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Abstract: We considered the characteristics of key technological objects involved in gas storage.

Mathematical models of groups of hydraulically related objects (system mathematical models)

are constructed and described. Problems are set and examples of application of analytical and

numerical methods for their solution are provided.
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1. Introduction

To construct a model of gas-water or water-gas displacement in the process

of filtration in porous media and motion of two-phase mixtures in vertical wells

and sloping areas of pipelines, it is necessary to take into account many dynamic

parameters [1–6]. Despite a large number of studies in this field, there has been

no comprehensive theory to describe these processes so far[7–10]. The calculation

of filtration and motion of two-phase systems is even more complicated due to

the uncertain parameters of porous media and their heterogeneity [1–4, 10]. This

requires building adaptive models and applying methods that make it possible to

specify the model parameters based on the measured parameters (pressure, flow

rate, concentration of water vapour in gas, etc.).

Water has been found in almost all gas fields; it is also present in all storage

facilities created in depleted fields [4, 5, 10]. Its amount varies within the range

from several to 70 percent. The content of residual water in gas-bearing reservoirs

is 20–30% [10]. Water is retained in pores mainly due to adsorption and capillary

forces [8–10].

To take the water factor into account, it is necessary to study the following:

• the process of water displacement with gas in porous media;
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• the process of gas displacement with water in porous media;

• solubility of gas in water at a given pressure and temperature level;

• diffuse infiltration of gas into water at a given gas pressure and temperature

level;

• the intensity of gas liberation from the liquid phase depending on the pressure;

• the impact of gas humidity and the speed of its movement on the reservoir and

packing site permeability;

• the impact of structural reservoir parameters (the porous medium parameters)

on the permeability to gas, water and mixtures thereof.

An important feature of the gas inflow to the well pertains to the significant

loss of pressure in the packing reservoir area. As a result of numerical experiments,

it has been found that a packing area with a radius of up to 1m in real reservoir

seams at low flow rates and stationary gas filtration by the Darcy law accounts for

about 50% of the whole pressure loss. The pressure loss on the well site increases

with an increase in depression in the reservoir. Such factors as imperfect borehole

liberation, violation of the Darcy law and unsteady inflow of gas to the well also

result in the corresponding increase in the share of the total pressure loss in the

packing reservoir area. At the water drive regime, the pressure loss on the well site

significantly affects the water cone tightening, which restricts its maximum flow

rate value. The main parameters of gas storage facilities include their load peak

(the maximum total selection of gas for a given period of time) and the minimum

time intervals of selections and injection. In practice, any reservoir contains water;

therefore, it requires a detailed study of gas-hydro-dynamic processes that take

place in porous media. Recently, for various reasons, the average gas pressure level

in underground storage facilities has been decreasing. As a result, the GWC may

come closer to working wells. All this calls for a more detailed study of the GWC

position.

The purpose of this work is to study the speed of the GWC movement

depending on the parameters of the porous medium and gas, specifically those of

the gas pressure in the process of injection (withdrawal).

2. Basic filtration laws

In 1856, engineer Darcy discovered the filtration that expresses the linear

relationship between the rate of filtration and the pressure gradient [4]:

υ=−
k

µ

dp

dx
(1)

In case of a joint motion of water and gas, the concept of phase permeability is

introduced [3, 4] by formulas similar to (1):

υg =−
kg
µg

∂p1
∂x
, υw =−

kw
µw

∂p2
∂x

(2)

In the latter formula where p
1
, p
2
stand for the pressure in the gas and water

phases, respectively. Their difference is equal to the capillary pressure. The weight
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of water or gas should be considered when filtering them in the vertical direction.

Then

v=−
k

µ

(

∂p

∂z
+ρg

)

(3)

In the formulas (1)–(3): p = p(x1,x2,x3,t) is the pressure distribution in the

medium, ρ is the fluid density, g is the gravity acceleration, k is the medium

permeability coefficient, and µ is the dynamic viscosity of the fluid.

3. Study of the gas extraction process at a steady speed

of its movement in a packing area based on succession

of stationary states

The problem reduces the following differential equation to integrating:

qdt=−Ωdp (4)

at the limit condition:

q= cpc (5)

Based on the equation (4), we get the following:

q=−Ω
dp

dt
(6)

Here, Ω is the volume of the porous medium filled with gas. Assuming that the

pressure distribution is the same as at the steady motion of gas at any moment,

we have the right correlation [4]:

q=
πkhpat
µ

p2k−p
2

c

ln rk
rc

(7)

In the formulas (4), (7), pressures p, pk, pc stand for their correlation to the

atmospheric pressure, respectively. Since, the given values are dimensionless. Let

us indicate:

A=
πkhpat
µln rk

rc

(8)

Then, the equation (7) is written as:

q=A
(

p2k−p
2

c

)

(9)

Assuming the error at replacing dp
dt
with dpk

dt
to be negligible, we get the following

differential equation to determine pressure in a packing area:

−Ω
dpk
dt
=
c2

2A



−1+

√

1+

(

2A

c

)2

p2k



 (10)

If we mark:

y=
πkhpat
cµln rk

rc

pk, a=
2A

c
(11)

then with the initial condition of:

y= yn=
2A

c
pn (12)
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we get the following solution of the differential equation (10):

t=
Q

c

{

2

[

1

−1+apk+
√

1+a2p2k
−

1

−1+apk+
√

1+a2p2n

]

+ln
apk+

√

1+a2p2n

pk+
√

1+a2p2k

}

(13)

Now by assigning certain values to variable t the equation (13) allows us to find

the corresponding value of pressure pk. Based on the found value of pk by the

formula:

pc=
c

2A



−1+

√

1+

(

2A

c

)2

p2k



 (14)

we can calculate the pressure on the well contour and the well capacity.

4. Hydraulic integration of the process of methane

replacement with water at the steady mass transfer

The hydraulic integration will be constructed in a cylindrical coordinate

system. We will consider three zones: the first one is the zone of quadratic law of

gas movement to the well; the second one represents the gas flow by the linear

law; while the third zone is that of the water movement to the well.

The first zone represents the quadratic law of gas movement set as the

following:

p2
1
−p2
2
=Aaqa+Baq

2

a (15)

In the second zone, the nitrogen movement develops under the linear Darcy law:

p2
2
−p2=Caqa (16)

In the third zone, the distribution of water pressure at the boundary conditions

of r=Rc, p= pc in the inner contour and r=Rk, p= pk at the outer one at the

steady movements is as follows:

p(r)= pk+
pk−pc
(lnRk/Rc)

ln
r

Rk
(17)

The water pressure pk on the outer contour is determined by hydrostatics and

is permanent. Pressure pc on the inner contour is determined from the hydraulic

integration of the gas condensate fuel-well packing system. The steady speed of

movement of the internal water contour to the well is determined by the following

formula [10]:

υ=−
kν
µν

(

pk−pc
r(lnRk/Rc)

+ρg

)

(18)

Since:
dp(r)

dr
=
pk−pc
r(lnRk/Rc)

(19)

we can calculate the radial velocity of the formula:

υ=−
k

µ

(

pk−pc
r(lnRk/Rc)

+ρg

)

(20)
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Let us introduce the following designation:

α=−
k

µ

pk−pc
r(lnRk/Rc)

, β=−
kρg

µ
(21)

Thus, from the formula (20) we obtain a differential equation with separated

variables to determine changes in the radius of the inner water movement contour:

dr

dt
=
α

r
+β (22)

We reduce the equation (22) to an equation with separated variables:

(α+βr−α)dr

β(α+βr)
=
1

β
dr−

α

β2
d(α+βr)

α+βr
= dt (23)

If the radius of the inner water contour changes from r1 to r2, for some time from

t1 to t2, the solution of the equation (23) is:

1

β
(r2−r1)−

α

β2
ln
α+βr2
α+βr1

= t2− t1 (24)

At the set values for the pressure and the time of ∆t= t2− t1, the formula (24)

makes it possible to determine the reduction of the inner water contour radius for

the following amount:

∆r=
α+βr2
r2
(t2− t1) (25)

It should be noted that the obtained values should be consistent with the volume

of the gas received from the reduced volume. If q is the permanent well capacity,

then for the time t2− t1 the following equation should be performed

q(t2− t1)=πh(r
2

2
−r2
1
) (26)

5. Differential model of the process of gas replacement

The part of the reservoir filled with water is limited with contour Σ0
(Figure 1). The water pressure on this contour is p

0
. At the initial moment,

methane and water are separated by contour S0 with pressure p1
0
at any given

moment. At any given moment, methane and water are separated with contour S

with pressure p
1
. The pressure on contour S2 is equal to p2. The water pressure

satisfies the following equation:

∆p=0 (27)

The components of water velocity are determined by the following formulas [4]:

u=−
k

µ1

∂p

∂x
, υ=−

k

µ1

∂p

∂y
(28)

Here µ1 stands for the absolute water viscosity, and k stands for the permeability

of the reservoir filled with water.

For water, the boundary conditions are as follows:

1. p= p
0
on the external reservoir boundary;

2. p= p
1
on the moving contour;
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Figure 1. PSG layer area distribution

3. equation of delivery on the moving contour

−m
∂n0
∂t
=
k

µ1

∂p

∂n0
(29)

dn0 stands for an element of the external normal to S contour. Diffusion of

methane under unstable conditions is described by the following equation:

∆P =
D

p

∂P

∂t
(30)

Here D= mµ
k
, µ stand for absolute methane viscosity, velocity elements:

ρu=−
k

2βµ

∂P

∂x
, ρυ=−

k

2βµ

∂P

∂y
(31)

Boundary conditions for methane:

1. P =P1= p
2

1
on the moving contour;

2. p= p
2
on the well contour;

3. equation of delivery on the moving contour

−m
∂n0
∂t
=
k

2µp

∂P

∂n0
(32)

Along with these conditions, it is necessary to specify the initial condition

for t=0 for nitrogen and methane p= p
0
.

6. The distribution of pressure on the well site under

unsteady mass transfer

The work of the underground gas storage associated is with non-stationary

processes of change of pressure in the reservoir. Clearly, to build an adaptive gas

and water filtering model with moving GWC, we must be able to determine this

distribution.
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We consider a layer region which is limited with nested cylinders containing

the well in its centre and divided into corresponding zones: zone I is filled with

extracted gas; zone II emerges due to the movement of water that restrains the

number of pores to the well; zone III is filled with water. Then, ri and Pi, where

i=1,2,3 are distances from the zone surfaces to the centre of the well and pressures

in the respective zones.

Let us assume that there is water pressure P1 on surface r1= a, and that

there is pressure P2 on surface r2= b, while the initial distribution is provided in

the formula f(r). In this case, the solution of the original problem of mathematical

physics is presented in the following form: P =Ps+Pn, where: [10]

Ps=
P1 ln(b/r)+P2 ln(r/a)

ln(b/a)
(33)

determines the steady pressure distribution among the surfaces, and the second

solution component is as follows:

Pn=
π2

2

∞
∑

n=1

α2nJ
2

0
(aαn)

J2
0
(aαn)−J20 (bαn)

e−κα
2

n
τU0(rαn)

b
∫

a

rf(r)U0(rαn)dr−

−π

∞
∑

n=1

[

P2J0(aαn)−P1J0(bαn)
]

J0(aαn)U0(rαn)

J2
0
(aαn)−J20 (bαn)

e−κα
2

n
τ

(34)

Here U0(ar)= J0(ar)Y0(ab)+J0(ab)Y0(ar), Ji(x) and Yi(x) are the first and sec-

ond kind Bessel functions of actual argument of order i, respectively. Considering

the equality (1) of correlations (33) and (34) we obtain the formula for determining

the GWC velocity:

υ=







P2−P1
ln(b/a)

+r
π2

2

∞
∑

n=1

α2nJ
2

0
(aαn)

J2
0
(aαn)−J20 (bαn)

e−κα
2

n
τU1(rαn)

b
∫

a

xf(x)U0(xαn)dx−

−rπ

∞
∑

n=1

[

P2J0(aαn)−P1J0(bαn)
]

J0(aαn)U1(rαn)

J2
0
(aαn)−J20 (bαn)

e−κα
2

n
τ

}

πkh

βµ

χRT

pS

(35)

where: U1(rαn) = −α
[

J1(αnr)Y0(ab) + J0(ab)Y1(αnr)
]

, αn stand for roots of

nonlinear equations

J0(αa)Y0(αb)+J0(αb)Y0(αa)= 0 (36)

The formula (35) allows us to find the value of pressure on surfaces r1 and r2,

respectively:

P1=

P2− ln(b/a)

[

υ

C2
−S1+rπP1

∞
∑

n=1

C1J0(aαn)

]

1−rπ ln(b/a)

∞
∑

n=1

C1J0(bαn)

(37)
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P1=

P1+ln(b/a)

[

υ

C2
−S1−rπP1

∞
∑

n=1

C1J0(bαn)

]

1−rπ ln(b/a)
∞
∑

n=1

C1J0(aαn)

(38)

where

C1=
J0(aαn)U1(rαn)

J2
0
(aαn)−J20 (bαn)

(39)

C2=
πkh

βµ

χRT

pS
(40)

S1= r
π2

2

∞
∑

n=1

α2nJ
2

0
(aαn)

J2
0
(aαn)−J20 (bαn)

e−κα
2

n
τ U1(rαn)

b
∫

a

xf(x)U0(xαn)dx (41)

For gas under similar conditions, formulas for pressure distribution and velocity

in a respective hollow cylinder will be the same, except for the fact that Pi= p
2

i

and χ=1.

7. Computational experiment

In order to test our theoretical results a computer experiment was per-

formed with the following input parameter values: p
0
= 50 · 98066.5 (N/m2);

pgzp = 35 · 98066.5 (N/m
2); ∆h = 400 (m); R = 8.3144621 (J/mol·K); T = 293

(K); ρ0=0.68 (kg/m
3); µ=0.0008 (m2/s); g=9.8 (m/s2); ρ=998 (kg/m3).

Table 1. The dependence of water velocity υ on gas pressure on GWC pgzp, seam

pressure ppl under the following parameter values: q=2 (m
3/s), Rk =350 (m),

Rc=330 (m)

pgzp 45 43 41 39 37 35 33

ppl 51.89 50.17 48.46 46.78 45.13 43.5 41.91

υ 3 ·10−6 40 ·10−6 80 ·10−6 100 ·10−6 200 ·10−6 200 ·10−6 200 ·10−6

Table 2. The dependence of contour radiuses Rk, Rc and water velocity υ under the

following parameter values q=2 (m3/s), pgzp=35 ·98066.5 (N/m
2),

ppl=43.5 ·98066.5 (N/m
2), p

0
=50 ·98066.5 (N/m2), Rk =400 (m)

Rk−Rc 5 0 15 20 25 30 35

υ 600 ·10−6 300 ·10−6 300 ·10−6 200 ·10−6 200 ·10−6 200 ·10−6 100 ·10−6

Table 3. The dependence of the well capacity q and water velocity υ under the following

parameter values pgzp=35 ·98066.5 (N/m
2), Rk =350 (m), Rc=330 (m)

q 5 4 3 2 1

ppl 62.48 55.59 49.19 43.5 38.84

υ 1 ·10−6 80 ·10−6 60 ·10−6 200 ·10−6 300 ·10−6
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Table 4. The dependence of pressures P1 (at P2=55 ·98066.5 (N/m
2) ) on surface r1 and P2

(at P1=45 ·98066.5 (N/m
2) ) on surface r2 on water velocity υ under the following

parameter values r2=400 (m), r1=350 (m)

υ 200 ·10−6 20 ·10−6 2 ·10−6

P1 44.41 47.21 49.32

P2 48.01 49.88 51.23

Table 5. The dependence of pressures P1 (at P2=55 ·98066.5 (N/m
2) ) on surface r1 and P2

(at P1=45 ·98066.5 (N/m
2) ) on surface r2 on radiuses of contours r1, r2 at the

following parameter values υ=20·10−6 (m/s), r1=350 (m), P2=55·98066.5 (N/m
2)

r2−r1 50 40 30 20 10

P1 47.21 47.92 48.42 49.07 49.55

P2 48.01 47.88 47.03 46.77 46.21

8. Conclusions

Our numerical results coincide with those well-known from the litera-

ture [2, 3, 10] and with the experimental data [9], which validates our theoretical

results.

The results make it possible to calculate the speed of the GWC, depending

on the parameters of the porous medium and the parameters of the underground

gas storage. This allows us to calculate the work regime of an underground gas

storage which prevents flooding of wells.
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