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Abstract: General properties of ladder operators applied to inhomogeneous problems are

studied in the context of their usefulness for solving practical problems with stress put on the

possibility of embedding the interwine relation onto a wider class of operators. From those

general remarks an algorithm using the Darboux transform for construction of the Green

function for linear partial differential equations is formed and a sample implementation thereof

is shown along with some examples of solutions.
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1. Introduction

Ladder operators in general and the Darboux transformation in particular

in its numerous forms from the classic Darboux theorem [1] to abstract construc-

tions on associative rings [2] are invaluable tools in studying both linear and

nonlinear systems. The creation-annihilation operators [3] are one of the most

widely used formalisms in quantum physics, whereas the Darboux transform has

been one of the most important tools in constructing multisoliton solutions of nu-

merous integrable systems [4]. One of the key setbacks for using them in a broader

context is the fact that each known ladder operator can be constructed only for

a narrow class of problems. An especially important step was made in [5] where

the Darboux covariance property was spread to evolution 1+1 equations.

With that in mind, the aim of this paper is to examine possible embeddings

of the known entwine relations into broader systems as well as to apply ladder

operators to inhomogeneous problems. The general formulae are then explicitly
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used to solve two-dimensional Green function problems using a basic, one-

dimensional Darboux transformation. The key ideas have been laid out earlier

in [2]. Ideas very close to those presented in this paper have been applied to the

Green function construction for 1+1 hyperbolic and parabolic equations with

integrable potentials [6]

2. General properties

The primary aim of this section is to examine the use of ladder operators

in the context of inhomogeneous problems as well as to determine a set of

requirements for them to be practical in that regard. Let us start with arbitrary

operators entering the intertwine relation

AL=L[1]A (1)

If we take an equation
Lψ= r (2)

where r and ψ are elements of the codomain and domain of operator L, re-

spectively, with r considered as the inhomogeneity and ψ as the solution of the

equation. By using the intertwine relation we readily obtain

ALψ=Ar

L[1]Aψ=Ar
(3)

which obviously means that Aψ (from this point on denoted as ψ[1]) is a solution

to the new equation and Ar (denoted later as r[1]) is the new inhomogeneity.

Such a relation is of use only if we can control the right-hand side of the equation.

For instance, if we want to find through an intertwine relation a solution to the

equation
L[1]ψ[1] = r[1] (4)

with a particular inhomogeneity, then we need to solve an additional problem

for r
Ar= r[1] (5)

as well. This is not strictly necessary, but it is immensely useful to be able to invert

A (or more specifically just have the relation AA−1=I) and obtain r directly as

r=A−1r[1] (6)

At this point it is worth remarking that in case of an invertible A, we may also

write
L[1] =ALA−1 (7)

which implies that the intertwine relation can be considered as an extension of

mapping of operators for non-invertible maps. It is important to stress that up

to this point we did not assume linearity of the L and A operators or any other

qualities except those explicitly stated. This means that inhomogeneous equations

(or homogeneous as a special case of r[1] = 0) allow a much wider class of ladder

operators than spectral problems for which they are mostly used, because

ALφ=Aλφ

L[1]Aφ=λAφ
(8)

obviously requires A to be multiplicative (but not necessarily additive).
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If L is invertible (in the same sense as A earlier), we may generalise the

investigated problem to that of finding the inverse of L[1] instead of a particular

solution of an inhomogeneous equation. If we label L−1 as G, we can write

LG= I

L[1]G[1] = I
(9)

G is assumed to be known in advance and G[1] is obtained as follows. We start

from an obvious identity
A=A (10)

and insert the above shown forms of identity operators

ALG=L[1]G[1]A (11)

After using the intertwine relation

L[1]AG=L[1]G[1]A (12)

we can readily write
AG=G[1]A (13)

keeping in mind that the last equation is true only up to the elements of kernel of

L[1], which is a typical degree of freedom for inverse operators anyway. It clearly

shows that the inverse of L enters the same entwine relation as the operator itself.

Again, for invertible A we may write

G[1] =AGA−1 (14)

which is the form we will later use for calculation of a dressed inverse operator.

2.1. Extension

In practice it is possible to build a ladder operator A only for very specific

types of operators L. Therefore, it is important to investigate the possibility of

extending a given entwine relation onto a wider set of operators. One particular

case which will be considered in this paper requires that A is additive. If so, then

for a given operator D which commutes with A the initial relation (1) obviously

implies
A(D+L)= (D+L[1])A (15)

3. Differential equations

If we want to apply ladder operators to differential equations, we need

to establish, how they in general interact with initial or boundary conditions.

Since those conditions only represent values of a given function in specific points,

a ladder operator defined on those functions cannot be applied directly. As with

the inhomogeneity, it does not prevent the use of a ladder operator - it is simply

an issue of controlling the initial or border condition in the resulting equation.

The most straightforward method is available, when we have a general solution

to the initial problem. Then, we simply transform it and solve the new initial or

border conditions with respect to the parameters of the initial solution. While it
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is not strictly necessary, our ability to solve the resulting set of equations depends

highly on the linearity of both L and A.

4. Darboux transformation

In the light of the discussed properties of ladder operators, the Darboux

transformation is particularly valuable, since it is a linear and invertible operation

and it also preserves the conditions of the initial problem. Therefore, even if in

the most basic case, when it is defined for a specific one-dimensional eigenvalue

problem, it can be used just as well for a multidimensional inverse operator

problem. For instance, let us look at a Green function problem for a simple wave

equation on R
2

(

∂2

∂t2
−
∂2

∂x2

)

g(t,t0,x,x0)= δ(t− t0)δ(x−x0) (16)

A Darboux transformation built for

∂2

∂x2
φ(x)=λφ(x) (17)

is also applicable to (16) thanks to the linearity of the Darboux transform and the

resulting property (15) (if the Darboux transform operates on only the x variable,

then it will obviously commute with ∂
2

∂t2
).

Before solving this problem let us look more closely at the expression (14)

in case of the Darboux transform as the ladder operator

A=φ(x)
∂

∂x

1

φ(x)

A−1=φ(x)

x
∫

−∞

dx1
1

φ(x1)

(18)

At this point we need to take into account that in order to obtain the Green

function properly, we need to explicitly transform the identity operator kernel

δ(x−x0)δ(t− t0) (19)

To show the construction, we will apply subsequent operators step by step

φ(x2)

x2
∫

−∞

dx1
1

φ(x1)
δ(x1−x0)δ(t1− t0)

∞
∫

−∞

dt1

∞
∫

−∞

dx2g(t,t1,x,x2)φ(x2)

x2
∫

−∞

dx1
1

φ(x1)
δ(x1−x0)δ(t1− t0)

φ(x)
∂

∂x

1

φ(x)

∞
∫

−∞

dt1

∞
∫

−∞

dx2g(t,t1,x,x2)φ(x2)

x2
∫

−∞

dx1
1

φ(x1)
δ(x1−x0)δ(t1− t0)

(20)
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This form can be simplified on assumption that differentiation and integration

operations can be done in arbitrary order. Firstly, the evaluation of the integral

over x1 yields

φ(x)
∂

∂x

1

φ(x)

∞
∫

−∞

dt1

∞
∫

−∞

dx2g(t,t1,x,x2)
φ(x2)

φ(x0)
Θ(x2−x0)δ(t1− t0) (21)

with Θ as the Heaviside step function, which can be simply included in the

integration boundaries over x2

φ(x)
∂

∂x

1

φ(x)

∞
∫

−∞

dt1

∞
∫

x0

dx2g(t,t1,x,x2)
φ(x2)

φ(x0)
δ(t1− t0) (22)

We can also perform the integration over t1

φ(x)
∂

∂x

1

φ(x)

∞
∫

x0

dx2g(t,t0,x,x2)
φ(x2)

φ(x0)
(23)

We will also apply the Darboux transform before the integration

∞
∫

x0

dx2

(

∂g

∂x
(t,t0,x,x2)−g(t,t0,x,x2)

∂(lnφ)

∂x
(x)

)

φ(x2)

φ(x0)
(24)

This is the form of g[1] that we will use for further calculations.

4.1. N-fold transform

One of the important features of the Darboux transform is the ability to

construct a chain of transformations. Given a set of eigenfunctions {φ0, .. . ,φN−1}

of the initial operator L, one can define a chain of N Darboux transformations

A[0] =φ0(x)
∂

∂x

1

φ0(x)

A[k] =φk[k](x)
∂

∂x

1

φk[k](x)

φk[k] =A[k−1].. .A[0]φk

(25)

Although there is a method for calculating the N-fold Darboux transform in one

step, its form does not give an easy way for inverting it. For this reason we will

construct the chain of Green functions iteratively. It is most convenient to prepare

the seed functions in advance. Given the set {φ0,. . .,φN−1} we need to apply A[0]

to all seed functions except for the first, which gives us the function needed for

A[1], which needs to be applied to all seed functions except for the first two ones.

We proceed in the same manner to the end of the chain and obtain a full set of

functions needed for performing Darboux transforms.
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In order to construct the Green function we simply apply (24) iteratively.

In symbolic terms, we perform

G[1] =A[0]GA[0]−1

G[2] =A[1]G[1]A[1]−1

· ··

G[N ] =A[N−1]G[N−1]A[N−1]−1

(26)

Sample implementation in Mathematica is provided in the Appendix.

It is interesting to note that we do not explicitly need to know the form of

the potential for each step of the chain. We do however perform the calculations

in order to solve a Green function problem for a specific multisolitonic potential.

While the potential for each step can be easily calculated in a regular way

u[k] =u−2
∂2

∂x2
lnW
(

φ1,φ2, . .. ,φk
)

(27)

(with W as the Wronskian determinant and u as the initial potential), there is no

algorithmic method for obtaining the set of seed functions needed for construction

of a given potential.

4.2. Examples

Let us consider the wave operator Green function (16) on a R
2 plane. The

initial Green function will take the form

g(t,t0,x,x0)=
1

4
Θ(t− t0+x−x0)Θ(t− t0−x+x0) (28)

with Θ as the Heaviside step function. If we take a seed function

φk =cosh(x) (29)

we obtain a well known soliton potential

u[1](x)=−2sech2(x) (30)

and the new Green function

g[1](t,t0,x,x0)=
et+t0+x+x0

2
sech(x)sech(x0)

[

cosh(t− t0)+sinh(x)sinh(x0)
]

×Θ(t− t0+x−x0)Θ(t− t0−x+x0)
(31)

This method can also be used for Green functions described through

a formal sum. Let us consider a heat conduction equation
(

∂

∂t
−
∂2

∂x2

)

g(t,x,x0)= δ(t)δ(x−x0) (32)

with the periodic boundary conditions

g(t,x+2,x0)= g(t,x,x0)

g(t,x,x0+2)= g(t,x,x0)
(33)
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The Green function can be expressed as

g(t,x,x0)=
∞
∑

k=−∞

e−π
2k2t+iπk(x−x0)Θ(t) (34)

with Θ as the Heaviside step function. Let us take a pair of arbitrary seed functions

φ1(x)= 3e
iπx+e−iπx

φ2(x)= e
2iπx−e−2iπx

(35)

which result in new potentials

u[1](x)=
6π2

(2cos(πx)+ isin(πx))2
,

u[2](x)=
3π2(9+20cos(2πx)+3cos(4πx)+16isin(2πx))

3cos(πx)+cos(3πx)−2isin(πx)3

2 (36)

The Green function after a single transformation will take the form

g[1](x,x0,t)=−Θ(t)
∑

k=Z{−1,1}

1+3e2iπx(−1+k)+k

(1+3e2iπx)(1+3e2iπx0)(−1+k2)

{

e−π[k
2πt−ik(−1+x)−i(−1+x0)](2+4k)

+e−kπ[kπt+i(−x+x0)][1−k−3e2iπx0(1+k)]
}

(37)

which is clearly a convergent series. The second transformation gives us

g[2](x,x0,t)=−Θ(t)
∑

k=Z{−2,−1,1,2}

−
{

1+3e2iπx0
}{

3e6iπx[k−2][k−1]3e4iπx[k−2][1+k]

+[1+k][2+k]+9e2iπx[k+k2−2]
}{

4e−kπ[kπt−i(x−1)]+2iπx0 [k2−1]

−
ekπ[−kπt+i(x−x0−1)]

1+3e2iπx0
[eikπ(k−2)(k−1)+9eiπ(k+2x0)(k−2)(1+k)

+3eiπ(k+6x0)(1+k)(2+k)+2ei(1+k)πx0(k−2)(2+k)(1+2k)

−2ei(5+k)πx0(k−2)(2+k)(1+2k)+3eiπ(k+4x0)(k+k2−2)]
}

{

1+3e2iπx[3+e2iπx+e4iπx]
}−1{
1+3e2iπx0 [3+e2iπx0+e4iπx0 ]

}−1

{

k2−4
}−1{

k2−1
}−1

(38)

As with the wave equation example, further steps down the Darboux chain are

possible, yet of limited practicality, since the complexity of solutions will grow in

a largely uncontrolled way.

5. Conclusions

Ladder operators in general and the Darboux transform in particular can

be used to solve a significantly richer class of problems than those for which they

were originally constructed. Not only can the class of operators for which the

ladder operators work be embedded in a larger one, but there is a direct method

for solving inhomogeneous problems in case of invertible ladder operators. The

provided examples show that while general solutions to inhomogeneous problems
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can be obtained, they are not necessarily simple or usable. The complexity of these

solutions is not a strict constraint, but for the applied sciences, practicality is an

important factor [7].
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Appendix: Implementation

The shown implementation of the method described in this paper allows

us to calculate the N-fold Darboux transform of a given two-dimensional Green

function although the algorithm is not sensitive to the number of variables, hence,

one can use a more complex Green function as the base solution as well. At

the start, we need to provide the base solution, a set of seed functions for the

Darboux transform (in this implementation, they all are assumed to work on the

same variable) and the initial potential, which is not strictly necessary, but the

program provides a chain of dressed potentials along with the chain of dressed

Green functions for the sake of completeness.

In the presented form the program is assuming the domain in the variable,

on which the Darboux transform is dependent, to be infinite, but it is possible to

use the same code for problems on an interval (as has been shown in one of the

examples). This does require the user to manually change the integration limits

in all relevant places.

Main setbacks for using the program come from the complexity of the

emerging results and the related limits of the Mathematica environment, which

cannot handle too large symbolic expressions properly.

Clear[in, int, dar, rad, u, f, f0, phi, temp, i, L, test];
(*Definition of the seed function set*)
in={E^(#1)+E^(-#1)&,E^(2 #1)-E^(-2 #1)&};
(*Definition of the Darboux transform and its inverse in the next line*)
dar[f1 , f2 , x , t ] := f2[x, t] D[f1[x, t]/f2[x, t], x];
rad[f1 , f2 , x , t ] :=
f2[x, t] Integrate[f1[s, t]/f2[s, t], {s, -Infinity, x},
Assumptions ->
x \[Element] Reals && x0 \[Element] Reals && x1 \[Element] Reals];

int = in;
(*Iterative transformation of the seed functions for all steps
of the dressing chain after the first*)
Do[Do[temp[x , t ] = FullSimplify[dar[int[[j]], int[[i]], x, t]];
int[[j]] = Evaluate[temp[#1, #2]] &, {j, i + 1, Length[int]}], {i,
1, Length[int] - 1}]

(*Initial potential*)
u = {0 #1 #2 &};
(*Construction of potentials for all steps of the dressing chain*)
Do[AppendTo[u,
Evaluate[
FullSimplify[
u[[i]][#1, #2] - 2 D[Log[int[[i]][#1, #2]], #1, #1]]] &], {i, 1,

Length[int]}];
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(*Sought inhomogeneity. Time-dependent part omitted along with relevant
integration, since it does not influence the form of Green function*)
f0 = DiracDelta[#1 - x1] &;
(*Initial Green function*)
g = {(1/4)*HeavisideTheta[#2-t0+#1 - x0]HeavisideTheta[#2-t0-#1 + x0] &};
(*Iterative construction of Green functions*)
Do[f = Evaluate[rad[f0, int[[i]], #1, #2]]
&; Print["r", i];
temp = Evaluate[
Integrate[f[x0] g[[i]][#1, #2], {x0, -Infinity, Infinity},
Assumptions -> (#1 > 0 && #1 < Pi && x1 \[Element] Reals &&
t0 \[Element] Reals && #2 \[Element]
Reals)] /. {HeavisideTheta[0] -> 1/2, x1 -> x0}] &;

Print["m", i]; AppendTo[g, Evaluate[dar[temp, int[[i]], #1, #2]] &];
Print["l", i], {i, 1, Length[int]}];
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