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Abstract: Non-stationary thermal self-action of a periodic or impulse acoustic beam containing

shock fronts in a thermoconducting Newtonian fluid is studied. Self-focusing of a saw-tooth

periodic and impulse sound is considered, as well as that of a solitary shock wave which

propagates with the linear sound speed. The governing equations of the beam radius are derived.

Numerical simulations reveal that the thermal conductivity weakens the thermal self-action

of the acoustic beam.
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1. Introduction

Self-action effects in the wave theory started to attract considerable interest

after discovery of the self-focusing of optic beams. The self-action of optic waves

manifests itself by means of the dependence of the local wave speed on the wave’s

intensity [1–4]. Theoretical works on self-focusing of optic waves had considerable

impact on studies in the field of nonlinear acoustics. The fact that acoustic beams

may manifest thermal self-action similarly to laser beams has first been pointed

out in [5]. The typical attenuation specific for Newtonian fluids always causes the

background temperature to rise. That influences the local sound speed in different

domains on the beam’s path, and, as a consequence, yields refraction of the sound

rays in a thermally inhomogeneous medium. This alters the width of the sound

beam, its focal area and distribution of the peak acoustic pressure. In gases, where

sound velocity increases with an increase in temperature T , the acoustic beam

undergoes defocusing, while in liquids (except for water) with negative thermal
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coefficient δ = (∂c/∂T )p/c < 0, it undergoes focusing (c denotes the infinitely

small-signal sound speed in a fluid). The first theoretical results concerning self-

action of sound beams are reviewed in [6], and the first experiments confirming

the theory are discussed in [7, 8].

Optic waves are strongly dispersive, therefore it is possible to consider prop-

agation of harmonic compounds of a waveform individually. On the contrary,

acoustic media reveal typically weak dispersion. The spectrum of intense sound

waves is quite rapidly spread due to nonlinear generation of higher harmonics,

and their profiles become distorted [9, 10]. The nonlinear self-action is especially

significant in the case of ultrasound waves in weakly attenuating media, when

diffraction is small. Nonlinear distortions of sound may be weak but they accu-

mulate with enlargement of the distance from a transducer. Eventually, these dis-

tortions lead to formation of profiles with a universal shape. For example, a single

impulse transforms into the N-wave form due to the joint action of the quadratic

nonlinearity and absorption. The stationary solitary shock wave which propagates

with the linear sound speed or with the different speed, may propagate in a New-

tonian fluid. The waveforms with shock fronts are of great importance not only in

the theory of nonlinear acoustics, but also in technical and medical applications of

ultrasound. The comprehensive review by Rudenko and Sapozhnikov [11] focuses

on the thermal self-action of periodic beams containing shock fronts in media with

quadratic and cubic nonlinearities. The only parameters of these steady acoustic

waveforms are the peak values of acoustic pressure and, in the case of a pulse, its

duration. These parameters vary along with the path of propagation. As it has

been discovered, the governing equations for peak pressure in the paraxial area of

a slightly diffracting beam may be considerably simplified in the case of periodic

waveforms including short shock fronts. They do not include the Newtonian total

attenuation any longer, but pure nonlinear attenuation [11]. The theory uses the

approach of geometric acoustics, which implies weak diffraction.

The statement of the problem of thermal self-action consists in fact of two

parts, one to describe the dynamics of acoustic pressure, and the other to evaluate

slow background temperature variations in the course of sound propagation and

their influence on the sound beam itself. The initial equations were derived by

O.V.Rudenko and co-authors [12–14]; the thermal self-action of strictly periodic

waves with discontinuities, stationary and non-stationary (without an account for

the thermal conduction of a Newtonian fluid), were also studied by this group

of authors. The aim of this study is the non-stationary thermal self-action of

a periodic sawtooth wave, a single sawtooth impulse or the integer number of

sawtooth impulses in a thermoconducting medium. A solitary shock wave is also

considered. The mathematical content in this study is close to the developments

of Rudenko et al. in the investigations of the self-action of periodic sound beams.

There is a significant distinction which is connected with aperiodicity of impulses

under study: the instantaneous acoustic force of heating, not averaged over the

sound period, should be used. It was derived by the author in [15]. The account
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for thermal conduction requires expansion of excess temperature in series in the

even powers of the transversal coordinate and a solution of system of equations

resulting from equating coefficients by their different powers.

2. The governing equations and starting points

The system of equations describing thermal self-action in an axially sym-

metric flow of a Newtonian fluid, takes the form [12, 13, 11]

∂
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−
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where x and r are cylindrical coordinates, the Ox axis coincides with the axis

of the beam, p is the acoustic pressure, ρ0 is the unperturbed density of a fluid,

c0=
√

CP
CV βρ0

denotes the linear speed of sound at an unperturbed thermodynamic

state (β = ρ−10

(

∂ρ
∂p

)

T
is the isothermal compressibility, CP and CV are specific

heats under constant pressure and volume, respectively), τ = t− x/c0 is the

retarded time in the reference frame which moves with the sound speed c0, ∆⊥
is the Laplacian with respect to the radial coordinate r, ε is the parameter of

nonlinearity of a medium, and χ denotes its thermal conductivity. The total

attenuation b is a sum of terms responsible for the shear (µ), bulk (η) viscosity

and thermal conductivity,

b=
4

3
µ+η+

(

1

CV
−
1

CP

)

χ (3)

Equation (1) describes the acoustic pressure in a beam which propagates in

the positive direction of the axis Ox. In contrast to the famous Khokhlov-

Zabolotskaya-Kuznetsov equation (KZK) [6], it accounts for variations in the wave

speed due to a slow increase in the fluid temperature (the second term) [14].

Equations (1), (2) account for acoustic heating, that is, irreversible enhancement

of the chaotic motion of a fluid’s molecules due to loss in acoustic energy. As

usual, “the acoustic force” of heating F is a quantity averaged over the integer

number of sound periods. It is well established for periodic sound [10]:

〈F 〉=
b

c40ρ
3
0CP

〈

(

∂p

∂τ

)2
〉

(4)

In the theory of nonlinear self-action of periodic sound beams,〈F 〉 replaces F in

the right-hand side of Equation (2). The angular brackets denote averaging over

the integer number of sound periods. The form of Equations (2), (4) imposes that

(a) acoustic heating is a slow process as compared to the fast variations of sound

perturbations, and (b) sound is periodic at any distance from a transducer. The

former condition is always valid, however, the latter is not valid any longer in the

case of aperiodic sound, impulses or wavepackets. Strictly speaking, it is not valid
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for transmission of periodic sound at a transducer, which starts at some time and

has a finite duration, that is, which is periodic inside some temporal domain. The

instantaneous acoustic force takes the form which has been derived by the author

in [15]:
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where α=−ρ−10

(

∂ρ
∂T

)

p
is the thermal expansion, and D is expressed in terms of

partial derivatives of the internal energy, e:

D=
αc20
CP

(

−1+c20ρ
2
0

∂2e

∂p2
+ρ20

∂2e

∂p∂ρ

)

(6)

The temperature and internal energy are considered as functions of pressure and

density. Actually, Equation (5) is rearranged Equation (18) from [15] accounting

for the fact that the isobaric perturbations of temperature and density are

correlated by equality T ′=−ρ′/(αρ0).

In this study, we focus on the aperiodic nonlinear pulses, including one (or

some) periods of the sawtooth wave that is of the most interest. These waveforms

are defined by the peak acoustic pressure which depends on the distance from

the transducer and plays a similar role as the amplitude of single harmonics in

optics. Another important waveform is the solitary shock wave, infinite in time,

which may propagate with the sound speed or with a velocity different from the

linear sound speed. When the acoustic nonlinearity is important, and the beam

is slightly divergent, the approximation of the geometrical acoustics is successful.

For the validity of approximation of geometrical acoustics, diffraction should be

insignificant over the characteristic length of self-focusing. Acoustic pressure may

be found in the form which follows from the theory of geometrical acoustics [11],

p= p(x,r,θ) (7)

where
θ= τ−ψ(x,r)/c0 (8)

and ψ denotes eikonal. Substituting it into Equation (1), we arrive at the following

system in the limit of short wavelengths, small compared with the scale of thermal

inhomogeneities:
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∂ψ

∂x
+
1

2

(

∂ψ

∂r

)2
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This set of equations, along with Equation (2), is the famous starting point in

studies of thermal self-focusing of acoustic beams in Newtonian fluids [11–13].
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3. Thermal self-action of sawtooth waves

One period of the periodic wave profile may be thought as a sum of

a stationary jump and straight sawtooth portions [10], and it is described by

the formula

p(x,r,θ)=A(x,r)

(

−
ωθ

π
+tanh

(

εθ

b
A(x,r)

))

(11)

where ω is the sound frequency. This is an acoustic pressure within one period, that

is, at times −π≤ωθ≤π. In fact, Equation (11) is the exact solution of the Burgers

equation for planar nonlinear waves with A being a function of coordinate x [10]:

A(x)=
P0

1+x/xs
(12)

where

xs=
πc30ρ0
εωP0

(13)

denotes the distance at which a break of the initially sinusoidal planar wave

occurs, P0 is the initial peak acoustic pressure at the axis of a beam at x= 0.

Equation (11) has a sawtooth profile in the limit when bω/(c20ρ0) tends to zero.

Substitution of Equation (11) into Equation (9) and allowing bω/(c20ρ0)→ 0 results

in the transport equation for A(x,r):

∂A

∂x
+

A2

xsP0
+
∂ψ

∂r

∂A

∂r
+
∆⊥ψ

2
A=0 (14)

An acoustic force for the symmetric periodic shock wave in the limit bω/(c20ρ0)→ 0

has been obtained by Rudenko and co-authors [13]:

〈F 〉=
2εω

3πρ30c
4
0CP

A3 (15)

The value averaged over the sound period, 〈F 〉 was used in evaluations of the

acoustic peak pressure and the beam width in [13].

3.1. Periodic sawtooth wave

The equations which follow are readily simplified by assuming the parabolic

wave front in the eikonal described by Equation (10)

ψ(x,r,t)=ψ0(x,t)+
r2

2

∂

∂x
lnf(x,t) (16)

and with allowance for power series of T over the transversal coordinate,

T =T0−
r2

2
T2(x,t)−

r4

4
T4(x,t) (17)

The solution of Equation (14) accounting for Equation (16) has the form [14]

A(x,r,t)=
P0
f
Φ

(

r

a0f

)[

1+
1
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Φ

(

r

a0f

)∫ x

0

dx′

f(x′)

]−1

(18)

The function Φ describes the initial transverse distribution, A(x= 0,r,t = 0) =

P0Φ
(

r
a0

)

, where a0 denotes the initial beam radius at x= 0. We will consider

initially Gaussian beams with Φ(ξ)= exp(−ξ2).
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Equation (16) reflects the sphericity of the wave front, only its curvature

may vary during the beam propagation. The unknown function of two variables

f is responsible for these variations, and ψ0(x,t) is a phase shift of the wavefront

at the beam axis . In accordance with Equations (10), (16), (17), the evolution

of eikonal ψ is described by the equation

1

f

(

∂2f

∂x2

)

= δT2 (19)

The diffusion Equation (2) accounting for the acoustic source, Equation (4),

and Equation (17), rearranges as a system of three equations (they are actually

multipliers by different powers of r: r2 and r4):
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The system of Equations (19), (20) determines the unknown function f . In order

to eliminate T2, T4 from the system, one should integrate the second equation

from the Equation (20). The equation which describes the behavior of function

f , takes the form

∂
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where θ= t/t0 with the characteristic time t0 and dimensionless coordinate z:

t0=
a20CP εω

4|δ|Mπc40
, z=

x

xs
(22)

The sign plus in the right-hand side of Equation (21) corresponds to positive δ

(defocusing), and the sign minus corresponds to the case of self-focusing medium

with negative δ. Rudenko et al. have considered also the non-stationary self-action,

for which thermal conduction is unimportant. It occurs at times much smaller than

t0. The equation derived by Rudenko and co-authors takes the form (we reproduce

Equation (22) from [11]):
[

1+

∫ z

0

dz′

f(z′)

]4

f5
∂

∂θ

(

1

f

∂2f

∂z2

)

=±1 (23)

The initial and boundary conditions for both Equations (21), (23), are as follows

f(z=0)= f(θ=0)=1,
∂f

∂z
=
xs
R

(24)

if the initial curvature of the beam front is 1/R. Equation (23) rearranges into

Equation (21), if thermal conduction tends to zero. The validity of Equation (23)
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may be readily evaluated in the approximation of the thin lens, f ≈ 1. The second

term in the brackets is much smaller than the first one; at z=0 that corresponds to

8χt0
a20CP ρ0

θ≪
1

3
(25)

The inequality is certainly valid for larger z. In the non-stationary numerical

simulations in accordance with Equation (21), the beam is planar initially:

xs/R=0. The thin lines in Figure 1 refer to the case without thermal conduction

which is described by the dynamic Equation (23). The bold lines in Figure 1

represent numerical simulations of Equation (21) for 8χt0
a2
0
CP ρ0

= 0.3. The pictures

are plotted for focusing (δ < 0) and defocusing media (δ > 0). The plots represent

the dimensionless magnitude of an acoustic pressure at the axis of a beam

A(r=0,z)

P0
=
1

f

(

1+

∫ z

0

dz′

f(z′)

)−1

(26)

and its characteristic width (referring to the level where the magnitude decreases

e times),

a(z)

a0
= f

√

ln

(

e+(e−1)

∫ z

0

dz′

f(z′)

)

(27)

Figure 1. Dimensionless width of a beam, a/a0, and acoustic peak pressure at the beam

axis, A(r=0,z)/P0; curves (a,b) correspond to self-defocusing, and curves (c,d) to the

self-focusing of an initially planar wave; bold lines relate to numerical solutions

of Equation (21) for a periodic sawtooth waveform and parameter 8χt0
a2
0
CP ρ0

=0.3, and thin lines

relate to numerical solutions of Equation (23) for periodic everywhere sound; all series are

plotted at dimensionless time θ= t/t0=0.5; the curves at Figure 1(b) almost overlap
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3.2. Single sawtooth impulse or integer number of impulses

One “period” of acoustic pressure is also a solution of the one-dimensional

Burgers equation [10] (in the case of a single impulse, 2π/ω denotes its duration),

but cannot be considered any longer as periodic at any time. Equations (4), (15)

are not valid any longer. In order to consider relative thermal self-action, we insert

Equation (11) into Equation (5) and establish T2 and T4 equating the coefficients

standing by r2 and r4. For simplicity, thermal and caloric equations for an ideal

gas are used:

T =
p

(CP −CV )ρ
, e=

p

(γ−1)ρ
(28)

The coefficients are
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8εP 30
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2
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(

1+ 1xs

∫ x

0
dx′

f(x′)

)+
8χT4 · t

CP ρ0
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)

a40c
4
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)

(29)

Along with the approximation of the thin lens, f ≈ 1, that results in equation

governing the unknown function f :

[
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]4
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where

Π=
8δMπ2c40
a20εCPω

2
(31)

and M =P0/ρ0c
2
0 is the initial Mach number. Equation (30) describes variations

in the single impulse magnitude and its width as a beam propagates by means of

function f . In the case of the waveform containing n shock fronts, Π should be

replaced by Πn,

Πn=
8nδMπ2c40
a20εCPω

2
(32)

The results of numerical simulations of Equations (30), (31) are shown in Figure 2

for the planar at a transducer wave. The smallness of the second term in the

brackets in the right-hand side of Equation (30) implies, in approximation of the

thin lens, that 8χt
a2
0
CP f2ρ0

≪ 1
3 .

4. Thermal self-action of stationary shock wave which

propagates with the linear sound speed

The waveform which recalls the stationary solution of the planar Burgers

equation takes the form [10]:

p(x,r,θ)=A(x,r)tanh

(

εθA(x,r)

b

)

(33)
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Figure 2. Dimensionless width of a beam, a/a0 and magnitude of acoustic pressure at the

beam axis, A(r=0,z)/P0; curves (a,b) correspond to self-defocusing (Π=0.2), and curves

(c,d) to the self-focusing of an initially planar wave (Π=−0.2);

bold lines relate to numerical solutions of Equation (30) for a single shock wave

and dimensionless time 8χt
a2
0
CP ρ0

=0.1, and thin lines relate to numerical solutions

of Equation (30) at t=0

where θ is defined by Equation (8). The relative transport equation for the

amplitude A(x,r) allowing durations of a shock front to tend to zero, b/(εP0)→ 0,

is:
∂A

∂x
+
∂ψ

∂r

∂A

∂r
+
∆⊥ψ

2
A=0 (34)

It has a solution

A(x,r)=
P0
f
Φ

(

r

a0f

)

(35)

A Newtonian thermoconducting fluid, which obeys equations of state specific for

an ideal gas, is considered. We repeat the steps undertaken in the previous section:

1) perturbation of temperature is expanded in the Equation (17);

2) the acoustic source is calculated by the use of Equation (5) with acoustic

pressure in the form of Equation (33);

3) the system of equations similar to Equations (20) are solved when the

characteristic duration of a shock front tends to zero, b/(P0ε)→ 0.

Equations (19), (35) yield the following equalities in approximation of the

thin lens f ≈ 1 (they in fact represent the coefficients standing by different powers

of r: r2 and r4):

T2=
8εP 30

a20c
4
0CP f

5ρ30
+
8χT4 · t

CP ρ0
, T4=−

24εP 30
a40c
4
0CP f

7ρ30
(36)
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which in turn define the equation for the unknown function f :

f4
(

∂2f

∂z2

)

=Π

(

1−
24χt

a20CP ρ0f
2

)

(37)

where Π, z are determined by Equations (31), (22). Dimensionless quantities

Π and z are chosen analogously with the previous subsections, they include

characteristic frequency ω, which does not denote the sound frequency any

longer. It may be chosen arbitrarily. Equation (37) is valid at dimensionless times

satisfying the inequality

24χt

a20CP ρ0f
2
≪ 1 (38)

The curves in Figure 3 represent the beam amplitude at the axis and its

characteristic width,

A(r=0,z)

P0
=
1

f
,

a(z)

a0
= f (39)

In the simulations, the beam is initially planar with xs/R=0.

Figure 3. Dimensionless beam width, a/a0 and acoustic pressure amplitude at the beam

axis, A(r=0,z)/P0; the curves (a,b) correspond to self-defocusing (Π=0.2), and curves (c,d)

to the self-focusing of an initially planar wave (Π=−0.2);

the bold lines relate to the numerical solutions of Equation (37) for a single shock wave

and dimensionless time 24χt
a2
0
CP ρ0

=0.2, and the thin lines relate to numerical solutions

of Equation (37) at t=0
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5. Concluding remarks

This study considers the thermal self-action of some waveforms with shock

fronts in a Newtonian fluid with thermal conduction. Three types of waveforms

are considered:

1) periodic in time saw-tooth wave,

2) single saw-tooth impulse or some integer number of impulses, and

3) solitary symmetric shock wave.

The conclusions are valid for sawtooth impulses with temporal profiles

containing discontinuities or steep shock fronts of finite width much smaller

than the characteristic duration of a pulsed signal (bω/(c20ρ0)≪ 1), where 2π/ω

is the impulse duration, and for a solitary waveform with a narrow shock

front. In all cases, the parabolic wavefront in the paraxial area is assumed.

Expanding the excess temperature in series in the vicinity of the axis and equating

coefficients by similar powers of r result in the leading-order equation describing

the acoustic beam width and the acoustic pressure magnitude in the paraxial area.

Equations (21), (30), (37) are the main results of this study. They describe the

beam width dynamics and the corresponding acoustic pressure magnitude at the

beam axis by means of function f . In the case of impulses and a solitary shock

wave, the dynamic equations are valid in approximation of the thin lens, when

f ≈ 1. In the case of a periodic acoustic beam, the acoustic source is a quantity,

averaged over the sound period (Equation (4)), but in the two first cases, it

should be calculated using the instantaneous formula, Equation (5), and thermal

and caloric equations of state of the fluid.

All the numerical evaluations were performed in Mathematica. They reveal

the influence of thermal conduction of a medium on the self-focusing and self-

defocusing of a sound beam. It makes these nonlinear phenomena weaker. As for

the periodic sound, the focal distance of self-focusing shifts far from the transducer

as compared to the case without thermal conduction. As it has been established

in the non-stationary focusing in a fluid without thermal conduction, the periodic

beam radius increases as the wave propagates, i.e., nonlinear broadening of the

beam is evidently observed. This effect can be explained by the flattening of the

transverse beam profile due to the stronger absorption near the axis [11]. The

magnitude of acoustic pressure at small distances decreases. This is caused by

nonlinear absorption which competes with the self-focusing of the wave front.

Near the nonlinear focus, the magnitude becomes infinitely large. In this case,

the description becomes inadequate as it does not account for the divergence

due to diffraction. As for the single sawtooth impulse, or the integer number of

these impulses, the beam width does not initially reduce during the self-focusing.

The conclusion about the “smoothening” effect of thermal conduction in all the

considered examples is evident: thermal conduction makes the temperature field

more uniform thus weakening the effects originating from the non-uniformity of

temperature, like nonlinear self-focusing of sound beams.
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All the conclusions of Section 3 are valid also for periodic or single pulses

with the acoustic pressure in the form

p(x,r,θ)=A(x,r)

(

−
ωΘ

π
+tanh

(

εΘ

b
A(x,r)

))

+LP0, (40)

where Θ = θ+ π(x/xs+G)ω L = θ+
(

P0
A(x,r)+G−1

)

π
ωL, L, G are some constants,

and θ is given by Equation (8). In fact, Equation (40) originates from the exact

solution of the Burgers equations for planar nonlinear waves where A is a function

of x. One period of this planar wave is determined in the temporal domain

−π+π(1−G)L<ωθ<π+π(1−G)L (41)

The domain of distances where a shock is within the interval [−π+π(1−G)L,π+

π(1−G)L], is determined by inequality |LP0| ≤A(x). In the case of L= 0, the

impulse is symmetric, it propagates with the speed c0. It may be readily discovered

that the shock speed given by Equation (40) equals c0+
εLP0
ρ0c0
.

In this study, we assume that the thermal self-action occurs in a static

medium. The effects associated with the inertial self-action of the sawtooth waves

in Newtonian fluids are discussed in [12]. Acoustic streaming always leads to

additional divergence as the drift caused by streaming causes the wave velocity

to increase in the central part of the beam; that happens to any waveform in the

course of propagation in a viscous fluid, periodic or impulse.
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