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Abstract: In this article we look at a conundrum that the Boussinesq-type equations pose for

mathematicians allowing a Miura-type transformation while at the same time exhibiting no trace

of a supersymmetric structure. We demonstrate that this riddle should be unraveled by dropping

the standard supersymmetric approach in favor of its generalization: the “parasupersymmetry”.
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1. Introduction

Among the multitude of interesting results produced by more then a century

of studies on the Korteweg-de Vries (KdV) equation there is one that has looked

particularly intriguing ever since its discovery by Miura in 1968 [1]: the existence

of a direct relationship between the solution of the KdV equation

ut−6uux+uxxx=0 (1)

and its counterpart, the modified KdV (mKdV)

vt−6v
2vx+vxxx=0 (2)

What Miura has shown is that the functions

u±(x,t)= v(x,t)
2±vx(x,t), (x,t)∈ IR2 (3)

will always be the solutions of (1) provided that the function v in the KdV

equation (3) is itself a solution of the mKdV equation (2). This relationship,
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called the Miura transformation can be utilized in a number of ways: to construct

new solutions of KdV (mKdV), to study the properties of these solutions, etc.

Interestingly enough, despite its obvious simplicity, the exact nature of this

unusual relationship remained in the dark for more than twenty years, until 1990

when Andreev and Burova revealed an underling supersymmetric structure of the

KdV and mKdV systems (including the lower KdV equations) [2], with the Miura

transformations being its direct offspring.

This simple and elegant reasoning had but one little flaw: it was not

applicable for the other, non-KdV types of equations. This became evident in

1993, when Gesztesy, Race and Weikard found the Miura-type transformations for

the Boussinesq (Bq) and the modified Boussinesq (mBq) equations [3]. It had been

well established by that time that a supersymmetric (SUSY) algebra could only be

realized via the even-order linear operators [4]. However, both Bq and mBq, while

permitting the Lax pairs (and, hence, the corresponding differential operators),

require the differential equations to be of the third-order. Such a system cannot

produce a SUSY algebra, and we are once again left in an ambiguous situation

of possessing a valid transformation with no reasonable explanation as to why it

works.

At about the same time these developments were taking place, a number of

prominent mathematical physicists came up with a new approach for the extension

of a SUSY quantum formalism to the systems with a triple degeneracy of the

energy spectrum [5–7]. This new approach was based on the transformations

obeying not superalgebra, but a parasuperalgebra. From a physical point of

view, unlike the SUSY which binds one bosonic and one fermionic levels of the

same energy, the parasupersymmetry (PSUSY) instead binds one bosonic level

with two parafermionic ones [8]. The reader could compare the case with the

orthosymplectic superalgebra, the generators of which are combined to build the

Hamiltonian in [9].

What we are planning to do in this article then is to demonstrate how

these different ideas come together for the Boussinesq systems by showing that

the algebraic structure of Bq and mBq systems of equations is actually the PSUSY

and, furthermore, that Miura-type transformations between these systems [3] is

a direct consequence of the PSUSY structure.

2. From supersymmetry to parasupersymmetry

Let us begin by reminding the reader what a supersymmetric algebra is and

how it can be constructed for the particular case of a KdV equation (1). The first

step here would be a construction of a corresponding Lax pair:

dL1
dt
= [A1,L1] =A1L1−L1A1

L1= ∂
2+u1(x,t)

A1=−4∂
3−6u1(x,t)∂−3∂u1(x,t)

(4)
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where u(x,t)=−u1(x,t) is a solution of the KdV equation, [. ..] denotes the Poisson

bracket and we have used the notation ∂= d/dx.

The crux of the SUSY method is an observation that the linear differential

operator L1 can be rewritten as a product of two new operators:

L1= q
+q, q= ∂+g, q+= ∂−g, (5)

where the function g(x,t) satisfies the following Riccati equation:

gx−g
2=u1. (6)

Remark 1

Note, that a simple transformation g→ψ by the formula

g=−∂ ln|ψ|=−
ψx
ψ

(7)

transforms the Riccati equation (6) into the Schrödinger equation on a zero

background:

L1ψ=(∂
2+u1)ψ=0.

The operators q and q+ are noncommutative, therefore in addition to L1
we can also construct a new, different operator L2 as:

L2= qq
+= ∂2+u2. (8)

Fascinatingly, the transformation L1 → L2 is identical to the famous Darboux

transformation (DT) for the Schrödinger equation [10], which for our purposes

amounts to the replacement of an old potential u1 with a new potential u2 =

u1−2gx.

In order to define the superalgebra we shall introduce the supersymmetric

Hamiltonian H and supergenerators Q, Q+ as follows [11]:

H =

(

L1 0
0 L2

)

, Q=

(

0 0
q 0

)

, Q+=

(

0 q+

0 0

)

(9)

where the supergenerators are nilpotent of order two,

Q2=
(

Q+
)2
=0

The resulting superalgebra has the form

{Q,Q+}=QQ++Q+Q=H, [Q,H] = [Q+,H] = 0 (10)

Using this example as a template, let us now construct a PSUSY. In order

to do it we must add to L1 (an original Schrödinger operator) and L2 (the
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Schrödinger operator after one DT) an additional operator L3, produced by two

consecutive DTs:

L1= q
+q → L2= qq

+= q̃+q̃+µ → L3= q̃q̃
++µ (11)

where µ=const,

q̃= ∂+ g̃, q̃+= ∂− g̃ (12)

the new “modified” function g̃ should satisfy a new Riccati equation

g̃x− g̃
2=u2−µ (13)

and the new operator L3 can be rewritten as

L3= ∂
2+u1−2(gx+ g̃x)+µ (14)

Acting by analogy with (9), we now define the parasuperhamiltonian and

the parasupergenerators as

H =





L1 0 0
0 L2 0
0 0 L3−µ



 , Q=





0 0 0
q 0 0
0 q̃ 0



, Q+=





0 q+ 0
0 0 q̃+

0 0 0



 (15)

These parasupergenerators are nilpotent of order three,

Q3=
(

Q+
)3
=0 (16)

and when µ=0 its direct products QQ+ and Q+Q produce the truncated versions

of the parasuperhamiltonian H:

QQ+=





0 0 0
0 L2 0
0 0 L3



, Q+Q=





L1 0 0
0 L2 0
0 0 0



 (17)

which means that for µ=0 they satisfy the following parasuperalgebra [7]:

Q+QQ+=Q+H, (Q+)2Q+Q(Q+)2=Q+H, [H,Q] = [H,Q+] = 0 (18)

Remark 2

The requirement µ=0 implies that only a special kind of DT – the binary DT –

is permissable as a foundation for a parasuperalgebra. We have seen in Remark 1

that setting g = −ψx/ψ produces the Schrödinger equation L1ψ = 0. Similarly,

the setting g̃ =−ψ̃x/ψ̃ will produce a spectral problem L2ψ̃ = µψ̃. We can then

rewrite (14) in a simplified form (again, assuming µ=0):

L3= ∂
2+u3= ∂

2+u1−2∂
2 ln
∣

∣ψψ̃
∣

∣ (19)

This form of L3 implies the existence of two interesting options for ψ̃. The first

one is when ψ̃ = 1/ψ. In this case u3 = L3−∂
2 = u1 and L1 = L3, so it simply

transforms the operator L1 into itself. The more interesting possibility for ψ̃ would

be

ψ̃=
1

ψ

∫

dxψ2

in which case

u3=u1+2∂
2 log

∫

dxψ2 (20)

(20) is a so called binary DT (also called DT squared). It is a fundamental

relationship in the positron theory [12]. For example, one can show that in order
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to construct a one-positron (or one-negatron) solution of the KdV equation it will

suffice to use the formula (20) for u1=0. In other words, the positron potentials

require PSUSY while the solitons need SUSY.

3. The PSUSY structure of Boussinesq integrable systems

In Section 1 we mentioned how Andreev and Burova have shown the

connection between KdV and mKdV to have a SUSY structure [2]. The crucial

point of the proof was the construction of a supercharge – a square root of a SUSY

Hamiltonian, defined as a 2×2 matrix operator θ that satisfies the property1:

θ2=H (21)

and is identical to the L-operator of the mKdV hierarchy.

Let us now turn our attention to the Bq system

a1t=(2b1−a1x)x, b1t=

(

b1x−
2

3
a1xx−

1

3
a21

)

x

(22)

and to its “modified” version, provided by [3]

f1t= f1xx−2f1f1x−
2

3
(2f1+f2)xx−

2

3

(

f1f2−(f1+f2)
2
)

x

f2t= f2xx−2f2f2x−
2

3
(f2−f1)xx−

2

3

(

f1f2−(f1+f2)
2
)

x

(23)

One of the goals of the work [3] was to establish the connection between

the solutions a1, b1 of (22) and f1, f2 of (23) that would be a Miura-type

transformation. The authors indeed found such a transform, and it was of a very

unusual sort, for its algebraic structure did not correspond to anything akin to

the Andreev and Burova model. Therefore, it is our goal to resolve this puzzle

by showing that (22) and (23) are indeed connected, only by the PSUSY. To

demonstrate this we will begin with the Lax representation (4) for (22) where

L1= ∂
3+a1∂+b1, A1= ∂

2+
2

3
a1 (24)

It is a well known fact that [3],

L1=
(

∂+f3
)(

∂+f2
)(

∂+f1
)

= q3q2q1, (25)

where
f1+f2+f3=0

a1=
(

f2+2f1
)

x
−f21 −f

2
2 −f1f2

b1= f1xx+f1
(

f2−f1
)

x
−f1f2

(

f1+f2
)

(26)

Acting by analogy with (8) and (11) we produce a chain of operators by means

of two DTs:

L1→L2→L3 (27)

1. In fact, there are two operators that satisfy this property: θ and θ′ = iσ3θ, where σ3 is

the Pauli matrix.
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or

q3q2q1→ q1q3q2→ q2q1q3 (28)

where

L2= ∂
3+a2∂+b2, L3= ∂

3+a3∂+b3 (29)

with

a2= a1−3f1x, a3= a2−3f2x (30)

and for all further calculations we will set b2= b3=0.

Just as for the usual PSUSY we construct the first parasuperhamiltonian,

H
I
=





L1 0 0
0 L2 0
0 0 L3



 (31)

where it is important to keep in mind that, in contrast to (15), Li (i=1,2,3) are

the linear differential operators of the third order.

We now require a parasupercharge M that satisfies the condition

M3=H (32)

It is actually easy to verify that the operator

M =





0 0 q3
q1 0 0
0 q2 0



 (33)

satisfies our requirement. The rest of the roots of equation (32) can be obtained

from M by multiplication to the matrix




λ1 0 0
0 λ2 0
0 0 (λ1λ2)

−1



 (34)

where λ1,2 are the arbitrary (nonvanishing) complex numbers.

The operator (33) has actually first arose in [3]: namely, the Lax equation

for the (23) is
dM

dt
= [H

II
,M ] (35)

so the parasuperchargeM serves as L-operator for (23). It then must become very

clear why (23) can indeed be called a “modified Bq system”. The A-operator H
II

has the form

H
II
=





A1 0 0
0 A2 0
0 0 A3



 (36)

where Ai = ∂2 + 2
3
ai (see (30)). Hence, (36) has the exact structure of the

parasuperhamiltonian (15). To show that (36) = (15) (with µ = 0) we should

find such functions g and g̃ that

A1=(∂−g)(∂+g), A2=(∂+g)(∂−g)= (∂− g̃)(∂+ g̃), A3=(∂+ g̃)(∂− g̃)

(37)
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This can be done by looking at (26); it is easy to see that

g= f1+c1, g̃= f2+c2 (38)

with some constants c1 and c2.2 After the calculations we get the nonlinear

equation for f1,

2(2c2−f1)
(

f1x+2(c2−c1)f1
)

x
+f21x+

(

(f1+2c1−c2)
2−3(c21+c

2
2)
)(

3(f1−c2)
2−(c1+c2)

2−2c1c2
)

=0
(39)

and

f2=
f1x+f

2
1 −2c1f1−c

2
1−2c

2
2

2(2c2−f1)
, f3=

f1x−f
2
1 +2(2c2−c1)f1−c

2
1−2c

2
2

2(f1−2c2)
(40)

The equation (39) can be written in a more compact form,

2FFxx−F
2
x +4αFFx−

(

(F −3c2+2α)
2−3(α2+2c22−2c2α)

)

×
(

3(F −c2)
2−α2−6c22+6αc2

)

=0
(41)

where F =2c2−f1, α= c2−c1.

Substituting (39) and (40) into the (23) one gets

f1t=−2c1
(

f21 −2c1f1+2f1f2−4c2f2−c
2
1−2c

2
2

)

f2t=2c2
(

f22 −2c2f2+2f1f2−4c1f1−c
2
2−2c

2
1

) (42)

Thus, if c1= c2=0 then we get the stationary solutions of the mBq equation.

The equations for the f1x (and f2x) are compatible with the equations for

the f1t (and f2t) if c1= c2 or when

Ft=2c1Fx (43)

Therefore, if c1 6= c2 then F =F (ξ) with ξ=x+2c1t and F (ξ) should be a solution

of (41) with substitution Fx→Fξ.

Thus, H
II
(36) is parasuperhamiltonian if

2

3
a1= f1x−(f1+c1)

2

2

3
a2=−f1x−(f1+c1)

2

2

3
a3=4c1f1−2f1f2−2f

2
2 +2c

2
1

(44)

where f1 and f2 are defined by (39), (40).

4. The complete PSUSY algebra

As we have seen, the usual PSUSY (18) is valid for a special kind of potentials

only. On the other hand, the complete PSUSY algebra shall be constructed from

the parasuperhamiltonian H
I
(31) rather than H

II
(36), since H

II
is connected

with the auxiliary dynamical problem whereas all the information regarding the

2. Note that in this case the functions f1 and f2 are not arbitrary!
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mBq equation is stored in H
I
. Thus, it is with the aid of this operator that one

can obtain the complete PSUSY algebra. Also note that in contrast to the SUSY

algebra (10) the complete PSUSY algebra is defined by the superhamiltonian H
I

and three parasupergenerators,

Q1=





0 0 0
q1 0 0
0 q2 0



, Q2=





0 0 q3
0 0 0
0 q2 0



 , Q3=





0 0 q3
q1 0 0
0 0 0



 (45)

whereas the SUSY (10) requires only the superhamiltonian and two supergenera-

tors Q and Q+.

The corresponding parasuperalgebra has the form

M3=H
I
, M2=Q21+Q

2
2+Q

2
3, {Qi,Qk}=M

2, i 6= k

Q1Q2Q3=Q2Q3Q1=Q3Q1Q2=Q
2
1=Q

2
2=Q

2
3=0

Q1Q3Q2+Q2Q1Q3+Q3Q2Q1=2HI , [Qk,HI ] = 0

(46)

with i,k=1,2,3.

(46) is the para-generalization of (10). The proof of the last three equations

is based on the easily checked intertwining relations

q1L1=L2q1, q2L2=L3q2, q3L3=L1q3. (47)
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