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Abstract: The propagation of X-ray waves through an optical system consisting of many
X-ray refractive lenses is considered. Two differential equations are contemplated for solving
the problem for electromagnetic wave propagation: first — an equation for the electric field,
second — an equation derived for a complex phase of an electric field. Both equations are solved
by the use of a finite-difference method. The simulation error is estimated mathematically and
investigated. The presented results for equations show that in order to establish a high accuracy
computation a much smaller number of points is needed to solve the problem of X-ray waves
propagation through a multi-lens system when the method for the second equation is used. The
reason for such a result is that the electric field of a wave after passing through many lenses is
a quickly oscillating function of coordinates, while the electric field phase is a quickly increasing,
but not oscillating function. Therefore, a very detailed difference grid, which is necessary to
approximate the considered electric field can be replaced by not such a detailed grid, when
computations are made for the complex wave of the electric field. The simulation error of both
suggested methods is estimated. It is shown that the derived equation for a phase function allows
efficient simulation of propagation of X-rays for the multi-lens optical system.

Keywords: X-ray wave, X-ray optic, lens, non-uniform medium, focusing, numerical method,
simulation, finite-difference, stability, numerical error, wave phase, electromagnetic wave, fast
oscillating function

1. Introduction

The X-ray microscopy, a new method to examine internal structures of
microobjects has been actively developed during the last 20 years. Application
of biconcave lenses made of light metals is one of the most perspective ways of
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focusing of X-ray beams [1-3]. Such lenses focus X-ray beams because the phase
propagation velocity of X-ray waves in light metals exceeds slightly the speed of
light. This is a consequence of the form of the complex refraction index of the
material n =1—9+1i8, where § > 0. For example, for aluminum when photon
energy is equal to 25keV, § =8.643-1077, 3=1.748-107° [3]. The imaginary part
of n defines an absorption factor. When an X-ray wave propagates through the
lenses, the wave’s phase is changed. The wave phase change is much larger for
waves propagated near the lens aperture edges than for waves propagated near
the general optic axis. It leads to an effect of focusing of X-ray waves by lenses.

Recently, beryllium has been considered as one of the most prospective
materials for manufacturing lenses because this metal possesses low absorbing
properties and a comparatively large refraction factor. However, lenses are manu-
factured from other materials as well: for example, from aluminum. In [4, 5], lenses
made of glass-graphite are suggested and applied. In [6], silicon lenses have been
investigated. Some lenses have been made also of boron carbide, pyrographite,
teflon [7].

Modern X-ray lenses have a parabolic shape of their concave surfaces. Owing
to such a form it is possible to eliminate aberrations inherent to lenses with
spherical concave surfaces.

Since the refraction factor is small, the effect of focusing of one lens is weak,
and often a system of many lenses is applied in order to achieve an essential effect
of focusing. If lenses are arranged in a row, one after another, the lens system
acts as a lens, and we are speaking about a compound refractive lens (CRL). The
R where R is a radius of
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curvature of a parabolic lens surface [5, 3]. For a CRL consisting of N identical

focal distance of one lens is given by the formula F| =

lenses, the focal distance F' is approximately equal to Wl

The refraction index n of materials essentially depends on the frequency
within the range of high-frequency electromagnetic waves. Therefore, the mono-
chromatic, coherent source of X-ray waves is necessary to get the qualitative image
with a great enlargement factor. With this aim, synchrotrons supplemented with
ondulators are actively used as sources of X-ray waves.

Obtaining a high-quality image and achieving a high enlargement factor are
some most important goals of the development of X-ray optics. As a consequence,
now the question of the effect of defects of various lens on the image quality is
topical. When we say defects, we mean any imperfections in the lens form, errors
in the adjustment of lenses along the general optical axis of a system of lenses, and
we also have in mind any possible internal microscopic defects: cavities, inclusions
of oxides in the lens material.

This paper is devoted to the theory of numerical modeling of X-ray waves
propagation in an optical system. The demands on the numerical simulation
method essentially depend on our intentions. If one wants to explain the effects of
focusing and image formation, then the coincidence of the results of computation
with an experiment is obviously a criterion of correctness of our simulations.
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Many perfect publications of such kind have been written up to the present
time [8, 9, 2, 10, 11]. If simulations are carried out with the aim of explanation of
physical effects, one can choose the numerical method parameters (the number of
modes in the Fourier-method or the number of mesh points in the mesh method)
experimentally, basing on the requirement of best agreement of the computed
results with an experiment.

If one uses numerical simulation for scientific and engineering research
(for example, to investigate the effect of defects on focusing and imaging), the
requirements for the theoretical validity of numerical methods are higher. We
often apply numerical simulations in cases when real experiments are difficult or
impossible to carry out. Especially in these cases, we want to have some means
of control of the simulation reliability and the available accuracy.

Moreover, even if the comparison with the experiment is possible, we have to
bear in mind that the actual lens parameters are known only approximately. Also
the real X-ray source is incoherent and is known only approximately. Therefore,
the comparison with the experiment is not always possible to check simulations.
Under these conditions, the validation of simulations can be based only on the
mathematical error estimate. These mathematical tools to validate accuracy need
to be developed and explored. The need to control the simulation accuracy may
lead to replacement of previously developed methods with new ones, for which
the accuracy is easier to control.

The computational complexity dependence on the optical system and on the
experiment scheme is also an important issue. Normally the paraxial Equation (1)
describes the X-ray wave propagation. We shall show that when the X-ray
wave passes through a system of many lenses, the solution of this equation is
a rapidly oscillating function of distance from the main optical axis. Moreover,
the oscillation frequency of the wave field increases exponentially with the number
of lenses. The higher the oscillation frequency, the more detailed mesh is required
to digitize such a function, and the greater computations are required. Therefore,
although the simulations for a small number of lenses may seem quite simple,
the computational complexity increases rapidly with the number of lenses, and
the simulation for many lenses may be an extremely complicated computational
problem. Given the computer power, one can specify how many lenses are sufficient
for the computer’s performance to be sufficient to perform simulations with
a reasonable accuracy on the basis of Equation (1).

In case of many lenses, the computational complexity is also strongly
dependent on the width of the X-ray beam incident on the lens.

In order to establish an acceptable accuracy of computations for the use
of many lenses, we have proposed solving the equation for the complex phase
U (x,y,2) of the wave instead of solving the paraxial Equation (3) for the electric
field A(z,y,2) = e"Y®¥2) The phase function W (z,y,z) is not a fast oscillating
function, and therefore it does not require a detailed mesh for its digitizing. The
computational complexity of simulations with the Equation (9) for the phase
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function does not depend on the number of lenses, and one can easily achieve
a high accuracy of numerical simulations for many lenses. An electric field may
be elementarily restored, when the complex phase function is a known function.

The plan of this paper is as follows. To begin with, we develop a numerical
finite-difference method, which enables solving the problem of focusing of X-ray
waves by 33 aluminum lenses. We investigate how detailed the difference grid
should be to ensure high-quality of computation of the X-ray wave propagation
through a system of 33 aluminum lenses and to ensure high quality computation
of focusing of waves.

Then, we derive the Equation (9) for the complex phase ¥ (z,y,z) wave.
We performed calculations with the help of Equation (9) for the complex phase
and we investigated the method accuracy and demonstrated the advantages of
the method for the problem of X-ray wave focusing by 30 beryllium lenses. The
simulation method is a particularly advantageous one when we consider the case
of many lenses. As an extreme example, we performed a simulation of X-ray wave
focusing by a system of 160 lenses.

In this paper, we have not taken into account incoherencies of the source of
X-ray radiation, although, of course, the incoherence of the source of waves affects
the focusing and imaging. We investigate the quality of approximate mathematical
methods of simulation of X-ray wave propagation, but it does not depend on the
source X-ray waves.

2. Main equations
2.1. Equation of propagation of a monocromatic
electromagnetic wave in air

The propagation of a monochromatic electromagnetic wave of the X-ray
range in vacuum (in air) has been considered in [3, 8, 2, 11]. In particular, on the
basis of Maxwell’s equations, the authors have shown that the equation
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describes propagation of a monochromatic electromagnetic wave of frequency wy
in empty space within a paraxial approach. Here c¢ is the speed of light. The axis
x is designated along the direction of propagation of the quasi-plane wave; the
axes y, z are perpendicular to the z-axis. The electric field F(z,y,z,t) is expressed
via A(z,y,z) as follows: E(z,y,z,t) = A(x,y,z) - e (Fe7w0ot) k, =2 we take a real
part of the expression. Since the connection of the electric field F(z,y,z,t) with
the function A(zx,y,z) is very simple, we sometimes call the function A(z,y,z) an
electric field.

Equation (1) was first proposed by Leontovich M. A. [12] in 1944 to describe
the propagation of a monochromatic electromagnetic wave within the paraxial
approach, and as a result, the approximate Equation (1) is often called a paraxial
equation. This equation is widely used not only in the X-ray optics, but also in
standard optics, in the theory of propagation of radio waves, in acoustics [13].
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Equation (1) is also often called a parabolic equation due to external similarity of
this equation with the heat equation, even despite the fact that the equation
contains an imaginary unit in coefficients and, strictly speaking, it is not an
equation of a parabolic type.

2.2. Equation of propagation of a monochromatic
electromagnetic wave in a lens material or in a sample

Theoretical papers [3, 8, 2, 11] are devoted to the problems of propagation
of a monochromatic electromagnetic wave with the frequency of the X-ray range
in the lens material. On the basis of Maxwell’s equations for a medium with
a complex dielectric constant, which depends on the frequency, the authors
have shown that the propagation of a monochromatic electromagnetic wave with
frequency wy in a lens material is well described within the paraxial approach by
the equation
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Here, as before, axis x is designated along the direction of the quasi-plane wave
propagation, and axes y, z are perpendicular to axis x, 6 and 3 denote the real
and imaginary parts of the refraction index n=1—9§+1ip.

2.3. General equation of propagation of monochromatic X-ray
waves in a non-uniform medium

It is well known that X-ray waves penetrate through practically any
material and propagate practically without reflection and absorption. Therefore,
the boundary condition of continuity of the function A on the border between
various media is quite acceptable and widely applied [3, 8, 2, 11]. It gives us
foundations to unite both Equations (1) and (2) into one general equation [14]:

0A _dc (9 9
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Here b(z,y,z) is a complex function of coordinates depending on the material:

0 for air
b(w.y,2) = { 200i6+ 3] for lens material (%)

Equation (3) is very convenient because it allows us to carry out calculations
when we solve the problem of X-ray wave propagation through a system of lenses
and also the problem of focusing and imaging. This equation allows us easily
to take into account any inclusions in the lens material or other lens defects.
Equation (3) also can be used to describe the X-ray wave propagation through
a sample. Therefore, Equation (3) is a general equation, which is worth insightful
discussion and examination.
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3. Numerical simulation of propagation of X-ray waves
through a system of lens and X-ray beam focusing

Basing on Equation (3), we will solve the problem of propagation of X-ray
waves through a system of lenses and focusing of the X-ray beam. There are several
methods of solving the problem of X-ray wave propagation through a system of
many lenses. For example, in [3], a resourceful method based on replacement
of a system of lenses with one long lens with an average refraction index has
been developed and applied. Also, some approximate solution may be obtained
by consequent combining of solutions of Equation (2) without the refraction term
with solutions of the Equation (1) [11]. All these approaches are noteworthy, but
they are not rigorous, whereas we try to develop rigorous methods and to get
accurate estimates of accuracy of methods.

We intend to solve Equation (3) numerically, with the help of the finite-
difference methods, and we consider Equation (3) in the parallelepiped 2 with
a sufficiently large size. This parallelepiped includes all lenses by supposition.

We denote by 9€) the boundary of the parallelepiped, which is intersected
by the y, z axes. We denote by S the square which is the intersection of the
parallelepiped with the plane Oyz. Within the square S, we define a difference
mesh with the nodes (y,,,2,,) and with a constant step h along axes y, z.

The finite-difference methods may not by the most efficient, but they are
very flexible and universal, and they are good for obtaining general information
about the solution’s behavior.

We approximate Equation (3) by the following system of ordinary differen-
tial equations
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We impose a natural boundary condition A4,

0= 0 on the border 0.

The system of ordinary differential Equations (5) can be solved with the use
of any standard numerical method, which enables solving a system of ordinary
differential equations; for example, we can apply the Runge-Kutta method of the
second order of accuracy.

The stability and convergence of the suggested method has been proved
in [14].

3.1. Estimation of accuracy of numerical stmulation

It is well known that the accuracy of finite-difference simulations can be
found out by comparing the computations made in various steps of the difference
mesh.
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Table 1. Test simulation parameters

number of aluminum lenses N =33

lens curvature radius R=0.2mm

energy 15keV

Wy 7.254-7-1018 571
2.414-10°°

15} 1.299-1078
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Figure 1. Results of hard X-ray focusing with 33 perfect aluminum lenses immediately after
the lenses (right), and at a distance of 1.298 m from the lens (left)
with FWHM = 3.92 um, and focal distance =1.2470340 m

We provided a computation of X-ray propagation and X-ray focusing and
we found parameters of a focal spot for the optical system with parameters given
in Table 1.

The results of simulations of X-ray propagation through one-dimensional
lenses, which depend on the number of nodes and a grid step h are shown in
Table 2.

Table 2. Results of computation of the focal distance and FWHM for different values of h.

number of points h FWHM | focal distance
1 40000 0.000000025 | 3.95um | 1.2480707m
2 50000 0.00000002 | 3.92pum | 1.2470340m

We want to estimate the numerical solution error. The Runge rule [15] of
practical estimation of the numerical computations error is well known in the
numerical methods theory. For the first time the Runge rule was formulated for
approximate computation of integrals, but this rule is applicable also to estimate
the accuracy of other quantities. The electric field depends on coordinates, but
the Runge rule is applied for estimation of the accuracy of quantities which are
independent from coordinates. The focal length and the FWHM (full width at half
magnitude) are important characteristics of an optical system.
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In the classical variant of the Runge rule, the computations carried out with
a fixed step and a double step are used. In our case, the steps in both cases of
computations are not very different. Therefore, we generalize the classical Runge
rule to a more general case, when the steps are different, but not necessarily equal
to h and h/2.

3.1.1. Modified Runge rule and its application for evaluation of errors of
numerical simulations

Let us compute the Z value approximately, and let Z;, and Z, be the
results of approximate computations performed with steps h, and h,, respectively
(hy < hy), and let the main error term @ have a structure of Q = C'*h*, where h
is a step, C is a constant, and k£ denotes the accuracy order of the method. Then,
it is easy to show that

(6)

The numerical method (5) is a method of the second order of accuracy,
therefore we have to take k=2 in (6). We apply the Runge rule (6) to the results
of computations in Table 3 and we find that the error of computation of the
FWHM is approximately 1% and the error of computation of the focal length is
0.2%. That is, for N =40000, the simulation accuracy is acceptable, but it is not
very high. The focal length for the optical system as described in the Table is
computed more accurately than the FWHM.

Therefore, we have come to the outcome that one needs to use about
40000 points of a difference mesh along each axis in order to compute reliably
the parameters of the focal spot with two significant figures. It also means that
the high-accuracy simulations of propagation of an electromagnetic wave through
a system of 33 two-dimensional aluminum lenses require that a supercomputer is
used.

3.2. Discussion and explanation of simulation results

In this section we want to understand why a very detailed mesh is necessary
to guarantee precise simulations. Is it a feature of the applied finite-difference
method, or maybe some complicated behavior of the wave exists which compels
to use a very detailed mesh?

We shall see below that a detailed mesh is needed due to the behavior of
the wave which passes through many lenses.

The right-hand-side term of Equation (3) is comparatively small [9, 11]. If
we neglect this small right-hand term, we obtain an approximate formula (7) for
the function A (x,y,z). This formula approximately describes the behavior of the
wave field A (x,y,z), which passes through a system of N lenses [9, 11]:

2 2
iy Yy +z
A, % A, )0 (g2 = L) B ) (7)
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6N’
the number of lenses. Here A(0,y,z) is the electric field before the lenses. In

where 2 =

R is a radius of curvature of parabolic lenses and N denotes

202
simplicity, we have put =0, though consideration of attenuation is not difficult,

the calculations, we used the function A(0,y,z) =exp (—y2+22 ), o =50 um. For

but taking attenuation into account it is not important for our estimates.
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Figure 2. Field R(A) immediately after the wave passed through one lens, a system of 10
lenses and a system of 33 lenses; the computations are made with the formula (7).

When we use many lenses, and the frequency is high and the curvature
of lenses is small, then the denominator {? is small. For an optical system of 33
aluminum lenses and energy of X-ray waves 15keV, [~6-10"%m

It is obvious that in numerical simulations phase ¢ in (7) has to be varied
insignificantly at one step h of the difference mesh. This means that the conditions
‘%h’ < 1, ’g—zh‘ <« 1 should be satisfied. If we take the lens aperture d into
consideration, we obtain the condition h < [? ~10~" m that is comparable with &
presented in Table 2

The phase ¢ becomes a faster and faster growing function, when the wave
passes through a system of 33 lenses. Correspondingly, the function A(z,y,z2)
becomes an increasingly faster oscillating function, when the wave passes through
the system of 33 lenses, and therefore, we are compelled to use a very detailed
difference mesh for digitizing such a function. The field R(A) for the waves, which
passes through systems of one-dimensional lenses, depends on the number of lenses
in the system, which is shown in Figure 2. The charts clearly explain why a very
detailed mesh is needed in the case of many lenses. Obviously, a very detailed
mesh is required in order to digitize the behavior of the fast oscillating function,
but it is not caused by any peculiarities of the applied mathematical methods.

4. Equation for a phase-function instead of equation for
an electric field as a technology of accurate simulations

In the investigated problem of wave propagation through lenses, the refrac-
tion term is not large, but nevertheless accurate consideration of the contribution
of this term is necessary.
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The approximate solution (7) shows that it is expedient to change the
dependent variable in Equation (3) and to search for a solution of Equation (8)
in the form:

A(z,y,z) = e ®@v?) (8)
The suggested replacement of the dependent variable is expedient because while
the function A (z,y,z) is quickly oscillating, the phase-function ® (z,y,2) is a usual,
large-valued, but non-oscillating function. Therefore, if we simulate the behavior
of the phase-function ® (x,y, z), then the necessary difference grid requirements are
essentially lower, and we can easily reach high accuracy of computation of ®. Then
one can easily calculate the electric field A(x,y,z) by means of the formula (8).

The function A(z,y,z) is defined unequivocally, if we know @ (z,y,z2).
However, the ®(z,y,2z) is defined by A(x,y,z) ambiguously. Fortunately, we
have a priori information about the initial function ®(0,y,z2): the incident X-ray
wave before the lenses has a phase being approximately constant and slowly
dependent on the coordinates. It fully determines the correctness of the statement
of condition ®(0,y,z).

The equation for ®(x,y,z) is derived elementarily and has the following
form:

0®(w,y,2) . e | (0% | 92
T—lb(%%z)—m i Tyg‘i‘@ O(x,y,2)

_ (3‘?(;;/72))2 B <3¢(g;y72)>21

We suggest using this equation instead of Equation (3) for simulations of propa-
gation of a monochromatic X-ray wave through a system of lenses.

Due to the reasons described above, Equation (9) allows providing easily
high-accuracy computation of X-ray wave propagation through a system of lenses.
This equation is especially productive in the case of many lenses.

If the experiment scheme is such that a sample is located before the system
of lenses, then Equation (9) also has to be used for simulation of propagation of
X-ray waves through the sample.

The Equation (9) is widely known; it was first proposed by Rytov S.M. in
1937, when he considered the diffraction of light on ultrasonic waves. In Rytov’s
theory [16], the supposition that the medium parameters are slowly changing
with coordinates has been used for derivation of an equation in the form (9).
During our derivation of the Equation (9), the assumption of slow variation of
medium parameters was not required, and the Equation (9) follows directly from
Equation (3). Weakening of the requirements apparently has become possible due
to the high penetration capability of X-ray waves, which leads to a slow change
of wave parameters even when medium parameters are changed abruptly.

Rytov S.M. has developed a perturbation theory for solution of the Equ-
ation (9), the method of smooth perturbations. This perturbation theory starts
from the linearized equation, and the contribution of nonlinear terms is taken
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into account in the following orders of the perturbation theory. Rytov’s perturba-
tion theory is hardly acceptable for solution of our problem because the nonlinear
terms play a leading role in our problem of focusing. We will solve the Equation (9)
with a finite-difference method, without any simplifications.

If we neglect the refractive term in (9) and if we put b(z,y,z) =0, then we
arrive at a geometrical optic equation, written in the approximation when only
the wave along the positive direction of z-axis is taken into account and when
the scales of the wave along y, z axes are much larger than the scale of the wave
along x-axis.

4.1. Example of calculation of wave propagation and focusing
with the help of equation for a complex phase
Below we solve Equation (9) with a finite-difference method. The numerical
scheme for solving the Equation (9) is similar to (5), but the nonlinear terms are

taken into account. The numerical solution for the case of one-dimensional lenses
has been computed for the following values of the parameters

e the number of beryllium lenses N =30
e the lens curvature radius is R =50 um
e energy of 12.4keV (wy=6-7-10%¥s71)
e §=22156-10"%, 3=23.1801-10"1°
e form of A before lenses: A= ﬁexp (f%» o =297 pm.
The computation results are shown in Figure 3—4. As can be seen, the real

part of ® is changing almost linearly, but still it changes extremely fast after the
set of lenses.

02 0 02 3ig ¥ 0

~10F

—12.t

Im(®)
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Figure 3. Imaginary part of ® (it can be also described by —In|A| on y). Blue - initial
condition, Red — results 4cm after set of lenses, Yellow — results 20 cm after set of lenses,
Green — results 36 cm after set of lenses. Calculation provided for 4000 points.
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Figure 4. Real part of ®. Blue — initial condition, Red — results 4 cm after set of lenses,
Yellow — results 20 cm after set of lenses, Green — results 36 cm after set of lenses. Calculation
provided for 4000 points.

4.1.1.  Consideration of the complex phase method accuracy

For the investigation of the computational error, we performed simulations
with 4000 points and 8000 points and we evaluated the computational error with
the Runge rule (6). The results of FWHM and focal length calculations are shown
in Table 3.

Table 3. Table with results obtained with numerical solution of Equation (9)

Number of points h FWHM at 0.34m after CRL | focal distance
4000 0.00000025 17.3315 um 0.36575m
8000 0.000000125 17.3056 pm 0.365938 m

An analysis of the computational results in Table 3 showed that the
computational error of the focus distance was less than 0.07%. The computational
error of the FWHM at the distance of 34cm was less than 0.2%.

Thus, using Equation (9) we achieved a high accuracy of the results, despite
the fact that the mesh used in this simulation contains 10 times fewer points along
each direction than in the previous case. In the case of two-dimensional lenses, the
Equation (9) allows using 100 times fewer mesh points. In this sense, application
of the Equation (9) is justified.

Moreover, when we integrate the equation, thanks to the use of the 10-fold
step h with respect to the previous case, without any loss in accuracy we can use
also the 100-fold steps along the O X-axis. Therefore, we have a 10*-fold decrease
in the number of computations.

Figure 4 shows the effect of focusing of an X-ray wave by a CRL consisting of
160 lenses; the simulation was performed using the Equation (9) for the complex
phase.
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Figure 5. Imaginary part of @ (it can be also described by —In|A| on y). Focal spot for 160
lenses (focal distance — 7mm after last lens). Calculation performed for 4000 points.

4.1.2. Range of applicability of the complex phase method

The focal spot size is very small, and only a small number of mesh points
belong to the focal spot. Therefore, despite the fact that the parameters of the
focal spot are computed with a high accuracy, the numerical simulation accuracy
greatly falls at a distances where the wave passes through the focal spot.

In order to simulate complex phase changes (9) at distances greater than
the focal distance method, what is described above is unadvisable and some
other methods would be preferable. For example, if we are interested in distances
somewhat greater than the focal distance, then we can use the symmetry of the
wave field. This approach is described below in the Section 4.1.3.

When the distances under consideration are much greater than the focal
distance, it is advisable to apply a numerical method based on an analytical
solution of the equation (1).

4.1.8. The use of spatial symmetry

We will consider the simulation of the wave field at small distances after
the focal distance. In this case, a very simple way to compute the wave field may
be based on symmetry.

We begin with consideration of a system of ideal lenses. After the wave
passes through a system of lenses, a focal spot is formed. It is convenient to
introduce a selected point in the focal spot — the center of symmetry — which we
call the focus. We define a focus position (z4,yy,2;) (center of symmetry) at the
point of a maximum of |A(z,y,z)|.

For the sake of simplicity, while the optical system which consists of ideal
lenses is considered, we can suppose that x; =0, y; =0, z; =0. The point x, y,,
zy is a point of central symmetry, so

O(x,y,2)=—0"(—x,—y,—2)+a (10)
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Here a is a real constant; without loss of generality, we can take a =0. Near the
focus-point, the condition (10) is satisfied only approximately, because on any
plane x = const the wave field is formed by the waves, which have passed through
the focal spot, and by waves which propagate along the optical axis and were
subjected to the effects of focusing. However, the amplitudes of the latter waves
are very small and these waves can be neglected.

We now turn to the general case. Let us suppose that the end of the last lens
coincides with the plane z =z . If the plane x =0 is placed directly before the
lenses, then z; is equal to the total thickness of all lenses. We define the position
(z4,ys,2;) of a symmetry center — the focus — as an absolute maximum of the
function |A(m,y,z)| at >z ;. We do not assume that z, =0, y; =0 because the
lenses may be imperfect, and the focus may be not exactly on the axis OX, but
may be slightly off the OX-axis.

Moreover, in the case of imperfect lenses, the function |A(x,y,z)| may
have additional local maxima at some distances of the main peak. However, we
assume that the deviations of lenses from an ideal are not strong, and the central
symmetry approximately holds.

We denote the solution of (9) at z, <z <z; by ®y(z,y,2). The function
D, (z,y,2z) can be easily computed using the direct numerical integration of the
Equation (9), and therefore we assume that it is known. Due to the central
symimetry

O(x,y,2) =—Df (Qxf—x,ny—y,sz—z> (11)
Thus, we have constructed an approximate solution ®(x,y,z) of the Equation (9)
at z < (Qxf—xL>.

Considering the distances x > <2xf—xL)7 it is advisable to take it into
account that the linear dimensions of the image are enlarged at large distances. It
is therefore advisable to calculate the enlarged image on a mesh corresponding to
the size of the enlarged image. It is expedient to use the advantage that we know
V(zx=uxy,y,2z) with high accuracy. The appropriate method of computation will
be published somewhere else.

5. Conclusions

The paper considers simulations of propagation of monochromatic X-ray
waves through a system of many lenses. We analyze the accuracy of numerical
simulations and we develop high-accuracy methods.

e A general equation for the electric field with variable coefficients, allowing
consideration of the problem of propagation of X-ray waves through a sys-
tem of lenses is suggested as the problem of propagation of X-ray waves in
an inhomogeneous medium with given properties is suggested.

e A finite-difference method for solving the general equation is developed
and applied for solving the problem of propagation of X-ray waves through
a system of 33 aluminum lenses.
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With the help of the Runge rules the simulation error is estimated and
studied. It is shown that the mesh with about 40000 points along each
direction perpendicular to the optical axis is required for an acceptable
accuracy of the approximate solution.

The reason why a detailed mesh is necessary is analyzed. It is shown that,
after the wave passes through many lenses, the wave field A(z,y,z) becomes
a fast oscillating function of y, z variables; the digitization of the behavior
of such waves on a less detailed mesh is not possible.

The dependence of the wave field A(z,y,z) on the number of lenses is
examined. When we do not use many lenses, the function A(x,y,z) is not fast
oscillating. However, the oscillation frequency increases exponentially with
the number of lenses, making computations based on the parabolic equation
difficult or impossible due to huge quantity of computations. The frequency
of oscillation increases towards the aperture edges, so the computation
quantity essentially depends on the width of the beam incident on the lenses.
To circumvent the problem of the fast oscillating field and make high-
accuracy simulations for many lenses possible, the equation for a complex
phase is proposed. The electric field is easily calculated by a complex phase.
The complex phase equation is solved by finite-difference methods, and ad-
vantages of the method is demonstrated. The method allows high-accuracy
simulations for many lenses, despite the fact the A(z,y,2) is fast oscillating
in the case of many lenses.

The proposed method has particular advantages in the case of many lenses.
As an example, the focal spot of the X-ray wave, which propagates through
the system of 160 lenses, is computed and shown in details.
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