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Abstract: A numerical model of propagation of internal gravity waves in a stratified medium

is applied to the problem of tsunami wave run-up onto a shore. In the model, the ocean and

the atmosphere are considered as a united continuum in which the density varies with height

with a saltus at the water-air interface. The problem solution is sought as a generalized (weak)

solution; such a mathematical approach automatically ensures correct conditions of matching of

the solutions used on a water-air interlayer. The density stratification in the ocean and in the

atmosphere is supposed to be described with an exponential function, but in the ocean a scale

of the density stratification takes a large value and the density changes slightly. The initial wave

running to a shore is taken in the form of a long solitary wave. The wave evolution is simulated

with consideration of the time-varying vertical wave structure. Near the shore, the wave breaks

down, and intensive turbulent mixing develops in the water thickness. The wave breakdown

effect depends on the bottom shape. In the case when the bottom slope is small and the inshore

depth grows slowly with the distance from the shore, mixing happens only in the upper stratum

of the fluid due to the formation of a quiet region near the bottom. When the bottom slope

takes a sufficiently large value, the depth where fluid mixing takes place goes down up to 50

meters. The developed model shows that the depth of the mixing effects strongly depends on

the bottom shape, and the model may be useful for investigation of the impact strong gales and

hurricanes on the coastline and beaches.

Keywords: tsunami, stratified fluid, internal wave, numerical modeling, wave breakdown,

mixing, turbulence, ocean

1. Introduction

Many monographs (see, for example, [1–11]), Internet resources [12–14] are

devoted to the modeling of the generation and propagation of tsunami waves in
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the ocean. Advances in the study of tsunami waves are significant. Nevertheless,

the tsunami waves are very interesting objects of research. When a tsunami wave

arrives at shoal-water, the wave breaks, and very intensive turbulent mixing of the

liquid originates. These mixing processes are evolved not only in water, but also

in the atmosphere. This stage of development of the tsunami waves, characterized

by the emergence and development of turbulent mixing in the liquid, is rather

difficult for numerical simulation, and success in its study is much less significant.

At the same time, these processes of intensive turbulent mixing of the liquid are

very important because large devastating effects of tsunami waves are due not only

to the water level rise, but they are also a consequence of involving of all bodies

and subjects in intensive mixing and movement. In this study, a numerical model

designed to simulate and study the tsunami wave destruction and the formation

of liquid mixing is developed and applied.

The up-to-date numerical models of tsunami wave propagation are de-

scribed, in particular, in [15–17]. A series of TSUNAMI programs is described

in [15]; the numerical model MOST is given in [16]; the refined variant of the

FUNWAVE program is suggested in [17]. The majority of models of tsunami wave

propagation are based on versions of shallow water equations. Shallow water

equations are written for fluid variables averaged over a vertical variable. This

approach simplifies fluid equations significantly and allows simulation of propaga-

tion of waves in the ocean up to long distances with excellent accuracy. However,

because of averaging over a vertical variable, the shallow water equations do not

describe fluid mixing effects. Consequently, we cannot use shallow water equations

for simulation of tsunami wave breaking and occurrence of fluid mixing.

The various Korteweg models with variable coefficients as well as Gardner’s

equations describe the coming of a tsunami wave onto a shoal-water, with

consideration of the interior vertical structure of the wave (see [18] and the

literature listed there). However, these models are asymptotic, and they have

a restricted field of applicability.

In the analysis of applicability of a specific numerical model to simulate the

processes of wave breaking and fluid mixing, we must keep in mind an important

point. The spatial scale of the wave can change by orders of magnitude following

the breaking of an incoming wave and the development of turbulent mixing.

Under such circumstances, the exact implementation of fundamental con-

servation laws of the numerical method is very important. The energy law conser-

vation follows automatically from differential equations for density and momen-

tum. However, finite-difference equations differ from differential equations and

the energy conservation law does not follow from the conservation of mass and

momentum for the finite-difference equations. The corresponding checking of ful-

fillment of the exact conservation laws is not made for the existing numerical

free-surface models [19–21]; and the formulas [19–21] are very difficult for an-

alyzing the conservation laws, since the calculations are multistage and contain

a lot of corrective additives.
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In the work [19], the TVD-scheme has been proposed for modeling of wave

propagation in a heavy fluid with a free surface over an uneven bottom. The

numerical method [19] has been verified by comparing computer simulations

with laboratory experiments in a tank with the dimensions 40 sm ·20 sm ·4 sm,

and good agreement of numerical simulations with experimental data has been

demonstrated. The spatial scale of the waves in the tank is not large, and

therefore viscosity substantially enough affects the wave processes in the tank [19].

It is well known that the viscosity smoothes the solution and it simplifies

the numerical integration of equations. In particular, the implementation of

fundamental conservation laws is facilitated due to the smoothing action of

viscosity. The spatial scale of real ocean waves traveling to a coast is at least

a thousand times greater than the scale of the waves in the tank. The breaking up

of ocean waves has to undergo many stages before the scale of new very small-scale

waves become comparable to the scale of the waves in the tank. Obviously, the

effects of viscosity are small at these first stages of propagation and destruction

of ocean waves. Thus, the idea of the model [19] to take viscosity into account in

order to ensure the solution smoothness is unlikely to work in the modeling of real

ocean processes; and we have to consider the general case and to assume that the

solution can be non-smooth and apply the appropriate complex mathematical

methods, developed on the assumption that the problem solution can be non-

smooth.

In [21], some improvements of the numerical scheme [19], giving methods

useful for modeling the processes in coastal areas are proposed. The models [20, 21]

do not take into account the viscosity, since the viscosity influence is negligible

for the processes under consideration, but they take into account the diffusion of

turbulent mixing or turbulent viscosity, which are significant

The numerical models that use semi-empirical turbulence models (k-ε

model as [20], or turbulent viscosity, as [21]) require an empirical choice of the

turbulence coefficient. Due to the complex dynamics of the waves, turbulent

coefficients may depend on time and coordinates. Natural processes, in contrast

to the experiments in tanks, are not reproducible. It gives us some problems when

we set up the turbulence models.

In [22–24], some problems with the free liquid surface have been solved

under the assumption of the potential movement of the liquid.

The numerical model used in this study is a two-dimensional non-hydro-

static model designed to simulate the propagation of internal gravity waves in

a stratified fluid. Initially, this numerical model was developed to simulate the

propagation of internal waves in a medium with a continuous density stratification.

Nevertheless, the model is universal enough, and in this paper, we apply our

numerical model to simulate the waves in a medium with a density jump. In our

model we interpret the ocean and the atmosphere as a single continuum. The

density of this continuum has a jump at the air-water interface.

Since the atmosphere is taken into account in our model, along with a wave

in the ocean, some atmospheric disturbance induced by a wave in the ocean is
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also simulated. The relation of our model to the models [19–21] is the following:

if we substitute the expression ρ(x,z,t)= ρwater ·η
(

−(z−σ(x,t))
)

for density into

our Equations (1), where η is a unit step function and σ(x,t) is a function

describing the water-air interface, then our equations (1) turn into equations

similar to [19–21]. Hence, we can treat our model (1) as some generalization

of the models [19–21].

Unlike in [19], viscosity is not taken into account in our Equations (1),

because it is negligible for the considered waves. Unlike in [20], we do not use

the k-ε model to account for the turbulent diffusion mixing, and unlike in [21],

we do not consider turbulent viscosity in our model. Modeling of the appearance

of turbulent mixing of the liquid and the research of mixing is one of the main

interests of our work, and therefore, the use of any parameterization of mixing

processes contradicts the aims of our study.

In [25], our model has been used to simulate mixing processes in fluids with

a continuous stratification, and the numerical calculations have been compared

with laboratory experiments. It has been shown that our numerical method

provides a good description of early stages of mixing fluids. However, analyzing

the numerical model [25], we have to note that vortexes are destroyed by

development of fluid mixing, and since some instant the resolution of our mesh

becomes insufficient to resolve small formed vortexes and the viscosity effects

become significant. Since that time, the turbulent mixing has been modeled

only qualitatively, and we cannot guarantee an accurate quantitative description.

However, in the early stages of wave destruction, the scales of emerging new

vortexes are not very small, and the accuracy of our model is quite satisfactory.

In this paper, we are interested only in fairly general characteristics of the studied

process: at what distance from the coast the fluid mixing takes place; to what

depth this fluid mixing penetrates; and how the mixing depth depends on the

bottom form. The proposed model is quite adequate for the study of these fairly

general characteristics.

Versatility is an important feature of the considered model. The model

allows taking into account the details of the density stratification of ocean water.

Our model takes into account the interaction of oceanic and atmospheric

waves. As the atmospheric gas density is low, the atmosphere has little effect

on the propagation of long waves in the ocean. The atmosphere is incorporated

into our model only due to difficulties in describing the water surface at the

break of waves. From observations, we know that small-scale structures with thin

scales up to individual water droplets often occur when a wave breaks. Foam

often appears on the water surface. The function describing the water surface can

become ambiguous in the considered process. The water surface is not explicitly

involved in our model and we have no problems with the water surface description,

but the inclusion of air into consideration may cause some trouble. However, we

are not going to describe the process in detail, down to the individual droplets

possibly formed. The energy of individual droplets or foam is not significant. Thus,
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we can take air into consideration, but we do not need to describe the evolution

of the water surface in detail.

Nevertheless, the interaction of ocean waves with the atmosphere is inter-

esting to explore . The simulation shows that an atmospheric disturbance induced

by the wave in the ocean exists and propagates together with the ocean wave. In

the atmosphere, wind is generated over the ocean wave; the wind direction is

opposite to the direction of water movement in the ocean wave. This velocity

shift creates conditions for the occurrence of secondary small waves on the water

surface, resulting from the interaction of the oceanic wave with the atmosphere.

Atmospheric gas can also influence the wave disintegration. Although the air den-

sity is low, but air can exacerbate instability. For example, the water flow moves

in vacuum without breaking, but in air this water flow disintegrates and can fall

apart to droplets due to instabilities arising at the air-water interface.

In [25], the author has shown that simultaneous implementation of all the

fundamental conservation laws and certain inequality for density given in [25], is

a prerequisite for stability and convergence of the numerical method. Simultaneous

implementation of all the fundamental conservation laws and the inequality for

density has been proven in [25] for our numerical model.

The same numerical approach has previously been used for modeling of

propagation and destruction of waves in the atmosphere and has allowed simu-

lating the formation of turbulence at the turbopause altitudes in the atmosphere

(about 100km) due to destruction of internal gravity waves, propagated upward

from land-based sources [26, 27].

2. Problem Statement

We consider the two-dimensional movement of an incompressible fluid

placed in a gravity field; the fluid moves over an irregular bottom and the flow is

described by the set of equations
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followed by Euler’s equations for an incompressible fluid. Here ρ is the medium

density; Ψ is a flow function; t is time; g is the acceleration of gravity; x is

a horizontal coordinate; and z is a vertical coordinate. u = ∂Ψ
∂z
is a horizontal

velocity; w=−∂Ψ
∂x
is a vertical velocity.

The behavior of atmospheric parameters is governed by the same equations,

but with the density value equal to the atmospheric gas density. That is, the

atmosphere is described in the model by incompressible fluid equations. The use

of an incompressible fluid approximation for an atmospheric gas is justified by
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the fact that the atmospheric gas density is small; thus, the energy of waves in

the atmospheric part of our model is small, and high accuracy of the atmospheric

part of the model is not required. The characteristic time of the processes of

tsunami wave propagation is estimated about 100 s; and one can show that an

incompressible fluid approximation well describes these slow processes, even in

case of gas.

At t=0, the density ρ
[

kg
m3

]

is given by the formula:

ρ(x,z,0)=







1000 ·exp
(

− z

HW

)

z < 0

1.2 ·exp
(

− z

HA

)

z > 0
(2)

The formula (2) describes the real change of atmospheric gas density with altitude

(z > 0), and model behavior of the ocean water density (z < 0). HA = 8km is

a scale of the air density stratification, HW = 100km is a scale of the water

density stratification. At t > 0, the density behavior is calculated by solving the

system of equations (1).

Difference approximation of equations always introduces some errors in

a computer model. These approximation errors are equivalent to the appearance of

some additional sources of mass, momentum, energy in equations. It is impossible

to avoid these approximation errors, but we can find such difference schemes

where these additional sources of mass, momentum, energy offset each other in

the average. To do this, the original equations are rewritten in an integral form,

in the form of fundamental laws of conservation of mass, momentum and energy.

We need to construct a numerical scheme, so that the fundamental conservation

laws in their integral form are satisfied. That is, we require that changes with

time of integrals of conserved quantities over any volumes be equal to the flows of

these quantities through the volume surfaces (in a discrete model, the integrals are

approximated with integral sums over corresponding mesh points). The numerical

schemes, supporting the fundamental laws of conservation of mass, momentum,

and energy in the form of integral sums, are called conservative. The integral

equations do not contain differentiation; thus, the requirement of differentiability

of the solution is removed. The solutions that meet the fundamental conservation

laws in an integral form are called generalized or weak solutions. The conservative

numerical method has the advantage that, although discretization of the equations

introduces errors into the model, the fundamental conservation laws are carried

out with high accuracy for large volumes with diameters larger the spatial mesh

step; thus the fluid flow is properly modeled on scales exceeding the mesh step.

In case when a clear interface between fluids with different densities exists

and when the interface can be described with a differentiable function, the stan-

dard conditions of matching of the solution used on the interface automatically

follow from the definition of a generalized solution. It is important that the tech-

nique of generalized solutions is applicable also to the cases when the interface

between fluids is so complicated that the interface behavior cannot be described

within the framework of differentiable functions. Such a very complicated behavior
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of the interface between fluids can occur when the wave overturns and breakdown

of the wave takes place.

A conservative numerical method of second-order accuracy in space and

time is used to solve the equations (1). The difference scheme is explicit-implicit.

The spatial mesh “cross” is used. The numerical method was designed and pro-

grammed with the help of a program of symbolic computations. The computa-

tional formulas of completely conservative numerical methods are very cumber-

some: the finite-difference equation for the stream function takes more than a page

of text. Therefore, this finite-difference equation is not written in the paper. The

applied difference grid, the derivation of the finite-difference formulas, the proof

of complete conservativeness of the method, the test results are published in [25].

The problem is solved in a rectangular domain of 2km altitude and

30km wide (Figure 1). The atmospheric gas is in the upper part, at altitudes

0km < z < 1km; either ocean water or ground is at the bottom, at altitudes

−1km<z < 0km. The condition Ψ|
∂Ω=0 of impermeability of liquid is imposed

along the boundary ∂Ω of the domain Ω. The condition Ψ|ground =0 is imposed

everywhere on the ground field. The field of the ground is artificial; this field is

included in the problem in order to simplify the work with boundary conditions

and programming of calculations. The ocean shore meets the mark 0.0 on the

horizontal axes. To the left of mark 0.0, when x < 0, the liquid is absent, and

there is only ground and atmospheric gas above it.

A solitary wave travelling to the shore has been set as an initial condition

of the problem. This initial solitary wave is constructed as follows. From the

theory of long surface waves, we borrow an exact solution for a solitary gravity

wave travelling to the shore. This solitary-type stream function is applied only

to water. We define the stream function in the atmospheric part of our model in

such a way that it is continuous at the water-air interface, and it is zero at the

boundary of our region Ω. We obtain:

Ψ(x,z,0)=A
g

c(x)
exp

(

−

(

x−x0
λ

)2
)

ϕ(z,x)

ρ(x,z,0)= ρ0

(

z−Aexp

(

−

(

x−x0
λ

)2
))

ϕ(z,x)=

{

(

z+hW (x)
)

z < 0
hw(x)
hA
(hA−z) z > 0

(3)

Figure 1. Rectangular domain in which the equations are solved
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Here hW (x) is the ocean depth; c(x)=
√

ghW (x); hA=1km is the upper boundary

of the atmosphere in our model; A= 10m. The calculations were performed for

two variants: (a) the angle of the bottom slope near the coast is 45◦ (b) the

bottom slope angle near the coast is 10◦. In case (a), parameters: x0 = 14km is

the distance from the center of the initial wave up to the shore; λ=5km is a half-

width of the wave; the inclined bottom turns into a flat horizontal plateau at the

depth of 1km. In case (b), parameters: x0 = 14km; λ= 4km, the bottom turns

into a horizontal plateau at the depth of 650m. Case (a) is calculated to test the

model and to understand what the incoming wave represents in our model.

The initial solitary wave propagating in the ocean and in the atmosphere,

is a moving vortex, a portion of which is in the ocean, and the other part is

in the atmosphere. Although we have defined the atmospheric flow function by

artificial means, the occurrence of a single vortex, which is partly in the ocean,

and partly in the atmosphere, is a natural phenomenon. This is a consequence of

the boundary conditions and the requirement of continuity of the stream function

on the interface.

3. Outcomes of numerical modeling

One of the goals of this work is to show that the numerical model l [25]

not only describes the propagation of internal gravity waves in a continuous

stratification, but also describes the propagation of a wave in a stratification with

a jump in density. In particular, the model allows us to simulate the propagation

of tsunami waves.

The applied difference mesh uses variable steps. In case (a) (the angle of

the bottom slope is 45◦), the horizontal mesh step is up to 400 meters at large

distances from the shore, and the vertical mesh step is up to 10 meters at altitudes

far from the ocean surface. The horizontal mesh condenses when reaching the

shore, and the vertical mesh condenses when approaching the ocean surface. The

coastal horizontal mesh step is reduced to 0.5m, and near the ocean surface the

vertical mesh step is reduced to 0.25m.

In Figure 3, 4, the propagating wave in the atmosphere-ocean system at

t=60s is shown. The simulations show that the vortex is stable, and it propagates

to the shore without breakdown. The speed of wave propagation is approximately

equal 100m/s; it well corresponds to the theory of surface gravity waves. Within

the approach of small-amplitude long waves propagating over a plain horizontal

bottom, it is simple to construct an analytical solution for equations (1) for

initial conditions (3). The outcomes of numerical modeling well coincide with the

analytical solution, and Figure 3 may be considered as a test for our numerical

model.

At t= 60s, the wave front already reaches the shore, and the wave starts

to come under the shore influence. The water level rising begins near the shore.

In the ocean, the fluid flow in the wave is being directed to the shore, but in
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Figure 2. The flow function Ψ for a wave running to a shore, t=0s (variant a)

Figure 3. The flow function Ψ for a wave running to a shore, t=60s (variant a)

Figure 4. The horizontal velocity, t=60s (variant a) (intensity of colours corresponds

to values of velocity)

the atmosphere, on the contrary, the gas is moving from the shore. At the water-

air interface, there is a velocity jump. It creates conditions for development of

instability, and to generate a secondary, smaller surface wave associated with the

influence of the atmosphere on the wave propagated in the ocean.

At t = 90s, the influence of the shore on the wave behavior becomes

significant. The wave stops. Behind the head vortex wave, the vortex pair with

opposite rotation arises. The rising water level near the coast reaches up to

7 meters.

At t=120 s, a small derived vortex comes off from the head of the vortex

wave and goes to the shore (Figure 5). The vortex moving to the shore is strongly

deformed, and at some distance from the coast, there are small vortices counter-

rotating with respect to the oncoming vortex. Waves reflected from the coast have

formed.

Figure 5. The flow function Ψ, t=135 s (variant a)
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At t=135 s, the water level has risen up to about 16 meters near the coast.

There are small-scale fluctuations on the surface of the density jump; these small

waves have arisen on the interface due to instability of the velocity shift, and they

exist because of the influence of the atmosphere on the main propagated wave.

The impact of the shore on the incoming wave leads to intensive mixing

of the liquid near the shore. Figure 6 shows a horizontal velocity of the fluid; we

can see intense mixing of ocean water and air near the coast. The water mixing

processes extend down to the depth of 50 meters. The mixing process results in

the formation of a small-scale dynamic vortex structure, which however is not

visible in Figure 6 because this picture shows only a general pattern.

Figure 6. The horizontal velocity, t=135 s (variant a) (intensity of colours corresponds to

values of velocity)

For comparison, the arrival of a wave onto the shoal-water and shore with

a slight bottom slope is shown in Figure 7 (case b). The wave disturbance

propagates onto the shoal-water by the same mechanism as in case (a). The

incoming vortex wave is deformed when it arrives close to the shore. Then a child

vortex is separated from the main vortex wave and comes onto the shoal-water.

Nevertheless, the separated head vortex is larger than in case (a), and is strongly

stretched along the horizontal direction. The incoming wave stops far from the

shore. The center of the main vortex slightly rises above the sea level. This effect

is achieved by the water level rising near the coast.

Figure 7. The flow function, t=82.5 s (variant b)

In Figure 8, the water level rise and inundation in case (a) is shown. The

water level rising in case (b) is about the same as in case (a) and in both cases it

is about 16 meters.

The water level rising depends substantially on the momentum and energy

of an incident wave. In both cases, the energies and momentums of the incident
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Figure 8. The coastal flood, t=82.5 s (variant b)

waves are approximately equal. Thus, the water level rises in both cases (a) and (b)

are identical

4. Conclusions

The propagation of waves onto the shore for the bottom slope 45◦ and 10◦

is simulated numerically. It is shown that in this model the tsunami represents

a steady moving vortex, which is partly located in the ocean, and partly in the

atmosphere.

In the ocean-atmosphere system, the movement of the ocean water is close

to a potential movement, and the single vortex in the ocean-atmosphere system

is obtained by means of closure of the flow function through the atmosphere.

The wave propagation velocity is approximately equal to the speed of

propagation of long surface gravity waves.

In the atmosphere, the direction of movement of air is opposite to the

direction of movement of water in the ocean, and a shear of the velocity field

exists on the ocean-atmosphere interface. This velocity shear creates conditions

for the development of instability and leads to the formation of secondary small-

scale waves on the ocean-atmosphere interface over the propagating tsunami wave.

The water level rising in both cases is approximately equal to 16 meters.

The mechanism of penetration of the tsunami wave onto the shore (case a)

or onto the shoal-water (case b) is universal. From the main vortex propagating

to the coast, a derivative vortex is separated and this derivative vortex propagates

onto the shore or onto the shoal-water. As a whole, the wave is reflected from the

shore or shoal-water.

Our simulations allowed us to estimate the depth to which intensive mixing

of the liquid extends near the shore. In case (a), the mixing depth is of about

50 meters. In case (b), the mixing depth does not exceed 20 meters. In case (b),

decreasing of the depth to which the mixing extends, takes place due to the

occurrence of a quiet zone near the bottom under the propagating wave near

the shore. As a result, the main water movement occurs in the top layer, with

a corresponding increase in the flow velocity in the upper layer.
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The water level rise near the shore is caused by the incoming wave energy.

To simulate the processes, a numerical method that supports the fundamental

conservation laws is used; and therefore, we can expect that the inundation of

the shore is calculated correctly. However, the model accuracy has to be further

explored by comparing the calculated results with laboratory experiments and

observations.

Analyzing possible shortcomings of the numerical model, we focus on

smoothing the density profile in the vicinity of the water-air interface. This

imperfection does not affect the overall quality of the simulation because the main

wave energy is concentrated in the water column; and the processes occurring

in the water column determine the behavior of the water-air interface, while

the reverse influence of the water-air interface on the wave as a whole is slight.

However, the problem of more detailed modeling of the water-air interface deserves

further consideration. Perhaps simulation of the behavior of the water-air interface

can be easily improved through the use of a finer mesh, or by improving the finite-

difference approximation of the equation for density.

The authors believe that the experience of modeling of the propagation and

the breakdown of tsunami waves within a two-dimensional combined air-water

model is successful as a whole.

We hope that the developed model can be of some interest in connection

with the problem of destruction of shores and beaches due to severe storms and

hurricanes. Intensive mixing of water during heavy storms and hurricanes can

cause lifting of sand from the bottom, and this effect creates the conditions when

sand can be carried away into the sea or ocean. The coastline stability is highly

dependent on the bottom shape near the shore. This study shows that if the depth

slowly increases with the distance from the water’s edge, the fluid mixing depth

is low due to the formation of a quiet zone near the bottom along the shore, and

in this case, the bottom and coastline should be more stable. If the bottom slope

near the shore exceeds a certain critical level, the intensive mixing of the liquid

during strong waves reaches the bottom near the shore, and washing the bottom

and erosion of the coast can be natural consequences of this phenomenon.
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