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Abstract: Modeling of the electromagnetic interaction with different homogeneous or inhomo-

geneous objects is a fundamental and important problem. It is relatively easy to solve Maxwell

equations analytically when the scattering object is spherical or cylindrical, for example. How-

ever, when it loses these properties all that is left for us is to use approximation models, to ac-

quire the solution we need. Modeling of complex, non-spherical, asymmetric particles is used to

study cosmic, cometary dust, aerosols, atmospheric pollution etc. Few analytical, surface-based

and volume-based methods of light scattering modeling, most commonly used by scientists, are

reviewed here.
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1. Introduction

Light scattering theories are widely used to model light interaction with

arbitrary particles. As mentioned they can be used to study cosmic and cometary

dust, aerosols, but also to analyze optical particle counters such as phase Doppler

anemometry (PDA), visibility- or intensity-based counters, laser diffraction in-

struments and light extinction instruments. Scattering computations help in un-

derstanding new physical phenomena or in designing new particle diagnostics

systems for the identification of variations in particle optical properties or the

particle shape.

Furthermore, computation of light scattering by particles plays an enormous

role in optical particle sizing, astronomy, optical oceanography, photographic

science, meteorology and coatings technology. Similar electromagnetic modeling

methods are needed to investigate microwave scattering by raindrops and ice
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crystals or to analyze electromagnetic interference problems. A number of light

scattering theories have been developed and extensive overviews of available

theories have been published in multiple papers [1–3]. Reviews on related subjects

of nanooptics and metamaterials have been published by Myroshnychenko et al. [4]

and by Veselago et al. [5].

Methods of light scattering modeling can be split into three categories.

Analytical methods, which are based on a separation of the variables approach,

surface-based methods, where the boundary conditions are enforced on the surface

of the scattering particle and only this surface is discretized, and volume-based

methods, where the volume of the particle and, with some methods, also part of

the surrounding medium is discretized.

Mie theory is restricted to spherical, homogeneous, isotropic and non-

magnetic particles in a non-absorbing medium. Mie scattering is an important

tool for diagnosing micro particles or aerosol particles in technical or natural

environments. However, as micro particles are hardly ever spherical or homoge-

neous, this theory is limited in use. Extension of Mie theory covers coated spheres,

stratified spheres and clustered spheres. For homogeneous non-spherical particles

such as spheroids, ellipsoids and finite cylinders, surface discretization methods

have been developed. Scattering by inhomogeneous particles may be computed

by volume discretization methods. During recent decades, scattering methods for

non-spherical and non-homogeneous particles have been developed and multiple

computer codes are readily available.

2. Mie theory

In 1908 Gustav Mie presented his universal solutions describing light scat-

tering on spherical, nonmagnetic particles [6–8]. He assumed that homogeneous,

isotropic, nonmagnetic, spherical particle was illuminated by a plane, linearly

polarized monochromatic wave along the x-axis. Maxwell’s equations with the di-

vergent free electric field ∇·E =0 are the starting points of the description with
the constitutive relations and the continuity relations at the sphere boundary. In

such case, the harmonic solutions E(r ,t) =E(r)e−iωt and H (r ,t) =H (r)e−iωt

for the electric and magnetic field outside and inside the particle must satisfy the

homogeneous wave equations.

The electric and magnetic fields outside the sphere in a nonconducting,

nonmagnetic medium are assumed to be a superposition of incident fields and

scattered by the sphere fields:

Eout=Einc+Escat

Hout=Hinc+Hscat
(1)

The incident plane wave as well as the scattered and internal fields are expanded

into spherical vector wave functions in spherical polar coordinates (r,θ,ϕ). Solu-
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tions of the vector wave equation can be written in form of a sum of vectors of

spherical harmonics Ml and Nl [8]:

Ml=∇×(rψl)
kNl=∇×Ml

(2)

where ψl denotes generating functions that satisfy the scalar wave equation in

spherical coordinates (3):

∇2ψl+k2ψl=0 (3)

The appropriate generating functions are used to expand the incident plane wave

(linearly polarized along x-axis) into a series of vector harmonics and to express

the electric Einc and magnetic Hinc field as a linear superpositions of these

harmonics. The same scalar functions are used to expand the electric Ein and

magneticHin fields inside the sphere. Another scalar solution of (3) corresponding

to the outgoing wave in its radial part is used to construct a vector solution

for the scattered electric Escat and magnetic Hscat fields with coefficients al
and bl of the expansion. The expansion coefficients of the scattered field can be

found by enforcing the boundary condition on the spherical surface. In particular,

coefficients al and bl take the following form:

al=−
jl(mx)

[

xjl(x)
]′−
[

mxjl(mx)
]′
jl(x)

jl(mx)
[

xh
(1)
l (x)

]′−
[

mxjl(mx)
]′
h
(1)
l (x)

(4)

bl=−
m2jl(mx)

[

xjl(x)
]′−
[

mxjl(mx)
]′
jl(x)

m2jl(mx)
[

xh
(1)
l (x)

]′−
[

mxjl(mx)
]′
h
(1)
l (x)

(5)

where:

x=
2πnoutR

λ
m=

nin

nout
(6)

x is the size parameter, m – the relative refraction index of the particle, R – the

particle radius, λ – the vacuum wavelength of the incident light, nin =
√
µinεin

– the particle refractive index, nout =
√
µoutεout – the surrounding medium

refractive index. To simplify the coefficients (4)–(5) we can replace the Bessel

jl and Hankel h
(1)
l functions by the Rikkati–Bessel functions:

ψl(x)=xjl(x)

ξl(x)=xh
(1)
l (x)

(7)

It has been demonstrated that Mie theory can be now successfully applied

up to size parameters of 10,000 [9–11].

As Mie theory is restricted to spherical homogeneous spheres, there are

many extensions of this theory covering different aspects. A scattering theory for

magnetic spheres can easily be formulated, what can be relevant for scattering at

infrared or microwave frequencies.

Many advanced algorithms have been developed over recent decades, the

scattering theory of coated dielectric spheres algorithm [12], an algorithm for

a sphere having two coatings [13]. This was used to compute the internal field of
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a particle at resonance. The differential light scattering patterns of single bacterial

spores were measured [14]. This pattern was matched to theoretical patterns

computed by a core shell model. In this way the inner and outer refractive indices

and the inner and integument thickness of the spore were found.

Another derivation from a Mie sphere is a slightly non-spherical particle.

This may be treated by a first-order perturbation approach. In this case the

assumptions are that the particle is homogeneous and that the deviations from

sphericity are small and smooth, such as a droplet distorted by a fluid flow. There

is also an extension of Mie theory to an anisotropic spherical shell which is an

appropriate model to study light scattering by a variety of biological systems.

A further extension of Mie theory which is of great interest in optical par-

ticle sizing is scattering of a sphere excited by a laser beam having a Gaussian

intensity distribution. The beam may be expanded into spherical vector wave

functions by computing beam shape coefficients in the framework of the gener-

alized Lorenz-Mie theory (GLMT) or into a spectrum of plane waves. Different

methods to compute the beam shape coefficients have been developed. A rigorous

approach is based on surface integration. The coefficients of a Gaussian beam can

also be computed by a finite series for on-axis particle positions. The localized

approximation of the beam shape coefficients leads to the fastest algorithm. This

method can also be applied to computation of the morphological resonances in-

duced by off-axis illumination of a sphere by a focused laser beam. The GLMT

has recently been adapted to shaped beam scattering by a coated sphere and a

multi layered sphere.

For nanosized noble metal particles of size lower than about 20nm, various

modifications, extensions and corrections to Mie’s original theory are needed

to take into account that “sharp” boundary conditions do not hold in the

nanoscale [15]. The author used modified Mie theory to model surface plasmons

resonances on the surface of Au nano- and mesosized particles (Figure 1), [16].

Kreibig in [17] lists also complementary models to the Mie theory, an incident

wave not plane, a non step-like boundary condition, dielectric function dependent

on the particle size. These extensions help to explain the measured absorption

spectra of Ag nanoparticles and plasmon polaritons.

Until recently, it was the Mie theory which was mainly applied to analyze

optical particles. However, as particles of interest are hardly ever spherical or

homogeneous, there is much interest in more advanced scattering theories that are

not that much restricted. In recent decades, scattering theories of non-spherical

and inhomogeneous particles have been developed greatly, mostly because of the

growth of the computational capabilities of modern computers.

3. T-matrix

The coefficients of the scattered field fmn, gmn are related to the coefficients

of the incident field amn, bmn by the transition matrix or just T-matrix. The

transmitted and scattered incident field is expanded into a series of spherical
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Figure 1. Numerical images at scanning plane placed at the close proximity of the particle

surface: distance to the sphere surface in the center of image d=0, radius of the sphere

R=10nm; the frequency of incident light ω is off resonance and equal to the dipole surface

plasmon resonance frequency at ωres=2.62eV (a) polarization parallel to the scanning

plane lHh (a.u.) (l=1. . .3), (b) polarization perpendicular to the scanning

plane lV v (a.u.) (l=1. ..3)

vector wave functions. These functions are fundamental solutions of the vector

Helmholtz equation and can be generated from the scalar fundamental solutions

in spherical coordinates, the spherical Bessel functions of the first kind and the

spherical Hankel Functions. Accordingly, there are two linearly independent sets

of solutions denoted as M 1, N 1 and M 3, N 3, respectively.

Einc=
∞
∑

n=1

n
∑

m=−n

amnM
1
mn+bmnN

1
mn (8)

Escat=

∞
∑

n=1

n
∑

m=−n

fmnM
3
mn+gmnN

3
mn (9)

(

amn
bmn

)

=T

(

fmn
gmn

)

(10)

The T-matrix elements can be obtained by numerical integration. For

an arbitrarily shaped particle a surface integral has to be computed, which is

computationally expensive. Most implementations of the methods are restricted
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to axisymmetric scatterers, as in this case line integrals have to be computed. It is

easy to extend the T-matrix method to coated spheroids. For example, this allows

to model water-coated ice particles in the atmosphere. An incident Gaussian beam

profile can also be included in the theory. Recent improvements make the method

applicable to particles with size parameters well exceeding 100. The advantage of

this method is that the T-matrix is computed, which includes a full solution of

the scattering problem [18–20].

4. Finite Difference Time Domain Method

The finite difference time domain (FDTD) method is an electromagnetic

modeling technique which is very popular in electrodynamics. With the FDTD

method an entire volume including the scatterer is discretized. It is very suitable

for scattering computations of non-spherical and inhomogeneous particles. The

basic element of this discretization is the Yee cell [21]. The Yee cell (Figure 2)

is the basic element of an interlocked grid with the electric field E representing

an unknown on the edges of one grid and the magnetic field H representing the

unknowns on the faces of the grid. The differential form of Maxwell’s equations

is solved directly. A difference approximation is applied to evaluate the space and

time derivatives of the field. The time step is denoted by ∆t and the grid spacing

by ∆x, ∆y, ∆z. µ is the magnetic permeability.

H
n+1/2
x(ijk) =H

n−1/2
x(ijk) +

∆t

µ∆z

(

Eny(ijk)−E
n
y(ijk−1)

)

− ∆t
µ∆y

(

Enz(ijk)−E
n
z(ij−1k)

)

(11)

Figure 2. Yee cell with labeled electric and magnetic field components

A similar difference equation is used to find the unknown electric field from

the magnetic field. By alternating these two computations at each time step,
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the field propagates through the whole volume. This time marching scheme is

applied until a steady-state solution is obtained. Each grid point of the volume

may have different values of permittivity so that an inhomogeneous scatterer can

be computed. Special absorbing boundary conditions are needed for simulation

of scattering such that the wave is not reflected at the open boundary of the

discretized volume. A near-field to far-field transformation is needed to compute

the scattered far-field from the near-field values of the computational volume. The

grid distance has to be smaller than the incident wavelength.

The FDTD is a time-domain technique, and when a broadband pulse (such

as a Gaussian pulse) is used as the source, then the response of the system over

a wide range of frequencies can be obtained with a single simulation. This is useful

in applications where resonant frequencies are not exactly known, or anytime that

a broadband result is desired. Since the FDTD calculates the electric and magnetic

fields everywhere in the computational domain as they evolve in time, it provides

animated displays of the electromagnetic field movement through the model that

helps to ensure that the model is working correctly.

The FDTD allows the effects of apertures to be determined directly. Shield-

ing effects can be found, and the fields both inside and outside a structure can be

found directly or indirectly.

Nonetheless, since the FDTD requires that the entire computational domain

be gridded, and the grid spatial discretization must be sufficiently fine to resolve

both the smallest electromagnetic wavelength and the smallest geometrical feature

in the model, very large computational domains can be developed, which results

in very long solution times. Models with long, thin features, (like wires) are dif-

ficult to model in the FDTD due to an excessively large computational domain

required. Another weakness of this method is that there is no way to determine

unique values for permittivity and permeability at a material interface. Space and

time steps have to satisfy the CFL condition, or the leapfrog integration used to

solve the partial differential equation is probable to become unstable. The compu-

tational domain has to be finite to permit its residence in the computer memory.

This can be achieved by inserting artificial boundaries into the simulation space.

Most FDTD implementations use a special absorbing “material”, called a perfectly

matched layer (PML) to implement absorbing boundaries. Grosge et al. [22] com-

pared numerical scattering results in context of near-field spectroscopy for the

FDTD on gold nanostructures where the geometrical singularities at the edges of

the square generate a high gradient of the electric near field.

There are multiple commercial FDTD software vendors [23, 5, 24] as well as

a number of open source FDTD development projects [25–28].

5. Direct Dipole Approximation

The direct-dipole approximation (DDA) also known as discrete-dipole ap-

proximation is a powerful technique for computing scattering and absorption by

objects of arbitrary geometry. The basic idea of the DDA was introduced in 1964
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by DeVoe, [29, 30] who applied it to study the optical properties of molecular ag-

gregates. The DDA, including retardation effects, was proposed in 1973 by Purcell

and Pennypacker, [31] who used it to study interstellar dust grains. In DDA an

arbitrarily shaped particle is treated as a three dimensional assembly of dipoles

on a cubic grid. Each dipole cell is assigned a complex polarizability which can be

computed from the complex refractive index of the bulk material and the number

of dipoles in a unit volume. The dipoles of course interact with one another via

their electric fields, [31, 32] so the DDA is also sometimes referred to as the cou-

pled dipole approximation [33, 34] The theoretical basis for the DDA, including

radiative reaction corrections, is summarized by Draine [35]. The polarizability of

each dipole causes an oscillating dipole moment or polarization Pi at each cell,

depending on the total electric field at the respective position:

Pi=αiEi (12)

The total field Ei is the sum of the incident field Einc,i and the contribution from

all other dipoles:

Eother,i=−
∑

i6=j

AijPj (13)

(α1)
−1Pj+

∑

i6=j

AijPj =Einc,i (14)

Figure 3. Visualization of the sphere replaced by assembly of dipoles

The matrixAij includes interaction of all dipoles depending on the distance

of the dipoles, thus a full dense matrix results. Beginning with an initial guess

of Pi, a convergent solution can be obtained. The incident field is a plane

wave. This equation can be solved by iteration. The DDA has been applied to

compute scattering by aggregated spheres. The standard check of the accuracy

of any DDA model is a comparison with results from Mie theory. The agreement

between DDA and Mie theory is very good. Several computer implementations

of the DDA method have been compared in terms of their accuracy, speed and

usability [36, 37]. Over the recent years, with constantly growing computational

capabilities, the discrete dipole approximation has become a powerful method for

computing electromagnetic scattering by arbitrarily shaped bodies.
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6. Conclusions

Not all, but just a few theories have been reviewed here, with references

to more detailed papers. Each theory has its own range of applicability, strong

and weak points. It mainly depends on the particle shape, its composition and

refractive index and its size relative to the wavelength of the incident wave.

Obviously, a single theory will not cover all possible scattering particles and

problems of application. When choosing a scattering method for a specific optical

particle sizing problem, one should also consider the demands of the respective

method in terms of computer resources, computer memory and execution time, in

addition to the parameters of the method in question that govern the accuracy of

the final computational results. A surface-based method will need less computer

memory than a volume-based method for the same size of the scatterer. Hence,

scattering by larger particles can be computed with surface-based methods.

Numerical light scattering modeling is progressing rapidly especially with fast

advancing research fields such as nanophotonics and near-field optics.
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