
TASK QUARTERLY vol. 20, No 2, 2016, pp. 197–206

BLOCH WAVE – ZRP SCATTERING
AS A KEY ELEMENT OF SOLID STATE

PHYSICS COMPUTATION: 1D EXAMPLE
STEPAN BOTMAN AND SERGEY LEBLE

Institute of Physics and Technology
Immanuel Kant Baltic Federal University

Al. Nevsky 14, Kaliningrad, Russia

(received: 6 January 2016; revised: 17 February 2016;
accepted: 24 February 2016; published online: 29 March 2016)

Abstract: This paper presents calculation of the electron-impurity scattering coefficient of
Bloch waves for one dimensional Dirac comb potential. The impurity is also modeled as delta
function pseudopotential that allows explicit solution of the Schrodinger equation and scattering
problem for Bloch waves.
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1. Introduction
There are many processes in solid state physics in which the electron mean

velocity is small in the sense that its de Broglie wavelength is large compared to the
effective potential characteristic scales. For example, it relates to such important
processes as transport phenomena. In such circumstances the behavior of electrons
is effectively described by the so-called Zero Range Potentials (ZRP) [1], which
use an essentially simplified theoretical description.

Important ingredients of the transport theory contain a basic notion of the
electron state description in terms of Bloch functions and their derivatives such as
the spectrum description, density of states and Fermi energy level. The mechanism
of low temperature conductivity includes scattering on impurities the contribution
of which essentially increases in case of mesoscopic and nano- problems, for which
the surface atom contribution is relatively large.

The scattering theory provides powerful direct ways for treatment of qu-
antum systems and enables obtaining essential information about these systems.
In Solid State Physics the scattering theory has been used to describe various
transport phenomena. The main feature in this case is the presence of a periodic
potential due to the lattice structure which results in the basis of Bloch functions.
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Scattering in terms of Bloch functions has been studied in a number of
works. The works of Morgan [2] and Newton [3] are based on the Korringa-Kohn-
Rostoker equations [4, 5] and give rather a general description of Bloch electron
scattering on impurities in crystals.

Unfortunately, the resulting expressions for the scattering amplitudes are
complicated, their direct use in evaluation of transport properties is difficult. In
this paper we propose, perhaps, the simplest model formulation and realization
of the scattering problem on the basis of the Dirac comb potential and the ZRP
model for an impurity. We will repeat that the mean velocity of conductivity
electrons is low in the above mentioned sense [1]. It justifies applications of zero-
range potentials (ZRP).

The Dirac Comb model is a special case of the Kronig-Penney model [6],
which ranks among the small number of exact solvable problems in quantum
mechanics. It is interesting to investigate aspects of electron Bloch scattering
within a simple model which allows an insight into basic properties of the Bloch
electron scattering in systems with periodic potentials.

In this work we construct flux normalized Bloch wavefunctions and use
them for determining the impurity scattering probability. In section 2.1 we
start from reproducing some classical results of electron properties in the Di-
rac comb potential. Next, in section 2.3 flux normalization for a Bloch wave
basis set is provided. Then, in section 3.2 we use the obtained expression
for energy dispersion to study the chemical potential temperature dependence
for the considered system. Finally, in section 4 the ZRP impurity scatte-
ring probability is derived in explicit form. Section 5 contains summary and
discussion.

2. Dirac comb potential Bloch wave functions
2.1. Statement of problem

Let us reformulate the classical calculation (see, e.g. [7]) of electron pro-
perties in a lattice under the influence of an attractive Dirac Comb potential
presented for the reader’s convenience in notations, specified for scattering pro-
blem applications. By definition the Bloch wavefunction must be an eigenfunction
of both Hamilton and translation operators [7].

Consider a problem of stationary states of an electron in the potential of
equidistant Dirac delta functions:

̂𝑉 = ∑
u�

𝛽𝛿(𝑥−𝑛𝑎), 𝑥 ∈ (−∞,∞), 𝑛 = 0,±1,… (1)

where 𝛽 is a parameter of the potential, the lattice constant is denoted as 𝑎.
Generally, the parameter 𝛽 can be both negative (attractive zero range potential
(ZRP)) and positive.
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Each delta function in (1) represents the simplest ZRP. For such a case, the
Shrodinger equation with the potential (1) can be replaced by the following set
of the boundary conditions for the Hamiltonian eigenfunction (see e.g. [1]):

𝜓′∣
u�=u�u�+0

u�=u�u�−0

− 2𝑚
ℏ2 𝛽𝜓∣

u�=u�u�
= 0, 𝑛 = 0,±1,… (2)

where 𝜓 is the wavefunction. Obviously, the first term of the expression (2) is non
zero and the wavefunction 𝜓 has a finite discontinuity of the first derivative at
the points of potential location.

The wave function for the domain between two point potentials located at
𝑥 = 0 and 𝑥 = 𝑎 (i.e. for 𝑥 ∈ [0,𝑎)) should be a linear combination of two plain
waves:

𝜓[0,u�) = 𝐴 𝑒u�u�u� +𝐵𝑒−u�u�u� (3)

where 𝐴, 𝐵 – two complex constants, the wave vector 𝑘 =
√

2𝑚𝐸/ℏ is proportional
to an electron momentum.

According to the definition, the shift operator acts as

̂𝑇u�𝜓(𝑥) = 𝜓(𝑥+𝑎) (4)

A corresponding spectral problem for (4) introduces the parameter 𝜇:

̂𝑇u�𝜓(𝑥) = 𝜓(𝑥+𝑎) = 𝜇𝜓 (5)

It is known that the Hamiltonian spectral problem with the condition (5)
has only a continuous spectrum. The condition of the Bloch wavefunction 𝜓
boundedness at both infinities is guaranteed by the restriction

|𝜇| = 1 → 𝜇 = 𝑒u�u�u� (6)

where 𝐾 is a real constant, its link with the Hamiltonian eigenvalue 𝐸 defines
the structure of the continuous spectrum. The finite solid is often modeled by the
Born-von Karman condition that leads to the discrete spectrum. In our 1D case
for 𝐾:

𝐾 = 2𝜋𝑛
𝑁𝑎 , 𝑛 = 0,±1,… (7)

2.2. Solutions of the problem: left/right Bloch functions
Applying the shift operator (5) to 𝜓[0,u�) wavefunction (3) and taking into

account (6) one can obtain the wavefunction for the domain [−𝑎,0):

𝜓[−u�,0) = ̂𝑇u�𝜓[0,u�) = 𝑒u�u�u� (𝐴 𝑒u�u�(u�+u�) +𝐵𝑒−u�u�(u�+u�)) (8)

Substitution of (3) and (8) into the continuity condition for 𝜓 at point 𝑥 = 0
and (2) gives the system:

𝐴(𝑒u�u�u�𝑒u�u�u� −1)+𝐵(𝑒u�u�u�𝑒−u�u�u� −1) = 0 (9)

𝐴(𝑖𝑘−𝑖𝑘𝑒u�u�u�𝑒u�u�u� − 2𝑚
ℏ2 𝛽)+𝐵(−𝑖𝑘+𝑖𝑘𝑒u�u�u�𝑒−u�u�u� − 2𝑚

ℏ2 𝛽) = 0 (10)
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The system of equations (9)) and (10)) is system of linear homogeneous
equations for 𝐴 and 𝐵. The condition of a nonzero solution (zero determinant of
the matrix of coefficients) gives:

cos(𝐾𝑎) = cos(𝑘𝑎)+ 𝑚𝛽
ℏ2

sin(𝑘𝑎)
𝑘 (11)

Equation (11) is well known and in fact gives a band structure – the
dependence between energy 𝐸 = (ℏ𝑘)2/2𝑚 and the quasi wave vector 𝐾. A typical
band structure of the Dirac comb is shown in Figure 2. The tuning of 𝛽 and 𝑎
parameters allows setting the arbitrary zone/bandgap ratio (as shown in Figure 3)
which can be useful for building real systems approximations.

It is essential to note that for every allowed energy we will have two Bloch
functions: for |𝐾| and −|𝐾|, which are associated with left and right Bloch waves.

The solution of system (9), (10) gives the dependence between coefficients
𝐴± = 𝑓±(𝑘,𝐾,𝛽)𝐵± and furthermore several equivalent forms of the solution can
be obtained:

𝐴± = 𝐵± [1+𝑖4𝑚
ℏ2

𝑘
𝛽 (𝑒±u�u�u�𝑒−u�u�u�)] (12)

or
𝐵± = 𝐴±

𝑒±u�u�u�𝑒u�u�u� −1
𝑒±u�u�u�𝑒−u�u�u� −1 (13)

From now on we will use (13), as its form is more convenient.
Let us introduce the following coefficients 𝑏+ and 𝑏− for shortening:

𝐴± = 𝐵±𝑏±, 𝑏± = 𝑒±u�u�u�𝑒−u�u�u� −1
𝑒±u�u�u�𝑒u�u�u� −1 (14)

Figure 1. Left and right Bloch functions (real and imaginary parts are labeled with
continuous and dashed lines respectively)

Thus, the physical meaning of such classification of Bloch waves is related
to the corresponding fluxes defined in the forthcoming section. Moreover, the free
choice of constants allows the left and right waves to be independently normalized.
Namely the equations (18), (17) and (13) are used to determine coefficients 𝐴±
and 𝐵± consequently.

2.3. Flux normalization
It is essential to note that 𝐾 in (11) is in the cosine, so for every allowed

energy we will have two Bloch functions: for 𝐾 and −𝐾. The Bloch functions for
𝐾 and −𝐾 will give us the appropriate flux in opposite directions.
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For one dimension the flux can be calculated as follows:

𝑗(𝜓) = −𝑖 ℏ
2𝑚 (𝜓∗ 𝑑

𝑑𝑥𝜓−𝜓 𝑑
𝑑𝑥𝜓∗) (15)

Direct substitution (3) into (15) yields:

𝑗(𝜓) = ℏ𝑘
𝑚 (|𝐴|2 −|𝐵|2) (16)

Equation (16) is true for any 𝑥. The substitution of (13) into (16) gives:

𝑗(𝜓⇄) = ℏ𝑘
𝑚 ∣𝐴±∣2 ±sin(𝐾𝑎)sin(𝑘𝑎)

1−cos(±𝐾𝑎+𝑘𝑎) (17)

Next, equation (17) is used for flux normalization:

𝑗(𝜓⇄) = ±1 (18)

3. Solid state physics ingredients
3.1. Density of states

Moreover, (11) allows deriving analytical expressions for several solid state
physics quantities such as density of states and electron velocity (see [7]):

𝜌(𝐸) = ± 2
𝜋 ( 𝑑𝐸

𝑑𝐾 )
−1

= 2
𝜋 𝐾′(𝐸) (19)

𝑣(𝐸) = 1
ℏ

𝑑𝐸
𝑑𝐾 = 1

ℏ
1

𝐾′(𝐸) (20)

Expressing 𝐾(𝐸) from (11):

𝐾(𝐸) = 1
𝑎 arccos[cos(

√
2𝑚𝐸
ℏ 𝑎 ) + 𝑚𝛽

ℏ
√

2𝑚𝐸
sin(

√
2𝑚𝐸
ℏ 𝑎 )] (21)

evaluating the derivate of (21) one may obtain an analytical form of (19) and (20).

Figure 2. Density of states (top, red), energy dispersion (middle, blue), electron velocity
(bottom, green)
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Figure 3. Zone edges depending on 𝛽 parameter (parameter 𝑎 = 1)

3.2. Fermi energy
The obtained expression (19) for the density of states allows us to calculate

the Fermi energy and chemical potential for the electron in the Dirac comb
potential. We start from the Fermi-Dirac distribution:

𝑛u�(𝐸,𝑇 ) = 1
𝑒

u�−u�(u�)
u�u�u� +1

(22)

where 𝑘u� – Boltzman constant, 𝜇 – chemical potential (𝜇(𝑇 = 0) = 𝐸u� , 𝐸u� – Fermi
energy), 𝑇 – temperature.

Obviously, (22) must satisfy the normalization condition for a total number
of electrons. We will take into account that at zero temperature the Fermi
distribution function reduces to a step function:

𝑁u� =
∞

∫
0

𝑛u�(𝐸,𝑇 = 0)𝜌(𝐸)𝑑𝐸 =

u�u�

∫
0

𝜌(𝐸)𝑑𝐸 =

∑
valence bands

2𝑎
𝜋 𝐾(𝐸)∣

u�band max

u�band min

+ 2𝑎
𝜋 𝐾(𝐸)∣

u�u�

u�band min

=

∑
valence bands

2𝑁 + 2𝑎
𝜋 𝐾(𝐸)∣

u�u�

u�band min

(23)

where 𝜌(𝐸) – the density of states, 𝑁u� – the total number of electrons, 𝑁 – the
number of cells in wire (assuming each atom in wire has only one electron). Thus,
𝐸u� can be calculated within this model using (23) and (21).

3.3. Chemical potential
The chemical potential can be obtained in a similar way:

𝑁u� =
∞

∫
0

𝑛u�(𝐸,𝑇 ,𝜇)𝜌(𝐸)𝑑𝐸 =
∞

∫
0

𝑛u�(𝐸,𝑇 ,𝜇)2𝑎
𝜋 𝐾′(𝐸)𝑑𝐸 (24)
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In some cases it may be more convenient to use the following form (here
only the valence band is taken into account):

𝑁u� =
∞

∫
0

𝑛u�(𝐸,𝑇 ,𝜇) 2
𝜋 𝐾′(𝐸)𝑑𝐸 =

2𝑎
𝜋 𝑛′

u�(𝐸,𝑇 ,𝜇)⏟⏟⏟⏟⏟
0 or 1

𝐾(𝐸)⏟
0 or u�/u�

∣
u�band max

u�band min

− 2𝑎
𝜋

u�band max

∫
u�band min

𝑛′
u�(𝐸,𝑇 ,𝜇)𝐾(𝐸)𝑑𝐸 =

2−

u�band max

∫
u�band min

𝑛′
u�(𝐸,𝑇 ,𝜇)𝐾(𝐸)𝑑𝐸

(25)

The chemical potential temperature dependence calculated within the nu-
merical procedure showed negligible shifts for points within the band except for
the 𝑘u�𝑇 neighborhood of the upper bandedge, where the local maximum is for-
med.

4. Impurity scattering
Generally the Bloch wavefunction for the Dirac comb potential (1) has the

following form:

𝜓⇄ = 𝑒±u�u�u�u� (𝐴±𝑒u�u�u� +𝐵±𝑒−u�u�u�) for 𝑥 ∈ [𝑛𝑎,(𝑛+1)𝑎) (26)

Let us assume that electron Bloch wave propagates from −∞ to ∞ and
scatters at the potential center 𝛾𝛿(𝑥−𝑥0) located at point 𝑥0 ∈ (𝑚𝑎,(𝑚+1)𝑎).
Thus, the scattering ansatz appears as follows:

Ψ(u�u�,u�0] = 𝐶u�𝜓u�+ +𝐶u�𝜓u�−

Ψ[u�0,(u�+1)u�) = 𝐶u�𝜓u�+
(27)

where index 𝑖 stands for incident, 𝑠 stands for scattered, 𝑡 stands for transmitted
waves.

Now a boundary condition (analogue to (2)) should be applied at point 𝑥0
that gives:

𝐶u�𝑒u�u�u�u�𝑖𝑘(𝐴+𝑒u�u�u�0 −𝐵+𝑒−u�u�u�0)−

𝐶u�𝑒u�u�u�u�𝑖𝑘(𝐴+𝑒u�u�u�0 −𝐵+𝑒−u�u�u�0)−

𝐶u�𝑒−u�u�u�u�𝑖𝑘(𝐴−𝑒u�u�u�0 −𝐵−𝑒−u�u�u�0) =
2𝑚𝛾
ℏ2 𝐶u�𝑒u�u�u�u� (𝐴+𝑒u�u�u�0 +𝐵+𝑒−u�u�u�0)

(28)

We should add one more condition for continuity at point 𝑥0).

𝐶u�𝑒u�u�u�u� (𝐴+𝑒u�u�u�0 +𝐵+𝑒−u�u�u�0)+

𝐶u�𝑒−u�u�u�u� (𝐴−𝑒u�u�u�0 +𝐵−𝑒−u�u�u�0) =

𝐶u�𝑒u�u�u�u� (𝐴+𝑒u�u�u�0 +𝐵+𝑒−u�u�u�0)

(29)
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Both (28) and (29) form a system. We state 𝐶u� = 1 (it corresponds to the
incident flux normalized to one) and solve the system for 𝐶u� and 𝐶u�:

𝐶u� = −𝛾𝑚(𝐴+𝑒u�u�u�0 +𝐵+𝑒−u�u�u�0)
2
[𝑖ℏ2𝑘(𝐴−𝐵+ −𝐴+𝐵−)+

𝛾𝑚(𝐴−𝐵+ +𝐴+𝐵−)+𝐴−𝐴+𝛾𝑒2u�u�u�0𝑚+𝐵−𝐵+𝛾𝑒−2u�u�u�0𝑚]−1
(30)

𝐶u� = −𝑖ℏ2𝑘(𝐴−𝐵+ −𝐴+𝐵−)[𝑖ℏ2𝑘(𝐴−𝐵+ −𝐴+𝐵−)+

𝛾𝑚(𝐴−𝐵+ +𝐴+𝐵−)+𝐴−𝐴+𝛾𝑒2u�u�u�0𝑚+𝐵−𝐵+𝛾𝑒−2u�u�u�0𝑚]−1 (31)

And one in shorter form, using (14):

𝐶u� = − 1
𝐵−

(𝑏+𝑒u�u�u�0 +𝑒−u�u�u�0)
2
𝛾𝑚

(𝑏− −𝑏+)(𝑖ℏ2𝑘+𝛾𝑚)+𝛾𝑚(𝑏−𝑏+𝑒2u�u�u�0 +𝑒−2u�u�u�0)

𝐶u� =
𝑖ℏ2𝑘(𝑏− −𝑏+)

(𝑏− −𝑏+)(𝑖ℏ2𝑘+𝛾𝑚)+𝛾𝑚(𝑏−𝑏+𝑒2u�u�u�0 +𝑒−2u�u�u�0)

(32)

𝑊 = ∣𝐶u�∣2 gives the scattering probability. 𝑇 = ∣𝐶u�∣
2 gives the transmission

probability. In order to calculate the scattering probability one should replace 𝐴±
and 𝐵± with (13) and (17) taking into account flux normalization (18).

Figure 4. Scattering probability 𝑊 depending on scatterer position 𝑥0

Figure 5. Scattering probability 𝑊 depending on scatterer strength 𝛾, where (a) – scatterer
located at 𝑥0 = u�

2 and (b) – scatterer located at 𝑥0 = u�
4
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5. Summary and discussion
The scattering probability of a Bloch electron on impurity depending on

the scatterer parameters and energy was obtained. The data showed nontrivial
behavior of the scattering probability. It is planned to apply the results in the
transport phenomena theory.

One dimensional scattering problem gives us a good “toy” model that has
a very interesting application in the inverse scattering method of the soliton theory
(nonlinear equation of Korteweg-de Vries type) [8]. The results of scattering from
the ZRP theory may be applied in the context of the integrable potentials theory
as well [9], its Bloch functions version could give an impulse to develop the theory.

Figure 6. Resistivity calculation workflow
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