ψ,a,d) with Ψ(x)= a.

Then, T has at least three fixed points x1,x2,x3 ∈P (ϕ,d), such that

ϕ(xi)≤ d, for i=1,2,3 (43)

b<Φ(x1), a<Ψ(x2), with Φ(x2)<b (44)

and

Ψ(x3)<a (45)

We apply Theorem 1 with the cone K instead of P and let P r = {x∈K :
‖x‖≤ r}. Now, we define the nonnegative continuous concave functional Φ on K
by

Φ(x)=min
[η,1]
|x(t)| (46)

Note that Φ(x)≤‖x‖0. Put Ψ(x)=Θ(x)= ‖x‖0, ϕ(x)= ‖x′‖0.
Now, we can formulate the main result of this section.
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Theorem 2. Let Assumptions H1–H4 hold and let λ1[p]≥ 0, λ2[p]≥ 0 for
p(t)= 1, t∈ J . In addition, we assume that there exist positive constants a,b,c,d,
a< b and such that

µ>max(D3,D4), 0<ν <η
2D4 (47)

with

Di=

∫ 1

0

Li(s)h(s)ds, i=1,2

D3=
1

∆
[(1−B1+B2)D1+(A1−A2)D2]+

∫ 1

0

h(s)ds

D4=
1

2

∫ 1

0

s(1−s)h(s)ds+ 1
2∆
(1−B1+2B2)D1+

1

2∆
(1+A1−2A2)D2

(48)

and

(A1) : f(t,u,v)≤ dµ for (t,u,v)∈J× [0,d]× [−d,d],

(A2) : f(t,u,v)≥
b

ν
for (t,u,v)∈ [η,1]× [b, b

ρ
]× [−d,d] with ρ= η2,

(A3) : f(t,u,v)≤ aµ for (t,u,v)∈J× [0,a]× [−d,d].
Then, problem (2) has at least three nonnegative solutions x1,x2,x3 satis-

fying ‖x′i‖0≤ d, i=1,2,3,

b≤Φ(x1), a< ‖x2‖0 with Φ(x2)<b, ‖x3‖0<a (49)

Proof. Basing on the definitions of T , we see that TP is equicontinuous on

J , so T is completely continuous. In view of Remark 2, we have

‖x‖=max
(

‖x‖0,‖x′‖0
)

= ‖x′‖0=ϕ(x) (50)

Let x ∈ P (ϕ,d), so ϕ(x) = ‖x′‖0 ≤ d. By Remark 2, ‖x‖0 ≤ ‖x′‖0 ≤ d, so
0≤x(t)≤ d, t∈J . Assumption (A1) implies f

(

t,x(α(t)),x′(β(t))
)

≤ d
µ
. Moreover,

(Tx)′(t)=
1

∆

∫ 1

0

[

t(1−B1)+B2
]

L1(s)h(s)f
(

s,x(α(s)),x′(β(s))
)

ds

+
1

∆

∫ 1

0

[

t(A1−1)+1−A2
]

L2(s)h(s)f
(

s,x(α(s)),x′(β(s))
)

ds

+
d

dt

∫ 1

0

L(t,s)h(s)f
(

s,x(α(s)),x′(β(s))
)

ds

≤ d
µ

{

1

∆

[

(1−B1+B2)D1+(A1−A2)D2
]

+

∫ 1

0

h(s)ds

}

(51)

for t∈J . This and the assumption on µ prove that

ϕ(Tx)= ‖(Tx)′‖0<d (52)

This shows that T :P (ϕ,d)→P (ϕ,d).
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Now we need to show that condition (S1) is satisfied. Take

x0(t)=
1

2

(

b+
b

ρ

)

, t∈J with ρ= η2 (53)

Then, x0(t)> 0, t∈J , and

λ1[x0] =
1

2

(

b+
b

ρ

)

λ1[p]≥ 0

λ2[x0] =
1

2

(

b+
b

ρ

)

λ2[p]≥ 0
(54)

for p(t)= 1, t∈J . Moreover,

Θ(x0)= ‖x0‖0=
b(ρ+1)

2ρ
<
b

ρ
= c

Φ(x0)=min
[η,1]
x0(t)=

b(ρ+1)

2ρ
> b=

b

ρ
ρ>ρ‖x0‖0

ϕ(x0)= 0<d

(55)

This proves that

{

x0 ∈P (ϕ,Θ,Φ,b,
b

ρ
,d) : b<Φ(x0)

}

6= ∅ (56)

Let b ≤ x(t) ≤ b
ρ
for t ∈ [η,1]. Then, η ≤ t ≤ α(t) ≤ 1, so b ≤ x(α(t)) ≤ b

ρ
,

t∈ [η,1]. Assumption (A2) implies f
(

t,x(α(t)),x′(β(t))
)

≥ b
ν
. This and Lemma 3

show

Φ(Tx)=min
[η,1]
(Tx)(t)=min

[η,1]

∫ 1

0

L(t,s)h(s)f
(

s,x(α(s)),x′(β(s))
)

ds

≥ η2
∫ 1

0

D(s)h(s)f
(

s,x(α(s)),x′(β(s))
)

ds

≥ b
ν
η2
∫ 1

0

D(s)h(s)ds> b

(57)

This proves that condition (S1) holds.

Now we need to prove that condition (S2) is satisfied. Take x∈P (ϕ,Φ,b,d)
and ‖Tx‖0> bρ = c with ρ= η2. Then,

Φ(Tx)=min
[η,1]
(Tx)(t)≥ ρ‖Tx‖0>ρ

b

ρ
= b (58)

so condition (S2) holds.

Indeed, ϕ(0)= 0<a, so 0 6∈R(ϕ,Ψ,a,d). Suppose that x∈R(ϕ,Ψ,a,d) with
Ψ(x)= ‖x‖0= a. In view of Lemma 3 and Assumption (A3), we obtain

Ψ(Tx)=max
t∈J
(Tx)(t)≤

∫ 1

0

D(s)h(s)f
(

s,x(α(s)),x′(β(s))
)

ds

≤ a
µ

∫ 1

0

D(s)h(s)ds<a
(59)

This shows that condition (S3) is satisfied.
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Since all the conditions of Theorem 1 are satisfied, problem (2) has at least

three nonnegative solutions x1,x2,x3 such that ‖x′i‖0≤ d for i=1,2,3, and

b≤min
[η,1]
x1(t), a< ‖x2‖0 with min

[η,1]
x2(t)<b, ‖x3‖0<a (60)

This ends the proof.

Remark 3. Indeed, Theorem 2 holds true for α(t)= t, t∈J .

4. Examples

First, we consider some examples connected with Assumption H1.

Example 1. Take dA(t) = (at−1)dt, dB(t) = (1−bt)dt, a> 1, b > 1. Note
that the measures change the sign, dA is increasing while dB is decreasing. It is
easy to show that

A1=
1

6
(2a−3), A2=

1

24
(3a−4)

B1=
1

6
(3−2b), B2=

1

24
(4−3b)

L1(s)=
1

24
s(1−s)[−as2+s(4−a)+5a−8]

L2(s)=
1

24
s(1−s)[bs2+s(b−4)−5b+8]

(61)

Note that

A1≥ 1, 0≤A2≤ 1 ⇔
9

2
≤ a≤ 28

3

0≤B1≤ 1, B2≥ 0 ⇔ 1≤ b≤ 4
3

(62)

Put a=5, b= 43 . Then,

A1=
7

6
, A2=

11

24
, L1(s)=

1

24
s(1−s)[17−5s2−s]≥ 0, s∈ [0,1]

B1=
1

18
, B2=0, L2(s)=

1

18
s(1−s)3≥ 0, s∈ [0,1]

∆= (1−B1)(1−A2)+B2(1−A1)=
221

432

(63)

It shows that Assumption H1 holds.

Example 2. Take dA(t)= (at−1)dt, dB(t)= (bt2−1)dt, a> 1, b> 1. Note
that the measures change the sign and are increasing. It is easy to show that

A1=
1

6
(2a−3), A2=

1

24
(3a−4)

B1=
1

4
(b−2), B2=

1

30
(3b−5)

L1(s)=
1

24
s(1−s)[−as2+s(4−a)+5a−8],

L2(s)=
1

60
s(1−s)[−b(s2+s3)+(10−b)s+9b−20]

(64)
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Note that

A1≥ 1, 0≤A2≤ 1 ⇔
9

2
≤ a≤ 28

3

0≤B1≤ 1, B2≥ 0 ⇔ 2≤ b≤ 6
(65)

Put a=5, b= 209 . Then,

A1=
7

6
, A2=

11

24
, L1(s)=

1

24
s(1−s)[17−5s2−s]≥ 0, s∈ [0,1]

B1=B2=
1

18
, L2(s)=

1

54
s2(1−s)[7−2(s+s2)]≥ 0, s∈ [0,1]

∆= (1−B1)(1−A2)+B2(1−A1)=
217

432

(66)

It shows that Assumption H1 holds.

Example 3. Take 0<δ1<δ2< 1. Let λ2[x] = γ1x(δ1)+γ2x(δ2). Moreover,

we assume that










0≤ γ1δ1+γ2δ2≤ 1, 0≤ γ1δ21+γ2δ22
γ1(2δ1−δ21−s)+γ2(2δ2−δ22−s)≥ 0, s≤ δ1
γ1(1−s)δ21+γ2s(2δ2−δ22−s)≥ 0, δ1≤ s≤ δ2

(67)

In this case, we have:

B1= γ1δ1+γ2δ2, B2=
1

2
(γ1δ

2
1+γ2δ

2
2)

L2(s)= γ1L(δ1,s)+γ2L(δ2,s)

=
1

2







s
[

γ1(2δ1−δ21−s)+γ2(2δ2−δ22−s)
]

, s≤ δ1
γ1(1−s)δ21+γ2s(2δ2−δ22−s), δ1≤ s≤ δ2
(1−s)

[

γ1δ
2
1+γ2δ

2
2

]

, s≥ δ2

(68)

see Assumption H0.

Note that if we take γ1,γ2> 0, then, usually inequalities (67) hold and this

case is not so interesting as the case when γ1γ2 < 0. Therefore, we take γ1 =−1,
γ2 = 1 and δ1 =

1
4 , δ2 =

3
4 . It is easy to verify that (67) holds for such δ1,δ2 and

γ1,γ2.

For example, we can define λ1 by

λ1[x] =

∫ 1

0

x(t)(5t−1)dt (69)

Then,

A1=
7

6
, A2=

11

24
, L1(s)=

1

24
s(1−s)[17−5s2−s]≥ 0, s∈ [0,1] (70)

by Example 1. Moreover, B1=
1
2 , B2=

1
4 and

∆=(1−B1)(1−A2)+B2(1−A1)=
11

48
(71)

It shows that Assumption H1 holds.

The next example is connected with problem (2).
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Example 4. Consider the problem:










x′′′(t)+h(t)f
(

t,x(α(t)),x′(β(t))
)

, t∈ (0,1)

x(0)= 0, x′(1)=

∫ 1

0

x(s)(5s−1)ds x′(0)=
∫ 1

0

x(s)

(

1− 4
3
s

)

ds
(72)

where

f(t,u,v)







10−4(t+cos2v)+
1

2
u2, t∈ [0,1], u∈ [0,2], |v| ≤ d

10−4(t+cos2v)+2, t∈ [0,1], u≥ 2, |v| ≤ d
(73)

h(t)=
D√
t
, D> 0, η=

3

4
(74)

We see that

λ1[x] =

∫ 1

0

x(t)(5t−1)dt, λ2[x] =
∫ 1

0

x(t)

(

1− 4
3
t

)

dt (75)

so

dA(t)= (5t−1)dt, dB(t)=
(

1− 4
3
t

)

dt (76)

and the measures change the sign. The argument α should be advanced on J .

For example, we can take α(t)=
√
t or α(t)= 4

√
t. As β we can take any function

β ∈C(J,J), so, for example,

β1(t)=
√
t(1− t) or β2(t)=



















√
t,

[

0, 14
]

1

16
(4t+7),

[

1
4 ,
3
4

]

1

2
(3t−1),

[

3
4 ,1
]

(77)

in the place of β. Note that β1 is advanced on [0,t1] and delayed on [t1,1] for

t1=
(√
5−1
2

)2

≈ 0.38. Similarly, β2 is advanced on [0, 712 ] and delayed on [ 712 ,1].
In view of Example 1, it is easy to calculate:

D1=
323

1890
D, D2=

16

2835
D, D3=

161738

69615
D, D4=

20744

69615
D (78)

and λ1[p] =
3
2 , λ2[p] =

1
3 for p(t)= 1. Basing on the above,

µ>max(D3,D4)=D3≈ 2.32332D, 0<ν <η2D4≈ 0.16761D (79)

Put a= 110 , b=2, d=31, so c=
b
η2
= 329 . Let D=6, µ=15, ν=1. Then,

f(t,u,v)<
d

µ
=
31

15
, t∈J, 0≤u≤ d, |v| ≤ d

f(t,u,v)≥ b
ν
=2 t∈ [η,1], 2≤u≤ 32

9
, |v| ≤ d

f(t,u,v)<
a

µ
=
1

150
, t∈J, 0≤u≤ a, |v| ≤ d

(80)

We see that all assumptions of Theorem 2 hold, so problem (72) has at least

three positive solutions.
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