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Abstract: In this paper, we give some new results for multiplicity of positive (nonnegative)
solutions for third-order differential equations with derivative dependence, deviating arguments
and Stieltjes integral boundary conditions. We discuss our problem with advanced argument
« and arbitrary € C([0,1],[0,1]), see problem (2). It means that argument /3 can change the
character on [0,1], so 3 can be delayed in some set J C [0,1] and advanced in [0,1]\ J. Four
examples illustrate the main results.
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1. Introduction
Put J=][0,1], Ry =[0,00) and

Fu(t)= f(t.z(alt),2'(B(t))) (1)
In this paper, we shall study the existence of multiple nonnegative solutions
to the following problems:
2 (t)+h(t)Fx(t)=0, teJo=(0,1)
{CC(O) =0, 2/(1)=X[z], 2/(0)=Nz[x]

where A\; and Ay denote linear functionals on C'(J,IR) given by:

(2)

1 1
Ailz] = /0 2()dA(), Nofz]= /0 (t)dB(t) (3)

involving Stieltjes integrals with suitable functions .4 and B of bounded variation
on J. It is important to indicate that it is not assumed that Ai[z] and Az[x]
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are positive to all positive x. The measures dA, dB can be signed measures, see
Examples 1-4.

Recently, the existence of multiple positive solutions for differential equa-
tions has been studied extensively, for details, see for example [1-36]. In many
papers, problems without deviating arguments have been investigated, see for ex-
ample, [1-7, 13, 17-19, 22, 24, 25, 27-34]. Problems with derivative dependence
have been discussed for example in papers: [4, 15-18, 22, 24, 27, 33, 34]. From
the list [1-36], only papers [8—12, 14-16, 23, 26, 35] concern positive solutions
to problems with deviating arguments. Note that Boundary Conditions (BCs) in
differential problems have important influence on the existence of the results ob-
tained. It is important to indicate that Stieltjes BCs are quite general since they
can include both sums and integrals, so multipoint BCs and integral BCs are
special cases of Stieltjes BCs. Differential equations with Stieltjes BCs have been
discussed in some papers, see for example [6, 7, 13-16, 18, 28—32]. It is worth
mentioning that occurring measures in Stieltjes BCs can be signed.

A standard approach in studying the existence of positive (nonnegative)
solutions of boundary value problems for differential equations is to find the
corresponding Green’s function G and rewrite this problem as an equivalent fixed-
point problem for a Hammerstein integral operator 7' of the form

1
Tx(t):/o G(t,s)f(s,x(s))ds (4)

in the cone P={z € C[0,1]: = >0}. When seeking multiple positive solutions it
is convenient to work with a smaller cone, namely

r[lg’iéllw(t)! > pmax|z(t)] (5)

with [¢,&] C[0,1] and a constant p € (0,1]. Usually, we need to find a nonnegative
function x and a constant p € (0,1] such that G(t,s) < k(s) for ¢,s € J; and
G(t,s) > pr(t) for t € [n,7] C [0,1] and s € J (see for example [28-31]) to work with
inequality (5). When we have problems with delayed or advanced arguments, then,
instead of [¢,£] we have to use interval [0,7] C [0,1) or [,1] C (0,1], respectively. It
shows that the approach from papers [28—-31] needs some modification to problems
with delayed or advanced arguments. For problems with advanced arguments,
when «(t) > t, we have to find a constant p € (0,1) to work with the inequality
I[;umx(t)’ > pr;{leaj(‘x(tﬂ (6)
with a fixed n € (0,1).
Problems with advanced arguments a have been investigated, for example,
in papers [8-12, 15, 16, 21, 26, 35] to second-order differential equations with
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corresponding BCs, and in [14] to third-order differential equations. In [15], the
Stieltjes BCs had the form:

z(0)=M[z], z(1)=¢&x(0)+N2fx], £>0, 0€(0,1) (7)
with the assumption 0 <&+ A2[p] <1 for p(t) =1; while in paper [14],
2(0)=2"(0)=0, =(1)=~Ex(5)+i[z] (8)

with a similar assumption 0 < &5+ A [p] <1, £>0, 6 € (0,1) for p(t) =1. It means
that in [15] the terms {z(0) and As[x] are separated with £ >0, so {x(0) cannot
be included in As[z] while if «(t) =t¢, then, someone can put £ =0 which means
that in the case without advanced arguments the term £x(d) could be included
in Aa[z]. There is a similar situation in [14]. It is important to mention that in
Stieltjes BCs of problem (2) the term of the type £x(d) can be included in Aq|[x]
or Az[x] to obtain new results, so this situation is more general then, discussed
in [14].

Motivated by [28—31], in this paper, we apply the fixed point theorem due
to Avery-Peterson to obtain sufficient conditions for the existence of multiple
positive solutions to problems of type (2) with advanced arguments «. Function
f appearing in problem (2) depends also on argument § € C(J,J) which can be
both of an advanced, delayed or mixed type, too. Function f depends also on the
first order derivative. It is important to indicate that problems of type (2) have
been discussed with signed measures of dA,dB appearing in Stieltjes integrals of
functionals A1, \y. Exactly speaking, BCs in problem (2) with functionals A1, As
cover some nonlocal BCs, for example:

/\lmzﬂlx(@» /\2[37}:/123?(77), /.L17,U/220, évﬁe(())l) (9)

m

M2 = aiw(&), Aofz]=> bjz(n,)
i=1 j=1
0<& < <én<l, O<m<---<ny-<1

1 1
Al[x]:/ogl(t)z(t)dt, Ag[x}:/ogg(t)x(t)dt (11)

for some constants a;,b; and some functions g1, gs. In our paper, the assumption,
that the measures dA,dB in the definitions of A1,\s are positive, is not needed.
More precisely, one needs to choose the above constants a;, b; and functions g1,

(10)

g2 in such a way that Assumption H; holds. It means that some coefficients of a;,
b; can be negative, and functions g;, g2 can change sign on J, see Examples [1-4].

The organization of this paper is as follows. In Section 2, we present
some necessary lemmas connected with our main results. In Section 3, we first
present some definitions and a theorem of Avery and Peterson which is useful
in our research. Also in Section 3, we discuss the existence of multiple positive
(nonnegative) solutions to problems with advanced argument «, by using the
above mentioned Avery-Peterson theorem. Four examples are given in the next
section to verify theoretical results.
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2. Some lemmas

Consider the following system:

{u’”(t)+z(t)=0, teJy (12)
u(0)=0, ' (1)=Xiful, u'(0)=Az[u],
where z € L'(J,R).
Let us introduce Assumption:
Hy: A and B are functions of bounded variation and
A=(1-B1)(1-A2)+Ba(1- A1) #0 (13)
for
1 1 1 1
A= / {AA(t), Ap— / PAA(t), L1(s)= / L(t,5)dA(L),
0 2Jo 0
1 1 1 (14)
1
B :/ tdB(t), Bo= 5/ t2dB(t), La(s) :/ L(t,s)dB(t)
0 0 0
b 1 fsft-t)+ -
. sit(l—t)+t—s|, 0<s<t

We require the following result.

Lemma 1. Let Assumption Hqy hold and let z € L*(J,IR). Then, prob-
lem (12) has a unique solution u given by

1
u(t):/o L(t,s)z(s)ds (16)
with g
ﬁ(t,S) = Z |:5(1Bl)+tB2:| El(s)
) (17)

Proof. Integrating the differential equation for u in (12) three times from ¢
to 1, we have

1
u(t):Cl(lft)erCg(lft)JrC'ng%/(sft)Qz(s)ds, 01702,03611:{ (18)
t

Using the BC: on u/(1) we see that Cy = —A1[u], so

u(t)=Cr(1—1)* = (1—t)A\;[u] + C3 + %/ (s—1)?z(s)ds (19)
Moreover, using BC: u/(0) = A\z[u], we see that
e :% ()\1 ] = Aofu] — /0 sz(s)ds> (20)

SO

)\g[u]+03—/0 G(t,s)z(s)ds (21)

u(t) = (t—1+ (1_;) )Al[u]— (1=t

2
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with
1 s(1-1)2, 0<s<t
G(t’s)_i{a—s)(s—t?), t<s<1 (22)
Now using the condition: u(0) =0, we see that
1
03: 5)\1 u|+ = )\2 / G 0 8 (23)
o
Lo 1 2 !
u(t) = Et At [u] + 3 (2t—t*)Xofu] + | L(t,8)z(s)ds. (24)
0

Now, we have to eliminate A [u],\2[v] from (24). If u is a solution of (24),
then,

Al[u]:Ay\l[ ] (Al_A2 /\2 / El
(25)
)\Q[U]ZB2>\1[ } (Bl—Bz /\2 / EQ

Solving this system with respect to Aj[u],A2[v] and then, substituting to (24) we
have the conclusion of this lemma. This ends the proof. [
Remark 1. Note that £ is the Green function of problem (2).

Lemma 2. Function L has the following properties:

(i) L is continuous for t,s € J and L(t,8) >0, t,s€ J,
(i) I?EaJXL(t,S) =1s(1—s)=k(s), s J,

(#ii) min L(t,s) >n?k(s), n€(0,1), s€J.
te(n,1]

Proof. Parts (i) and (ii) are true. Note that

: L fs[n(l—n)+n—s], s<n
L(t,s) =~ v 8% 2
(2pin E(s) 2{(1—8)772, n<s<l (26)
Let
p)=1 2 7 (27)
?a 36[77;1]

Note that p is continuous on J and mir}lp(s) =n?. It proves that
SE.

tg[lﬁ,fll]L(t ,8) = p(s)k(s) >n’k(s), seJ (28)

This ends the proof. [
Let us introduce the assumption:

Hy: A and B are functions of bounded variation and: A >0, £; >0, L5 >0,

A1>1,0<A,<1,0< By <1, B, >0, where A, L1, Lo, Ay, Ao, By and By are

defined as in Assumption H.
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Lemma 3. Let Assumption Hy hold. Then, the following relation
n*D(s) < Ir[linl]ﬁ(t,s) <D(s), seJ (29)
te

is satisfied, where
1 1
D(S) = k(S) + ﬁ(l_ B1+232)£1(8) + ﬁ(l—FAl— 2A2)£2(S) (30)
with k defined as in Lemma 2.
Proof. Using the definition of £ and Lemma 2, we see that

I?Eaj(ﬁ(t,s) =D(s), ted (31)
Moreover,
min L(t,s) = K {772(1—31) —|-nt] L1(s)
ten,1] Al 2
1 [n? 2 (32)
b | D a0 )| 47
>n*D(s)
This ends the proof. [

Let E = C'(J,R) with the norm |lu|| = max(||ulo, ||« |lo), where [Jullo =
rgla}(|u(t)|. Define the cone K by
€

ueEFE:u(t)>0,teJ, Mul>0, AJful>0
minu(t) 2 n° ullo

s

K= (33)
It is obvious that K is a cone in E.
Now we define the operator T as

1
Tu(t):/o L(t,s)h(s)Fu(s)ds (34)

It is clear that the existence of a positive solution for problem (2) is equivalent to
the existence of nontrivial fixed point of T'.
Let us introduce the following assumptions:
Hy: feC(IxRyxR,Ry), a, EC(J,J]),
Hs: he L'(Jy,IRy) and h does not vanish identically on any subinterval of Jp,
Hy: oft)>tin J.

Lemma 4. Let Assumptions Hy—Hs hold. Then, T: K — K.

Proof. First, it is clear that in view of Assumption Hj, the Green function
L is nonnegative on J x J, so Tu(t) >0, t€J.

Note that

/ L(t.5)dA(D) = % [(1— By) As + By Ay L1 (s) + %(Al—AQ)/:Q(s) FLi(s)>0 (35)
0

by Assumption H;. Hence £1[Tu] >0, by Assumptions Ha, H3. By a similar way,
we obtain Lo[Tu] > 0.
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Finally, using Lemma 3, we see that

minTu(t) = min / L(t,5)h(s) Fu(s)ds > 2| Tullo (36)
n
It shows T': K — K. This ends the proof. |

Remark 2. Let ue C'(J,IR). If u(0) =0 or u(1) =0, then, |jullo < ||u/[o-
Indeed,

u(t):/u’(s)dngu’HO if u(0)=0
" (37)
u(t):—/t W (s)ds < [ [lo if u(1)=0

3. Nonnegative solutions to problem (2) with advanced
arguments

Now, we present the necessary definitions from the theory of cones in
Banach spaces.

Definition 1. Let E be a real Banach space. A nonempty convex closed
set P C FE is said to be a cone provided that

(i) kue P for all we P and all k>0, and
(ii) w,—u € P implies u=0.
Note that every cone P C E induces an ordering in E given by x <y if
y—xzeb.
Definition 2. A map ® is said to be a nonnegative continuous concave
functional on a cone P of a real Banach space E if ®: P — IR, is continuous and

P(ta+(1-t)y) > t®(z)+ (1-1)P(y) (38)

for all z,y € P and t€0,1].

Similarly, we say the map ¢ is a nonnegative continuous convex functional
on a cone P of a real Banach space E if ¢ : P — IR is continuous and

p(te+(1-t)y) <tp(z)+(1-t)(y) (39)
for all z,y € P and t € [0,1].

Definition 3. An operator is called completely continuous if it is continuous
and maps bounded sets into precompact sets.

Let ¢ and © be nonnegative continuous convex functionals on P, let ® be
a nonnegative continuous concave functional on P, and let ¥ be a nonnegative
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continuous functional on P. Then, for positive numbers a,b,c,d, we define the
following sets:

P(od)={xeP: p(x)<d}
P(<p7<I>,b,d):{a:€P: b<®(x), ¢ x)gd} 10
P(,0,®,b,c,d)={zeP: b<®(x), O(z)<c, p(z)<d} (40)
R(p,V,a,d)={zeP: a<¥(z), p(z)<d}

We will use the following fixed point theorem of Avery and Peterson to
establish multiple positive solutions to problem (2).

Theorem 1 (see [3]). Let P be a cone in a real Banach space E. Let ¢ and
© be nonnegative continuous convex functionals on P, let ® be a mnonnegative
continuous concave functional on P, and let ¥ be a mnonnegative continuous
functional on P satisfying ¥(kx) < k¥ (x) for 0 <k <1, such that for some positive
numbers M and d,

O(x) <U(z) and ||| < Mep(z) (41)

for all x € P(p,d). Suppose

T:P(p,d)— P(p,d) (42)

is completely continuous and there exist positive numbers a,b,c with a <b, such
that

(S1): {x € P(p,0,2,b,¢c,d): P(x) >b} #0 and ®(Tx)>b for x € P(¢,0,P,b,c,d);
(S2): ®(Tz)>b for x € P(p,®,b,d) with ©(Tz) > c,
(S3): 0 R(p,¥,a,d) and ¥(Tx)<a for x € R(p,V,a,d) with ¥(z)=a.

Then, T has at least three fized points x1,x2,x3 € P(p,d), such that

p(z;)<d, for i=1,2,3 (43)
b<®(x1), a<¥(xz), with P®(x2)<b (44)

and
U(z3) <a (45)

We apply Theorem 1 with the cone K instead of P and let P, ={z € K :
lz]| <7}. Now, we define the nonnegative continuous concave functional ® on K
by
®(x) =min|z(t)| (46)
(n,1]
Note that ®(z) < |[|z|o. Put ¥(z)=0(x) =]z, @(z)=|2'|o.

Now, we can formulate the main result of this section.
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Theorem 2. Let Assumptions H1—Hy hold and let A1[p] >0, A2[p] >0 for
p(t)=1, te J. In addition, we assume that there exist positive constants a,b,c,d,
a <b and such that

p>max(Ds,Dy), 0<v<n?Dy (47)
with

1
Di:/ L;(s)h(s)ds, i=1,2
0
1

D3=Z[(1—B1+BQ)D1+(A1—A2)D2]+/01h(5)d3 (48)

! 1 1
Dy= —/O S(l—S)h(S)d8+ E<1_B1+232)D1+ E(1+A1—2A2)D2

D f(tuw) <& for (tu,v) € T x [0,d] x [—d,d],

)
(A2): f(t,u,v)> 9 for (t,u,v) € [n,1] x [b, &
)

1 x[=d.d] with p=n?,
v
s f(tu,v) < ﬁ for (t,u,v) € Jx[0,a] x [—d,d].
Then, problem (2) has at least three nonnegative solutions x1,z2,r3 satis-
fying ||xt]lo <d, i=1,2,3,
b§<I>(:L'1), a<||l’2H0 with (I)($2)<b, H393||0<CL (49)
Proof. Basing on the definitions of T', we see that TP is equicontinuous on
J, so T is completely continuous. In view of Remark 2, we have

1]} = max(f|zlo, |2"[lo) = ll"[lo = () (50)

Let x € P(p,d), so p(x) =||2||o < d. By Remark 2, ||z|o < ||2/|lo < d, so
0<z(t)<d, t€J. Assumption (A;) implies f(t,z(a(t)),2'(8(t))) < %. Moreover,

(T2)'(t) = /0 [H(1— By) + Ba] £1(s)h(s) f (s,2(cls)),2’ (B(s)))ds

1
/ [t(Al —1)+1- AQ] ﬁg(s)h(s)f(s,x(a(s)),x'(ﬁ(s)))ds
0 (51)

IN

[(1—Bl+Bg)D1+(A1—A2)D2]+/0 h(S)dS}

for t € J. This and the assumption on g prove that

o(Tz)=||(Tz)'llo <d (52)

This shows that T': P(p,d) — P(p,d).
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Now we need to show that condition (S;) is satisfied. Take

1 b
Then, z¢(t) >0, t € J, and
1 b
)\1[250}:* (b+> )\1[}?]20
2 p
1 b (54)
)\2[1170]25 <b+;> A2[p] >0
for p(t) =1, t € J. Moreover,
b(p+1) b
O(xg) = ||zollo= <—-=c
(ao) =zl = 2522 < 2
: b(p+1) b (55)
®(xp) =minzy(t) = >b=—p>plx
(o) min o(t) % P pllzollo
p(xo) =0<d
This proves that
b
{xoeP(%@,(I),b,;,d): b<®(xo)} (56)

so b < z(a (t))<ﬁ

£
Let b <z(t) < % for t € [n,1]. Then, n <t <a(t) <1,
> g This and Lemma 3

t € [,1]. Assumption (Az) implies f(t,z((t)),2’(6(t)))

show
O(Tx)= I[?i]lllr]l (Tx)( I[;nln/ L(t,s) z(as)), 2’ (B(s)))ds
> / D()h(s)f (s,2(a(s)),2’ (B(s)))ds (57)

/D s)ds>b

This proves that condition (S7) holds.
Now we need to prove that condition (S3) is satisfied. Take x € P(¢,®,b,d)
and [|T'z|[o > % =c with p=n?. Then,

b
®(Tr) =min(T2) 1) 2 p|[Txlo > p” =b (58)
5

so condition (S3) holds.
Indeed, ¢(0) =0<a, so 0& R(p,V,a,d). Suppose that © € R(¢,V,a,d) with
U(z) = ||z]jo =a. In view of Lemma 3 and Assumption (As), we obtain

W(Tr) = max(T) /D a(als)).2’ (B(s)))ds

/D s)ds<a

This shows that condition (S3) is satisfied.

(59)
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Since all the conditions of Theorem 1 are satisfied, problem (2) has at least
three nonnegative solutions 1,22,23 such that ||z}||o <d for i =1,2,3, and
b< r[nilr]lxl(t), a<||zallo  with r[nilr]lxg(t) <b, |zsllo<a (60)

This ends the proof. [
Remark 3. Indeed, Theorem 2 holds true for a(t) =t, t € J.

4. Examples

First, we consider some examples connected with Assumption Hi.
Example 1. Take dA(t) = (at —1)dt, dB(t) = (1—0bt)dt, a > 1, b>1. Note
that the measures change the sign, dA is increasing while dB is decreasing. It is
easy to show that
1

24(3@—4)

1
A1:6(2a—3)7 AQZ

1 1
Bi=<(3-20), Bz=5(4-30)
6 (61)
/.’,1(5):ﬂs(l—s)[—asz+s(4—a)—|—5a—8}
1
/Jg(s):ﬂs(l—s)[b82+s(b—4)—5b+8]
Note that
9 28
A1>21,0<4,<1 & -<a<—
0<B:1<1, Bo>0 & 1§b§§
Puta:5,b=%.Then,
7 11 1 ,
= — = — = — — — — >
Ay & Ay 51" L1(s) 24s(l $)[17—5s*—s] >0, se]0,1]
1 1
Bi=-—, By= = —s(1-5)>> 1 63
1=15 B 0, La(s) 188( 5)°>0, s€][0,1] (63)
A= (1= By)(1— Ag)+ Ba(1— Ay) = &
= 1 2 2 )= 139
It shows that Assumption H; holds. [

Example 2. Take dA(t) = (at —1)dt, dB(t) = (bt* —1)dt, a>1, b> 1. Note
that the measures change the sign and are increasing. It is easy to show that

A= %(2a—3), Ay = %(3%4)
1 1
Bi=(b-2), By=5(3b-5) o
1
Li(s)= ﬂs(l—s)[—aSQ—|—s(4—a)+5a—8],
L(s) (1—8)[—b(s* +5%) + (10— b)s+9b— 20]

:@S
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Note that 0 05
A >1, 0<A<1 & -<a<=
L= =f2= 2=9=73 (65)
0<B; <1, By>0 <« 2<b<6
Put a=5, bz%. Then,
7 11 1 )
=— == =—s(1— 552 s>
A1 6, A2 24, El(s) 248(1 S)[17 5s S] = 0, sE [0,1]
1 1
Bi=By= g, 52(5):552(1—5)[7—2@“2)}zo, s€[0,1] (66)
A=(1-B;1)(1-A3)+ By (1-A )—27
= 1 2 2 U= 7139
It shows that Assumption H; holds. ]

Example 3. Take 0 < d; < da < 1. Let A\g[z] =v12(01) +722(02). Moreover,
we assume that

0< 161+ 7202 <1, 0<~107+7203
’)’1(25175%78)+’)’2(26275%78)ZO, SS(Sl (67)
Y1(1=8)6% +725(205 — 05 —5) >0, 6, <s5<d

In this case, we have:

1
By =7v161+7202, By= 5(715%+725§)
Lo(s)=v1L(01,8) +v2L(02,5)

2 5 (68)
5[71(261—61—8)4—72(252—62—s)], s<6y
== (1= 5)07+725(20, — 65 — 5), 51 <5< 6
(1—s5) [1167+7203] , §> 0o

see Assumption Hy.

Note that if we take 1,72 > 0, then, usually inequalities (67) hold and this
case is not so interesting as the case when ~y;v2 < 0. Therefore, we take v; = —1,
2 =1 and §; = %, = %. It is easy to verify that (67) holds for such 47,5 and

Y1572
For example, we can define \; by

o] = /0 (8) (5t —1)dt (69)
Then,
Al—g, AQ:%, El(s):%s(lf‘s)[ﬁf&sz—s]20, s€(0,1] (70)

by Example 1. Moreover, By = %, By = i and

11
Az(l—Bl)(l—A2)+B2(1—A1):E (71)
It shows that Assumption H; holds.

The next example is connected with problem (2).
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Example 4. Consider the problem:
o () + (1) f (t,x(a(t)), 2’ (B(1))), t€(0,1)

_ Y B o [* 4 (72)
z(0)=0, a'(1) 7/0 x(s)(bs—1)ds 2'(0) 7/0 x(s) <1 35) ds
where
_ 1
F(tuw) 10 4(t+cos2v)+§u2, te0,1], uel0,2], lv|<d (73)
107*(t+cos?v) +2, tel0,1], u>2, |v|<d
h(t)= D D>0 =3 74
( ) - %7 >0, n= Z ( )
We see that
1 1 4
A1]z] :/0 x(t)(5t—1)dt, Ao[x] :/0 x(t) (lgt) dt (75)
dA() = (5t—1)dt, dB(t) = (1— %t) dt (76)

and the measures change the sign. The argument « should be advanced on J.
For example, we can take a(t) =+/t or a(t) = v/t. As 3 we can take any function
BeC(J,J), so, for example,

\{ﬂ [0,4]
Bit) =vEi(l—t) or Ba(t)={ gH+T: [43:4] (77)
1
§(3t—1), [3,1]
in the place of 8. Note that (; is advanced on [0,¢;] and delayed on [t1,1] for
2
t; = %) ~0.38. Similarly, 3, is advanced on [0, 5] and delayed on [,1].
In view of Example 1, it is easy to calculate:
323 16 161738 20744
Di=———D =— = Dy=——D 78
PTI800 T TP 2835 T 69615 T 69615 (78)

and A [p] =3, Az[p] = 3 for p(t) =1. Basing on the above,
p>max(Ds, Dy) = D3 ~2.32332D, 0<v<n*Dy;~0.16761D (79)

Put a:%7b:2,d:31, soc:n—gz%.Let D=6, u=15, v=1. Then,
d 31
t —=— ted, 0<u<d <d
f( )u’v)</14 157 S ) SUS ’|’U‘—
b 32
f(t,u,v)z;:2 ten,1], 2§u§§, lv| <d (80)
f(t,u,v)<%:ﬁ, telJ, 0<u<a, |v|<d

We see that all assumptions of Theorem 2 hold, so problem (72) has at least
three positive solutions.
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