
TASK QUARTERLY vol. 20, No 1, 2016, pp. 63–83

FRACTIONAL PROBLEMS WITH

RIGHT-HANDED RIEMANN-LIOUVILLE

FRACTIONAL DERIVATIVES

TADEUSZ JANKOWSKI

Department of Differential Equations and Applied Mathematics

Gdansk University of Technology

Narutowicza 11/12, 80-233 Gdansk, Poland

(received: 30 November 2015; revised: 23 December 2015;

accepted: 29 December 2015; published online: 22 February 2016)

Abstract: In this paper, we investigate the existence of solutions for advanced fractional

differential equations containing the right-handed Riemann-Liouville fractional derivative both

with nonlinear boundary conditions and also with initial conditions given at the end point T

of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point

theorem and the monotone iterative technique, as well. Linear problems are also discussed. A few

examples illustrate the results.
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1. Introduction

Put J0 = [0,T ), J = [0,T ]. First, we introduce the right-handed Riemann-

Liouville fractional derivative DqTx of order q by

D
q
Tx(t)=−

1

Γ(1−q)
d

dt

∫ T

t

(s− t)−qx(s)ds, t∈J0, q ∈ (0,1) (1)

and D1Tx(t)=−x′(t), if q=1.
Similarly, we introduce the right-sided fractional integral IqTx of order q > 0

by

I
q
Tx(t)=

1

Γ(q)

∫ T

t

(s− t)q−1x(s)ds, t∈J0 (2)

The above definitions are taken from [1].
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In this paper, we study the nonlinear boundary value problem of the form:






D
q
Tx(t)= f

(

t,x(t),x(α(t)),
1

Γ(q1)

∫ T

t

(s− t)q1−1g(s)x(s)ds
)

≡Fx(t), t∈J0
0=h

(

x̄(T )
)

(3)

where f ∈ C(J × IR× IR× IR,IR), α ∈ C(J,J), g ∈ C(J,IR), h ∈ C(IR,IR), x̄(T ) =
(T− t)1−qx(t)|t=T with q ∈ (0,1], q1> 0.

We introduce the space C1−q by

C1−q(J,IR)=
{

u∈C([0,T ),IR) : (T− t)1−qu∈C(J,IR)
}

, q ∈ (0,1) (4)

and C0(J,IR)=C(J,IR) if q=1.

Fractional differential equations arise in many engineering and scientific

disciplines. Recently, much attention has been paid to study fractional dif-

ferential equations. Some authors have formulated sufficient conditions under

which fractional differential equations both with initial or boundary conditions

have solutions. For example, such problems have been investigated for frac-

tional differential equations with the left-handed Riemann-Liouville fractional

derivative Dqa+x (or shortly D
qx) of order q, see for example [2–8, 1, 9–20].

An interesting and fruitful technique for proving the existence results for

nonlinear fractional differential problems is the monotone iterative method

based on lower and upper solutions, see for example [3–6, 9–14, 16–20].

Note that fractional differential equations with the right-handed Riemann-

Liouville fractional derivative DqTx of order q have been investigated, for example

in [21, 1, 15].

In our paper we use both the right-handed Riemann-Liouville fractional

derivatives DqTx and the right-sided fractional integrals I
q
Tx of order q ∈ (0,1]. If

g(s) = 1, t∈ J , then, the fractional differential equation in problem (3) takes the
form

D
q
Tx(t)= f

(

t,x(t),x(α(t)),Iq1T x(t)
)

, t∈J0 (5)

If q1 =1 and g ∈C(J,J) then, the fractional differential equation in problem (3)
takes the following form

D
q
Tx(t)= f

(

t,x(t),x(α(t)),

∫ T

t

g(s)x(s)ds

)

, t∈J0 (6)

First we discuss initial problems with the initial condition given at the point T

for the fractional differential equations with DqTx from (3) replacing this problem

by a corresponding integral equation. Now, to find a unique solution, we apply

the method of successive approximations assuming that function f appearing in

the right-hand-side of problem (3) satisfies a Lipschitz condition with respect to

the last three variables. We also apply the Banach fixed point theorem with the

Bielecki norm for the case q=1. The uniqueness of solutions is also investigated

under the same Lipschitz condition. The linear fractional differential problems

with initial conditions at the point T are also investigated giving their solutions
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in forms of Mittag-Leffler functions. Finally, to find a solution of problem (3),

we use the monotone iterative method combined with lower and upper solutions.

Indeed, we discuss also corresponding fractional differential inequalities. Some

examples illustrate the results.

The organization of this paper is as follows. In Section 2, we discuss the

nonlinear fractional differential equations of order q with advanced arguments

and with initial conditions given at the end point T of interval [0,T ], see prob-

lem (10). We use the method of successive approximations to prove the existence

and uniqueness result for problem (10) with q ∈ (0,1), see Theorem 1. Exam-
ple 1 illustrates the result of Theorem 1. Theorem 2 concerns the existence and

uniqueness of solutions of problem (3) for q=1, by using the Banach fixed point

theorem with the Bielecki norm. In the next section, we study the uniqueness of

solutions of problem (10) giving sufficient conditions under which problem (10)

has at most one solution, see Theorem 3. Section 4 concerns linear fractional prob-

lems with initial conditions given at the point T . Theorem 4 presents the unique

solution of such problems in terms of the Mittag-Leffler function. In Section 5,

some examples are given. Examples 2 and 4 concern linear fractional problems

while Example 3 the system of two linear fractional equations. In Sections 6

and 7, we discuss the existence of solutions for general problems of type (3),

by using the monotone iterative technique based on lower and upper solutions.

The corresponding existence results are given by Theorem 5 for q=1, and Theo-

rem 6 for q ∈ (0,1). At the end of this paper, Example 5 concerns the application
of Theorem 6 to a fractional differential equation with a nonlinear boundary

condition.

2. Existence results for fractional problems

with initial conditions

First, we cite a lemma.

Lemma 1 (see [1]). Let 0< q ≤ 1, y ∈L(0,T ). Also let y1−q(t) = I1−qT y(t)
be the fractional integral of order 1−q and y1−q ∈AC[0,T ]. Then,

I
q
TD
q
T y(t)= y(t)−

y1−q(T )

Γ(q)
(T− t)q−1 if 0<q< 1 (7)

and

I1TD
1
T y(t)= y(t)−y(T ) if q=1 (8)

Let us introduce the following assumption:

H1 : f ∈C(J× IR× IR× IR,IR), α∈C(J,J), α(t)≥ t, g ∈C(J,IR) and there exist
nonnegative constants A,B,D such that

∣

∣f(t,u1,u2,u3)−f(t,v1,v2,v3)
∣

∣≤A|v1−u1|+B|v2−u2|+D|u3−v3| (9)



66 T. Jankowski

The next result concerns the problem:
{

D
q
Tu(t)=Fu(t), t∈J0
ū(T )= k∈ IR (10)

where operator F is defined as in problem (3). Note that in (10) the initial point

is given at the end point of interval J . Now, we formulate an existence result for

problem (10).

Theorem 1. Let Assumption H1 hold and let q1> 0, 0<q < 1. Moreover,

we assume that there exists a constant M > 0 such that

1

Γ(q)
supt∈J0

∫ T

t

(s− t)q−1|Fu0(s)|ds≤M (11)

for u0(t)= k(T−t)q−1. Then, problem (10) has a unique solution u∈C1−q(J,IR).
Proof. Using Lemma 1, it is easy to show that problem (10) is equivalent

to the integral equation:

u(t)= k(T− t)q−1+ 1

Γ(q)

∫ T

t

(s− t)q−1Fu(s)ds (12)

To find the solution of (12) we use the method of successive approximations.

Let
{

u0(t)= k(T− t)q−1

un(t)= k(T− t)q−1+IqTFun−1(t), n=1,2,· · ·
(13)

Put

wn(t)= |un(t)−un−1(t)|, n=1,2,· ··, L=A+B+
DG

Γ(q1+1)
T q1 (14)

with G=maxt∈J |g(t)|. Then,

w1(t)≤
1

Γ(q)

∫ T

t

(s− t)q−1
∣

∣Fu0(s)
∣

∣ds≤M,

w2(t)≤
1

Γ(q)

∫ T

t

(s− t)q−1
∣

∣Fu1(s)−Fu0(s)
∣

∣ds

≤ 1

Γ(q)

∫ T

t

(s− t)q−1
[

Aw1(s)+Bw1
(

α(s)
)

+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1w1(τ)dτ
]

ds

≤ M
Γ(q)

∫ T

t

(s− t)q−1
[

A+B+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1dτ
]

ds

≤ ML
Γ(q)

∫ T

t

(s− t)q−1ds= ML

Γ(q+1)
(T− t)q

(15)

Now, we have to prove that

wn(t)≤
MLn−1

Γ(q(n−1)+1)(T− t)
q(n−1)≡ zn(t), n=1,2,·· ·. (16)
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Assume that (16) holds for some integer m> 1. As α(s)≥ s, so wm(α(s))≤ zm(s),
and wm(τ)≤ zm(s), τ ∈ [s,T ]. Using Assumption H1 and relation (16) for n=m,
we obtain

wm+1(t)≤
1

Γ(q)

∫ T

t

(s− t)q−1
∣

∣Fum(s)−Fum−1(s)
∣

∣ds

≤ 1

Γ(q)

∫ T

t

(s− t)q−1
[

Awm(s)+Bwm(α(s))+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1wm(τ)dτ
]

ds

≤ 1

Γ(q)

∫ T

t

(s− t)q−1zm(s)
[

A+B+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1dτ
]

ds

≤ L
Γ(q)

∫ T

t

(s− t)q−1zm(s)ds=
MLm

Γ(qm+1)
(T− t)qm

(17)

This and the mathematical induction show that (16) holds.

Now, we have to show that the sequence {un} is convergent. First, we note
that

un(t)=u0(t)+
n
∑

j=1

[

uj(t)−uj−1(t)
]

, n=1,2,· ·· (18)

In view of (16), we see that

∞
∑

j=1

wj(t)≤
∞
∑

j=1

MLj−1

Γ((j−1)q+1)(T− t)
(j−1)q =M

∞
∑

j=0

Lj

Γ(jq+1)
(T− t)jq

≤M
∞
∑

j=0

Lj

Γ(jq+1)
T jq =MEq,1(LT

q)

(19)

where Eq,1 is the Mittag-Leffler function defined by

Eq,1(z)=
∞
∑

j=0

zj

Γ(jq+1)
(20)

It proves that limn→∞un(t) exists, so u(t) = limn→∞un(t). Indeed, u−u0 is a
continuous function on J and u is a continuous function on J0. Taking the limit

n→∞ in (13), we see that u∈C1−q(J,IR) is a solution of problem (12).
Now we have to prove that u is a unique solution of (12). Suppose that

v is another solution distinct from u and such that D0 = supt∈J0 V (t) with

V (t)= |u(t)−v(t)|. Then,

V (t)=
1

Γ(q)

∣

∣

∣

∣

∣

∫ T

t

(s− t)q−1
[

Fu(s)−Fv(s)
]

ds

∣

∣

∣

∣

∣

≤ 1

Γ(q)

∫ T

t

(s− t)q−1
[

AV (s)+BV (α(s))+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1V (τ)dτ
]

ds

(21)

by Assumption H1. Then,

V (t)≤ D0L
Γ(q)

∫ T

t

(s− t)q−1ds= D0L

Γ(q+1)
(T− t)q ≤ D0L

Γ(q+1)
T q ≡D1 (22)
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This and the previous relation on V give

V (t)≤ 1

Γ(q)

∫ T

t

(s− t)q−1
[

AV (s)+BV
(

α(s)
)

+
DG

Γ(q1)

∫ T

s

(τ−s)q−1V (τ)dτ
]

ds

≤ D1L
Γ(q)

∫ T

t

(s− t)q−1ds= D1L

Γ(q+1)
(T− t)q

(23)

Repeating it, we can show, by induction, that

V (t)≤ D1L
n

Γ(nq+1)
(T− t)nq, n=0,1,· ·· (24)

so

V (t)≤ D1L
n

Γ(nq+1)
Tnq, n=0,1,· ·· (25)

Indeed,

lim
n→∞

Ln

Γ(nq+1)
Tnq =0 (26)

This shows that u is the unique solution of (12). This also proves that u is the

unique solution of (10). This ends the proof.

Remark 1. Put Zn(t) = |un(t)−u(t)|, where u is the unique solution of
problem (10) and un is defined as in the proof of Theorem 1. Indeed, Z0(t) ≤
maxt∈JZ0(t)≡K. Moreover,

Zn(t)≤
1

Γ(q)

∫ T

t

(s− t)q−1
∣

∣Fun−1(s)−Fu(s)
∣

∣ds

≤ 1

Γ(q)

∫ T

t

(s− t)q−1
[

AZn−1(s)+BZn−1(α(s))

+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1Zn−1(τ)dτ
]

ds

(27)

for n=1,2,· ··.
Similarly as in the proof of Theorem 1, we see that

∣

∣un(t)−u(t)
∣

∣≤ KLn

Γ(nq+1)
(T− t)nq, n=0,1,· ·· (28)

The above relation gives the estimation between the approximate solution un of

problem (10) and the unique solution u of problem (10).

Lemma 2. Assume that there exists a nonnegative constant M1 such that

(i) supt∈J0 |Fu0(t)| ≤M1, 0<q≤
1

2

(ii) supt∈J0(T− t)
1−q|Fu0(t)| ≤M1,

1

2
<q< 1

(29)

Then, condition (11) holds.
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Proof. Case 1. Assume that 0<q≤ 12 . Indeed,

1

Γ(q)

∫ T

t

(s− t)q−1|Fu0(s)|ds≤
M1

Γ(q)

∫ T

t

(s− t)q−1ds≤ M1

Γ(q+1)
T q ≡M (30)

Case 2. Let 12 <q< 1. Using the Schwartz inequality for integrals, we have

∫ T

t

(s− t)q−1(T−s)q−1ds≤

√

∫ T

t

(s− t)2(q−1)ds

√

∫ T

t

(T−s)2(q−1)ds

=
Γ(2q−1)
Γ(2q)

(T− t)2q−1≤ Γ(2q−1)
Γ(2q)

T

(31)

Hence,

1

Γ(q)

∫ T

t

(s− t)q−1
∣

∣Fu0(s)
∣

∣ds=
1

Γ(q)

∫ T

t

(s− t)q−1(T−s)q−1(T−s)1−q
∣

∣Fu0(s)
∣

∣ds

≤ M1
Γ(q)

Γ(2q−1)
Γ(2q)

T ≡M
(32)

This ends the proof.

Remark 2. For example, in papers [2, 15] the assumption

supt∈J1
∣

∣f(t,y)
∣

∣≤M (33)

has been used for in initial value problem:
{

Dqx(t)= f
(

t,x(t)
)

, t∈J1=(0,T ], q ∈ (0,1]
x̄(0)= k, x̄(0)= t1−qx(t)|t=0

(34)

Example 1. Consider the following nonlinear fractional differential prob-

lem:
{

D
q
Tx(t)=λsinx(t)+σ(t), t∈J0= [0,T )
x̄(T )= k

(35)

where λ,k∈ IR, σ ∈C(J,IR). Note that all assumptions of Theorem 1 hold with

A= |λ|, B=D=0, M = T q

Γ(q+1)

[

max
t∈J
|σ(t)|+ |λ|

]

(36)

In view of Theorem 1, problem (35) has a unique solution x being the limit of the

sequence {xn} defined by






x0(t)= k(T− t)q−1

xn+1(t)= k(T− t)q−1+
1

Γ(q)

∫ T

t

(s− t)q−1
[

λsinxn(s)+σ(s)
]

ds
(37)

for n=0,1,· ··. Moreover
∣

∣x(t)−xn(t)
∣

∣≤ KLn

Γ(nq+1)
(T− t)nq, n=0,1,·· · (38)

by Remark 1. Here L= |λ|, K =M .
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Now, we consider the case q=1, so problem (10) takes the form
{

u′(t)=−Fu(t), t∈J
u(T )= k∈ IR (39)

Theorem 2. Let q=1, q1 > 0. Suppose that Assumption H1 holds. Then,

problem (39) has a unique solution u∈C1(J,IR).
Proof. Note that problem (39) is equivalent to the following one

u(t)= k+

∫ T

t

Fu(s)ds≡Au(t), t∈J (40)

Put

‖u‖∗=max
t∈J
eλ(t−T )|u(t)| for λ≥L, λ> 0, and Q=

(

1−e−λT
)

< 1 (41)

where L is defined as in the proof of Theorem 1. We show that operator A is

a contraction with the Bielecki norm ‖·‖∗. Let u,v ∈ C(J,IR). Then, in view of
Assumption H1, we obtain

‖Au−Av‖∗≤max
t∈J
eλ(t−T )

∫ T

t

∣

∣Fu(s)−Fv(s)
∣

∣ds

≤max
t∈J
eλ(t−T )

∫ T

t

[

A
∣

∣u(s)−v(s)
∣

∣+B
∣

∣u
(

α(s)
)

−v
(

α(s)
)∣

∣

+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1|u(τ)−v(τ)|dτ
]

ds

≤‖u−v‖∗max
t∈J
eλt
∫ T

t

[

Ae−λs+Be−λα(s)+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1e−λτdτ
]

ds

≤‖u−v‖∗Lmax
t∈J
eλt
∫ T

t

e−λsds

=
L

λ
Q‖u−v‖∗≤Q‖u−v‖∗

(42)

Then, problem (39) has a unique solution, by the Banach fixed point theorem.

This ends the proof.

Remark 3. To show that problem (10) with q ∈ (0,1) has a unique solution
we can also use the Banach fixed point theorem with a corresponding norm using

the Hölder inequality for integrals.

3. Uniqueness of solutions of problem (10)

Basing on the proof of Theorem 1, we can formulate some sufficient

conditions for the uniqueness of the solution of problem (10) but it does not

guarantee the existence of this solution.

Theorem 3. Let Assumption H1 hold and let q1> 0, 0<q< 1.

Then, problem (10) has at most one solution in the space C1−q(J,IR).
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Proof. Note that u is a solution of (10) if and only if

u(t)= k(T− t)q−1+IqTFu(t) (43)

Assume that the above problem has two distinct solutions U,V ∈C1−q(J,IR) and
put P (t)= |U(t)−V (t)|, P0=supt∈J0P (t). Then, using AssumptionH1, we obtain

P (t)≤ IqT
∣

∣FU(t)−FV (t)
∣

∣

≤ 1

Γ(q)

∫ T

t

(s− t)q−1
[

AP (s)+BP (α(s))+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1P (τ)dτ
]

ds

≤P0
1

Γ(q)

∫ T

t

(s− t)q−1
[

A+B+
DG

Γ(q1)

∫ T

s

(τ−s)q1−1dτ
]

ds

≤ P0L
Γ(q)

∫ T

t

(s− t)q−1ds= P0L

Γ(q+1)
(T− t)q ≤ P0L

Γ(q+1)
T q ≡P1

(44)

where L is defined as in Theorem 1. Now, similarly as in the proof of Theorem 1,

we can show

P (t)≤ P1L
n

Γ(nq+1)
Tnq, n=0,1,·· · (45)

Hence, the assertion holds because

lim
n→∞

P1L
n

Γ(nq+1)
Tnq =0 (46)

4. Linear fractional differential equations

Let us consider the following linear problem

D
q
Tx(t)=λI

q1
T x(t)+σ(t), t∈J0, x̄(T )= k, (47)

where λ,k∈ IR, σ ∈C1−q(J,IR).
Theorem 4. Let q ∈ (0,1], q1 > 0, λ,k ∈ IR, σ ∈ C1−q(J,IR). Then, prob-

lem (47) has a unique solution given by the formula

x(t)= kΓ(q)(T− t)q−1Eq+q1,q
(

λ(T− t)q+q1
)

+

∫ T

t

(s− t)q−1Eq+q1,q
(

λ(s− t)q+q1
)

σ(s)ds
(48)

where Eν,β(ζ)=
∑

∞

r=0
ζr

Γ(νr+β) is the Mittag-Leffler function.

Proof. Indeed, problem (47) is equivalent in the space C1−q(J,IR) to the

following fractional integral equation

x(t)=x0(t)+λI
q+q1
T x(t)+IqTσ(t), t∈J0 (49)

where x0(t)= k(T− t)q−1.
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We apply the method of successive approximations to find the solution of

problem (49), so for n=0,1,· · ·, we have

xn+1(t)=x0(t)+λI
q+q1
T xn(t)+I

q
Tσ(t) (50)

Hence,

x1(t)=x0(t)+λI
q+q1
T x0(t)+I

q
Tσ(t)

x2(t)=x0(t)+λI
q+q1
T x1(t)+I

q
Tσ(t)

=x0(t)+λI
q+q1
T [x0(t)+λI

q+q1
T x0(t)+I

q
Tσ(t)]+I

q
Tσ(t)

=x0(t)+λI
q+q1
T x0(t)+λ

2I
2(q+q1)
T x0(t)+λI

2q+q1
T σ(t)+IqTσ(t)

(51)

using the relation IrT I
m
T x(t)= I

r+m
T x(t), r,m> 0.

Thus, in general, we get by induction xn as follows

xn(t)=x0(t)+

n
∑

i=1

λiI
i(q+q1)
T x0(t)+

n
∑

i=1

λi−1I
(i−1)(q+q1)+q
T σ(t), n=1,2,·· · (52)

Using the following formula

IδTx0(t)=x0(t)
Γ(q)

Γ(δ+q)
(T− t)δ, δ > 0 (53)

to (52), we obtain

xn(t)=x0(t)

[

1+Γ(q)

n
∑

i=1

λi
1

Γ(i(q+q1)+q)
(T− t)i(q+q1)

]

+
n
∑

i=1

λi−1
1

Γ((i−1)(q+q1)+q)

∫ T

t

(s− t)(i−1)(q+q1)+q−1σ(s)ds

=x0(t)Γ(q)
n
∑

i=0

λi
1

Γ(i(q+q1)+q)
(T− t)i(q+q1)

+

∫ T

t

(s− t)q−1
[

n−1
∑

i=0

λi
1

Γ(i(q+q1)+q)
(s− t)i(q+q1)

]

σ(s)ds

(54)

for n= 0,1,· ··. Taking the limit as n→∞, we obtain the unique solution x in
terms of the Mittag-Lefller function given by formula (48).

Remark 4. Put q=1, then, problem (47) takes the form

−x′(t)=λIq1T x(t)+σ(t), t∈J0, x(T )= k (55)

Let q1 = 1, λ= 1. Then, E2,1(t
2) = cosh(t), so, in view of (48), the solution has

the form

x(t)= kcosh(T− t)+
∫ T

t

cosh(s− t)σ(s)ds (56)
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5. Examples

In this section, some examples are given.

Example 2. For q ∈ (0,1], q1> 0, let us consider the following problem






D
q
Tx(t)= I

q1
T x(t)−

Γ(q)

Γ(q+q1)
(T− t)q+q1−1, t∈J0= [0,T )

x̄(T )= 1
(57)

Comparing this problem with (47) we see that

λ=1, σ(t)=− Γ(q)

Γ(q+q1)
(T− t)q+q1−1, k=1 (58)

In view of Theorem 4, problem (57) has a unique solution given by

x(t)=Γ(q)(T− t)q−1Eq+q1,q
(

(T− t)q+q1
)

+

∫ T

t

(s− t)q−1Eq+q1,q
(

(s− t)q+q1
)

σ(s)ds

=Γ(q)(T− t)q−1Eq+q1,q
(

(T− t)q+q1
)

− Γ(q)

Γ(q+q1)

∞
∑

n=0

1

Γ(n(q+q1)+q)

∫ T

t

(s− t)n(q+q1)+q−1(T−s)q+q1−1ds

=Γ(q)(T− t)q−1Eq+q1,q
(

(T− t)q+q1
)

−Γ(q)
∞
∑

n=0

1

Γ((n+1)(q+q1)+q)
(T− t)(n+1)(q+q1)+q−1

=Γ(q)(T− t)q−1
[

Eq+q1,q
(

(T− t)q+q1
)

−
∞
∑

n=1

1

Γ(n(q+q1)+q)
(T− t)n(q+q1)

]

=Γ(q)(T− t)q−1
[

Eq+q1,q
(

(T− t)q+q1
)

−Eq+q1,q((T− t)q+q1)+
1

Γ(q)

]

=(T− t)q−1

(59)

It proves that x(t)= (T− t)q−1 is the unique solution of problem (57).
Example 3. Consider the system of fractional linear equations:







D
q
Tx(t)= 2I

q1
T x(t)−2I

q1
T y(t)+σ1(t), t∈J0= [0,T )

D
q
T y(t)=−2I

q1
T x(t)+2I

q1
T y(t)+σ2(t), t∈J0

x̄(T )= 1, ȳ(T )= 0
(60)

with q ∈ (0,1), q1> 0 and

σ1(t)=−
2Γ(q)

Γ(q+q1)
(T− t)q+q1−1+ 10

Γ(2+q1)
(T− t)1+q1+ 4

Γ(3−q) (T− t)
2−q,

σ2(t)=
2Γ(q)

Γ(q+q1)
(T− t)q+q1−1− 10

Γ(2+q1)
(T− t)1+q1+ 4

Γ(3−q) (T− t)
2−q

+
5

Γ(2−q) (T− t)
1−q

(61)

Put P =x+y, Q=x−y. Then, in view of (60), we obtain
{

D
q
TP (t)=σ1(t)+σ2(t), t∈J0
P̄ (T )= 1

(62)
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{

D
q
TQ(t)= 4I

q1
T Q(t)+σ1(t)−σ2(t)

Q̄(T )= 1
(63)

In view of (48), the solution P of problem (62) is given by

P (t)= (T− t)q−1+ 1

Γ(q)

∫ T

t

(s− t)q−1
[

σ1(s)+σ2(s)
]

ds

=(T− t)q−1+ 1

Γ(q)

∫ T

t

(s− t)q−1
[

8

Γ(3−q) (T−s)
2−q+

5

Γ(2−q) (T−s)
1−q

]

ds

=(T− t)q−1+4(T− t)2+5(T− t)
(64)

Similarly, for Q we have

Q(t)=Γ(q)(T− t)q−1Eq+q1,q
(

4(T− t)q+q1
)

+

∫ T

t

(s− t)q−1Eq+q1,q
(

4(s− t)q+q1
)[

σ1(s)−σ2(s)
]

ds

=Γ(q)(T− t)q−1Eq+q1,q
(

4(T− t)q+q1
)

+

∞
∑

r=0

4r

Γ(r(q+q1)+q)

∫ T

t

(s− t)r(q+q1)+q−1
[

− 4Γ(q)
Γ(q+q1)

(T−s)q+q1−1

+
20

Γ(2+q1)
(T−s)1+q1− 5

Γ(2−q) (T−s)
1−q

]

=Γ(q)(T− t)q−1Eq+q1,q
(

4(T− t)q+q1
)

−Γ(q)
∞
∑

r=0

4r+1

Γ((r+1)(q+q1)+q)
(T− t)(r+1)(q+q1)+q−1

+5
∞
∑

r=0

4r+1

Γ((r+1)(q+q1)+2)
(T− t)(r+1)(q+q1)+1

−5
∞
∑

r=0

4r

Γ(r(q+q1)+2)
(T− t)r(q+q1)+1

=Γ(q)(T− t)q−1Eq+q1,q
(

4(T− t)q+q1
)

−Γ(q)(T− t)q−1
[

Eq+q1,q
(

4(T− t)q+q1
)

− 1

Γ(q)

]

+5(T− t)
[

Eq+q1,2
(

4(T− t)q+q1
)

−1
]

−5(T− t)Eq+q1,2
(

4(T− t)q+q1
)

=(T− t)q−1−5(T− t)
(65)

Now, solving the system:
{

x(t)+y(t)= (T− t)q−1+4(T− t)2+5(T− t)
x(t)−y(t)= (T− t)q−1−5(T− t) (66)

we see that the solution (x,y) of (60) is given by
{

x(t)= (T− t)q−1+2(T− t)2
y(t)= 2(T− t)2+5(T− t) (67)
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Example 4. Consider the problem:






D
q
Tx(t)=λ

1

Γ(q1)

∫ T

t

(s− t)q1−1(T−s)rx(s)ds, t∈J0= [0,T )
x̄(T )= k

(68)

where λ,k ∈ IR, r >−q, q1> 0; so g(s) = (T−s)r in comparing with the operator
F from problem (3). Problem (68) is equivalent to the integral equation

x(t)= k(T−t)q−1+ λ

Γ(q)Γ(q1)

∫ T

t

(s−t)q−1
[
∫ T

s

(τ−s)q1−1(T−τ)rx(τ)dτ
]

ds. (69)

To find a solution of (69) we use the method of successive approximation, so






x0(t)= k(T− t)q−1

xn+1(t)=x0(t)+
λ

Γ(q)Γ(q1)

∫ T

t

(s− t)q−1
[
∫ T

s

(τ−s)q1−1(T−τ)rxn(τ)dτ
]

ds

(70)

for n=0,1,· ··.
Indeed,

x1(t)=x0(t)+
λk

Γ(q)Γ(q1)

∫ T

t

(s− t)q−1
[
∫ T

s

(τ−s)q1−1(T−τ)r+q−1dτ
]

ds

=x0(t)+
λk

Γ(q)

Γ(r+q)

Γ(r+q+q1)

∫ T

t

(s− t)q−1(T−s)r+q+q1−1ds

=x0(t)

[

1+λ
Γ(r+q)

Γ(2q+r+q1)
(T− t)q+r+q1

]

(71)

and

x2(t)=x0(t)+
λ

Γ(q)Γ(q1)

∫ T

t

(s− t)q−1
[

∫ T

s

(τ−s)q1−1(T−τ)rx1(τ)dτ
]

ds

=x0(t)+
λk

Γ(q)Γ(q1)

∫ T

t

(s− t)q−1
[

∫ T

s

(τ−s)q1−1(T−τ)r+q−1dτ

+λ
Γ(r+q)

Γ(2q+r+q1)

∫ T

s

(τ−s)q1−1(T−τ)2r+2q+q1−1dτ
]

ds

=x0(t)+
λk

Γ(q)

Γ(r+q)

Γ(q+r+q1)

∫ T

t

(s− t)q−1(T−s)r+q+q1−1ds

+
λ2k

Γ(q)

Γ(r+q)Γ(2r+2q+q1)

Γ(2q+r+q1)Γ
(

2(r+q+q1)
)

∫ T

t

(s− t)q−1(T−s)2q+2q1+2r−1ds

=x0(t)

[

1+λ
Γ(q+r)

Γ(2q+r+q1)
(T− t)q+r+q1

+Λ2
Γ(q+r)Γ(2(q+r)+q1)

Γ(2q+r+q1)Γ(3q+2(r+q1)
(T− t)2(q+r+q1)

]

(72)
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By induction, we can show

xn(t)=x0(t)

n
∑

j=0

λjcj(T− t)j(q+r+q1), n=1,2,· ·· (73)

where

c0=1, cj =

j−1
∏

i=0

Γ(i(q+r+q1)+q+r)

Γ((i+1)(q+r+q1)+q)
, j=1,2,· ·· (74)

Now, taking the limit as n→∞, we obtain a solution of (68), by formula:

x(t)= k(T− t)q−1
∞
∑

j=0

cj

[

λ(T− t)(q+r+q1)
]j

(75)

This solution of (68) can be written in the form

x(t)= k(T− t)q−1E
q+q1,1+

r

q+q1
,1+

r−1−q1
q+q1

[

λ(T− t)(q+r+q1)
]

(76)

where Eν,m,n is the Mittag-Leffler function given by

Eν,m,n(z)=

∞
∑

j=0

c∗jz
j (77)

with

c∗0=1, c
∗

j =

j−1
∏

i=0

Γ(ν(im+n)+1)

Γ(ν(im+n+1)+1)
, j=1,2,· · · (78)

see p. 48 of [1]. Indeed, cj = c
∗

j for ν= q+q1, m=1+
r
q+q1
, n=1+ r−1−q1

q+q1
. If r≥ 0,

then, x given by (76) is the unique solution of (68), by Theorem 1. Note that if

r=0, then, cj =
Γ(q)

Γ(j(q+q1)+q)
and Eq+q1,1, q−1q+q1

(z)=Eq+q1,q(z).

6. Existence results for fractional problems of type (3)

with q =1

In this section, we consider the existence of extremal solutions of prob-

lem (3) in the case q=1. To obtain it, we apply the monotone iterative technique,

therefore we first formulate a comparison result which will play a very important

role in our research.

Lemma 3. Let α∈C(J,J), t≤α(t)≤ T on J . Suppose that M ∈C(J,IR),
p∈C1(J,IR) and

{

p′(t)≥M(t)p(t)+Gp(t), t∈J
p(T )≤ 0 (79)

where operator G is defined by

Gp(t)=N(t)p(α(t))+P (t)Iq1T p(t) (80)

with nonnegative functions N,P integrable on J and the right-sided fractional

integral Iq1T p of order q1> 0

In addition, we assume that
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H2 : r≤ 1 with

r=

∫ T

0

[

N(t)exp

(

α(t)
∫

t

M(s)ds

)

+
P (t)

Γ(q1)

∫ T

t

(s− t)q1−1exp
(

s
∫

t

M(τ)dτ

)

ds

]

dt (81)

Then, p(t)≤ 0 on J .

Proof. Put

q(t)= exp

(

T
∫

t

M(s)ds

)

p(t), t∈J (82)

This and (79) give q(T )= p(T )≤ 0, and

q′(t)= exp

(

T
∫

t

M(s)ds

)

[−M(t)p(t)+p′(t)]≥ exp
(

T
∫

t

M(s)ds

)

Gp(t)

=N(t)exp

(

α(t)
∫

t

M(s)ds

)

q(α(t))+
P (t)

Γ(q1)

∫ T

t

(s− t)q1−1exp
(

s
∫

t

M(τ)dτ

)

q(s)ds

(83)

so


























−q′(t)≤−N(t)exp
(

α(t)
∫

t

M(s)ds

)

q
(

α(t)
)

− P (t)
Γ(q1)

∫ T

t

(s− t)q1−1exp
(

s
∫

t

M(τ)dτ

)

q(s)ds

q(T )≤ 0

(84)

We need to prove that q(t)≤ 0, t∈ J . Suppose that the inequality q(t)≤ 0, t∈ J
is not true. Then, we can find t0 ∈ [0,T ) such that q(t0)> 0. Put

q(t1)= min
[t0,T ]
q(t)≤ 0 (85)

Integrating the differential inequality in (84) from t0 to t1, we obtain

q(t0)−q(t1)≤−
∫ t1

t0

[

N(t)exp

(

α(t)
∫

t

M(s)ds

)

q
(

α(t)
)

+
P (t)

Γ(q1)

∫ T

t

(s− t)q1−1exp
(

s
∫

t

M(τ)dτ

)

q(s)ds

]

dt

≤−rq(t1)≤−q(t1)

(86)

It contradicts the assumption that q(t0)> 0. This proves that q(t)≤ 0 on J . This
also proves that p(t)≤ 0 on J and the proof is complete.

Remark 5. Assume M(t)≥ 0 on J and
∫ T

0

[

N(t)exp

(

T
∫

t

M(s)ds

)

+
P (t)

Γ(q1)

∫ T

t

(s− t)q1−1exp
(

s
∫

t

M(τ)dτ

)

ds

]

dt≤ 1 (87)

Note that the above condition does not depend on α and moreover Assumption

H2 holds.
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Remark 6. Assume that 1 ≤ A0exp
(

T
∫

s

M(τ)dτ

)

(T− s)a, A0 > 0, a ≥ 0.

Then,

r≤
∫ T

0

[

N(t)exp

(

α(t)
∫

t

M(s)ds

)

+
A0P (t)

Γ(q1)
exp

(

T
∫

t

M(τ)dτ

)

∫ T

t

(s− t)q1−1(T−s)ads
]

dt

=

∫ T

0

[

N(t)exp

(

α(t)
∫

t

M(s)ds

)

+
A0P (t)Γ(a+1)

Γ(a+q1+1)
exp

(

T
∫

t

M(τ)dτ

)

(T− t)a+q1
]

dt≡ r1

(88)

Indeed, Assumption H2 holds if r1≤ 1.
We can also obtain another condition for r from Assumption H2, namely

using the following estimation

exp

(

T
∫

0

|M(τ)|dτ
)

≤P0 (89)

Then, it is easy to see that Assumption H2 holds, if we assume that
∫ T

0

[

N(t)exp

(

α(t)
∫

t

M(s)ds

)

+
P (t)P0
Γ(q1+1)

(T− t)q1
]

dt≤ 1 (90)

Now, we are going to use the monotone iterative technique to find a solution

of (3) for q=1. Let us introduce the following definition.

Let q=1 and q1> 0. We say that u∈C1(J,IR) is a lower solution of (3) if
u′(t)≤−Fu(t), t∈J, h

(

u(T )
)

≤ 0 (91)

and it is an upper solution of (3) if the above inequalities are reversed.

A solution y ∈C1(J,IR) of problem (3) is called maximal if x(t)≤ y(t), t∈J
for each solution x of (3), and minimal, if the reverse inequality holds. If both

minimal and maximal solutions exist, we call them extremal solutions of (3).

If we know the existence of lower and upper solutions y0,z0 of problem (3)

such that z0(t)≤ y0(t), t∈J , then, under corresponding conditions, we can prove
the existence of the extremal solutions of (3) in the sector

[z0,y0]∗=
{

w∈C1(J,IR) : z0(t)≤w(t)≤ y0(t), t∈J
}

(92)

It is the content of the next result.

Theorem 5. Let q=1, and q1> 0. Let Assumption H1 hold (with g(t)= 1,

t∈J) and h∈C(IR,IR). Let y0,z0 ∈C1(J,IR) be lower and upper solutions of (3),
respectively and z0(t)≤ y0(t), t∈J . In addition, we assume that
H3 : there exist functions M ∈C(J,IR), N,P ∈C(J,IR+) such that Assumption
H2 holds and

f(t,v1,v2,v3)−f(t,u1,u2,u3)≥−M(t)[v1−u1]−N(t)[v2−u2]−P (t)[v3−u3] (93)
if z0(t)≤u1≤ v1≤ y0(t), z0(α(t))≤u2≤ v2≤ y0(α(t)), Iq1T z0(t)≤u3≤ v3≤
I
q1
T y0(t)
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H4 : there exists a constant µ> 0 such that

h(u)−h(u0)≤µ(u0−u) if z0(T )≤u≤u0≤ y0(T ) (94)

Then, problem (3) has extremal solutions in the sector [z0,y0]∗.

Proof. Put (z0,y0)∗ = {w ∈ C(J,IR) : z0(t) ≤ w(t) ≤ y0(t), t ∈ J}. Let
η,ξ ∈ (z0,y0)∗ and let ϕ(t)=min[η(t),ξ(t)], Φ(t)=max[η(t),ξ(t)].

Consider the boundary value problems






v′(t)=M(t)[v(t)−Φ(t)]+Gv(t)−GΦ(t)−FΦ(t), t∈J
v(T )=

1

µ
h
(

Φ(T )
)

+Φ(T )
(95)







w′(t)=M(t)[w(t)−ϕ(t)]+Gw(t)−Gϕ(t)−Fϕ(t), t∈J
w(T )=

1

µ
h
(

ϕ(T )
)

+ϕ(T )
(96)

where operator G is defined as in Lemma 3. By Theorem 2, problems (95), (96)
have a unique solution. Therefore, we can define the operator

B : Ω̄→C(J,IR)×C(J,IR), (z0,y0)∗⊂C(J,IR), B(η,ξ)= (v,w) (97)

where v, w are solutions of (95) and (96), respectively with Ω̄= (z0,y0)∗×(z0,y0)∗.
Now, we want to show that

z0(t)≤w(t)≤ v(t)≤ y0(t), t∈J (98)

Put p= z0−w. Then, in view of Assumption H3, we have
p′(t)≥−Fz0(t)−M(t)

[

w(t)−ϕ(t)
]

−Gw(t)+Gϕ(t)+Fϕ(t)
≥−M(t)

[

ϕ(t)−z0(t)
]

−Gϕ(t)+Gz0(t)−Gw(t)+Gϕ(t)−M(t)
[

w(t)−ϕ(t)
]

=M(t)p(t)+Gp(t)
(99)

Moreover, in view of Assumption H4,

p(T )= z0(T )−
1

µ

[

h
(

ϕ(T )
)

−h
(

z0(T )
)

+h
(

z0(T )
)]

−ϕ(T )

≤ z0(T )−ϕ(T )+ϕ(T )−z0(T )= 0
(100)

This and Lemma 3 show that z0(t)≤ w(t), t ∈ J . Similarly we can show
that v(t)≤ y0(t), t∈J . To show that w(t)≤ v(t), t∈J , we put p=w−v. Then,
p′(t)=M(t)

[

w(t)−ϕ(t)−v(t)+Φ(t)
]

+Gw(t)−Gϕ(t)−Fϕ(t)−Gv(t)
+GΦ(t)+FΦ(t)
≥−M(t)

[

Φ(t)−ϕ(t)
]

−GΦ(t)+Gϕ(t)+M(t)
[

w(t)−ϕ(t)−v(t)+Φ(t)
]

+Gw(t)−Gϕ(t)−Gv(t)+GΦ(t)
=M(t)p(t)+Gp(t)

(101)

Moreover

p(T )=
1

µ
h
(

ϕ(T )
)

+ϕ(T )− 1
µ
h
(

Φ(T )
)

−Φ(T )≤ 0 (102)

Hence B : Ω̄→ Ω̄.



80 T. Jankowski

Note that operator B : Ω̄→ Ω̄ is compact by direct application of Arzeli-
Ascoli theorem. Hence, by Schauder’s fixed point theorem, the operator B has a

fixed point, i.e. there exist (v,w)∈ Ω̄ such that B(v,w)= (v,w) and w≤ v.
Now, by (95) and (96), we see that v,w satisfy the following relations







v′(t)=M(t)
[

v(t)−v(t)
]

+Gv(t)−Gv(t)−Fv(t), t∈J
v(T )=

1

µ
h
(

v(T )
)

+v(T )
(103)







w′(t)=M(t)
[

w(t)−w(t)
]

+Gw(t)−Gw(t)−Fw(t), t∈J
w(T )=

1

µ
h
(

w(T )
)

+w(T )
(104)

It shows that v,w∈C1(J) are solutions of problem (3). This ends the proof.

7. Existence results for fractional problems of type (3)

with q ∈ (0 ,1 )
In this Section, we will use the monotone iterative method to show that

problem (3) with q1> 0, 0<q< 1 has a solution. First, we cite some comparison

results.

Lemma 4 (see [21]). Let q ∈ (0,1), M ∈ C(J,[0,IR+). Suppose that p ∈
C1−q(J,IR) satisfies the problem:

{

D
q
T p(t)≤−M(t)p(t), t∈J0
p̄(T )≤ 0 (105)

Then, p(t)≤ 0 on J .
Lemma 5 (see [21]). Let q ∈ (0,1), M ∈ IR. Suppose that p ∈ C1−q(J,IR)

satisfies the problem:
{

D
q
T p(t)≤−Mp(t), t∈J0
p̄(T )≤ 0 (106)

Then, p(t)≤ 0 on J .
Now, we introduce the following definition.

Let q1> 0, 0<q< 1. We say that u∈C1−q(J,IR) is a lower solution of (3) if

D
q
Tu(t)≤Fu(t), t∈J0, h

(

ū(T )
)

≤ 0 (107)

and it is an upper solution of (3), if the above inequalities are reversed.

Theorem 6. Let q1 > 0, 0< q < 1. Let Assumption H1 hold (with g(t) =

1, t ∈ J) and h ∈ C(IR,IR). Let y0,z0 ∈ C1−q(J,IR) be lower and upper solutions
of (3), respectively and y0(t)≤ z0(t), t∈J . In addition, we assume that

H5 : there exist a function M ∈C(J,IR+) such that

f(t,u1,u2,u2)−f(t,v1,v2,v3)≤M(t)[v1−u1] (108)

if y0(t)≤u1≤ v1≤ z0(t), y0(α(t))≤u2≤ v2≤ z0(α(t)), Iq1T y0(t)≤u3≤ v3≤
I
q1
T z0(t),
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H6 : there exists a constant µ> 0 such that

h(u0)−h(u)≤µ(u0−u) if ȳ0(T )≤u≤u0≤ z̄0(T ) (109)

Then, problem (3) has extremal solutions in the sector

[y0,z0] =
{

w∈C1−q(J,IR) : y0(t)≤w(t)≤ z0(t), t∈J0, ȳ0(T )≤ w̄(T )≤ z̄0(T )
}

(110)

Proof. Let






D
q
T yn+1(t)=Fyn(t)−M(t)[yn+1(t)−yn(t)], t∈J0
ȳn+1(T )=−

1

µ
h
(

ȳn(T )
)

+ ȳn(T )
(111)







D
q
T zn+1(t)=Fzn(t)−M(t)

[

zn+1(t)−zn(t)
]

, t∈J0
z̄n+1(T )=−

1

µ
h
(

z̄n(T )
)

+ z̄n(T )
(112)

for n = 0,1,·· ·. Note that problems (111) and (112) have a unique solution, in
view of Theorem 1.

Put p= y0−y1. Then,
D
q
T p(t)≤Fy0(t)−Fy0(t)+M(t)

[

y1(t)−y0(t)
]

=−M(t)p(t)

p̄(T )= ȳ0(T )+
1

µ
h
(

ȳ0(T )
)

− ȳ0(T )≤ 0
(113)

Hence, y0(t)≤ y1(t), in view of Lemma 4. Similarly, z1(t)≤ z0(t). Put p= y1−z1.
Then,

D
q
T p(t)=Fy0(t)−M(t)

[

y1(t)−y0(t)
]

−Fz0(t)+M(t)
[

z1(t)−z0(t)
]

≤M(t)
[

z0(t)−y0(t)
]

−M(t)
[

y1(t)−y0(t)−z1(t)+z0(t)
]

=−M(t)p(t)

p̄(T )=− 1
µ
h
(

ȳ0(T )
)

+ ȳ0(T )+
1

µ
h
(

z̄0(T )
)

− z̄0(T )

≤ z̄0(T )− ȳ0(T )+ ȳ0(T )− z̄0(T )= 0
(114)

by Assumptions H5,H6. This proves that

y0(t)≤ y1(t)≤ z1(t)≤ z0(t), t∈J (115)

Now, we prove that y1 is a lower solution of problem (3). Indeed,

D
q
T y1(t)=Fy0(t)−M(t)

[

y1(t)−y0(t)
]

−Fy1(t)+Fy1(t)
≤M(t)

[

y1(t)−y0(t)
]

−M(t)
[

y1(t)−y0(t)
]

+Fy1(t)=Fy1(t)

ȳ1(T )=−
1

µ

[

h
(

ȳ0(T )
)

−h
(

ȳ1(T )
)

+h
(

ȳ1(T )
)]

+ ȳ0(T )

≤ ȳ1(T )− ȳ0(T )+ ȳ0(T )−h
(

ȳ1(T )
)

(116)

so h(ȳ1(T ))≤ 0. This proves that y1 is a lower solution of problem (3). Similarly,
we can show that z1 is an upper solution of (3).
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By induction, we can prove that

y0(t)≤ y1(t)≤ ···≤ yn(t)≤ zn(t)≤ ···≤ z1(t)≤ z0(t), t∈J (117)

Sequences {yn},{zn} are monotone. It is easy to show that they converge
to y and z, respectively, and y ≤ z. Indeed, there is no problem to prove that
problem (3) has minimal and maximal solutions in [y0,z0]. This ends the proof.

Remark 7. If we extra assume that M(t)= 0, t∈J , then, f is nondecreas-
ing with respect to the last three variables.

Remark 8. If condition (108) holds for M̄ ∈C(J,IR), then, it is also satisfied
for some M ∈C(J,IR+).

Example 5. Consider the problem:







D
q
Tx(t)=Ae

−x(t)+Bx
(

α(t)
)

+CIq1T x(t)+
D

√

π(1− t)
≡Fx(t), t∈J0

0= x̄(1)
[

1− x̄(1)
]

(118)

where J0 = [0,1), q=
1
2 , q1 > 0, α∈C

(

[0,1],[0,1]
)

, α(t)≥ t. Moreover, we assume
that A,B,C,D≥ 0 and such that

Ae−1+2B+C(1− t)q1
[

1

Γ(q1+1)
+
1− t
Γ(q1+2)

]

+
D

√

π(1− t)

≤ 1
√

π(1− t)
+
2√
π

√
1− t, t∈ [0,1)

(119)

Put y0(t)= 0, z0(t)= 2−t, so ȳ0(1)= z̄0(1)= 0. Note thatM(t)=Ae2, µ=1, from
Theorem 6. Indeed, y0 is a lower solution of problem (118). Moreover,

Fz0(t)=Ae
−(2−t)+B(2−α(t))+ C

Γ(q1)

∫ T

t

(s− t)q1−1(1+1−s)ds+ D
√

π(1− t)

≤Ae−1+2B+C(1− t)q1
[

1

Γ(q1+1)
+
1− t
Γ(q1+2)

]

+
D

√

π(1− t)

≤ 1
√

π(1− t)
+
2√
π

√
1− t=DqT z0(t)

(120)

in view of (119). This proves that z0 is an upper solution of problem (118). Hence,

problem (118) has extremal solutions in the region [y0,z0], by Theorem 6.

Remark 9. We can also discuss the problem with more right-sided frac-

tional integrals, namely

{

D
q
Tx(t)= f

(

t,x(t),x(α(t)),Iq1T x(t),I
q2
T x(t),· ··,I

qr
T x(t)

)

, t∈J0
0=h

(

x̄(T )
) (121)

with q1,q2,· ··,qr > 0.
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