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Abstract: We consider a boundary regime problem for 1D wave propagation in a metamaterial
medium with simultaneously negative dielectric permittivity and magnetic permeability. We
apply a projecting operator method to the Maxwell system in the time domain that allows the
space of the linear propagation problem to be split into subspaces of directed waves for the
relations of a given material with general dispersion. After projection, the equations for directed
waves have a maximally simplified form, which is most convenient for numerical and analytical
integration. Matrix elements of the projectors act as integral operators.

For a given nonlinearity and dispersion we derive a general system of interacting right/left
waves with combined (hybrid) amplitudes. The result is specified for the Drude metamaterial
model for both permittivity and permeability coefficients and the Kerr nonlinearity. We also
discuss and investigate singular solitary wave solutions of the system as a limit stationary elliptic
system related to some boundary regimes.
Keywords: metamaterials, directed waves interactions, Drude dispersion, Kerr nonlinearity,
solitary solutions

1. Introduction
The history of research on metamaterials starts from J.C.Bose's work [1].

He studied the rotation of plane of polarisation of electric waves by an artificial
“chiral” structure created by him. One of the intriguing problems for researchers is
related to artificial materials named later metamaterials that are characterized by
both negative dielectric permittivity and magnetic permeability. The ideas con-
nected with the negative refraction index and media appeared in the 1940s–1950s,
and were described in the works of L. I.Mandelshtam [2], G.D.Malyuzhinets [3]
and others. In 1968 Victor Veselago [4] wrote about the general electrodynamic
properties of metamaterials.
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In 2000 David Smith and his group created such a type of structures [5].
Structures with simultaneously negative dielectric permittivity and magnetic per-
meability have been called by many names: Veselago media, negative-refraction
media, backward wave media, double-negative media, etc. [6]. The applications
for metamaterials are broad and varied from the celebrated electromagnetic clo-
aking [7], to new imaging capabilities [8]. A practical implementation of a sub-
wavelength resonator is presented in [9]. The idea for dispersion compensation in
transmission lines using negative-refractive media (NRM) was described in [10].
An interaction of ultrashort pulses with ordinary materials is well understood in
nonlinear optics [11] and extended for metamaterials in [12].

A problem of a derivation, or, bettyer to say – embedding of optical pulses
propagation, directed by its physical sense, need elaboration of special methodics
of Maxwell equations simplification [13]. An element of such method contains
a transition to new variables, e.g. of the form

𝜓± = 𝜀1
2𝐸u� ±𝜇1

2𝐻u� (1)

as did Fleck [14], Kinsler et al. [15] and Amiranashvili [16] in their works.
Other parts of the construction imply a combination of equations with strong
account expansion by small parameters. Some general tool of this kind is based
on a splitting of the evolution space into subspaces of roots of the corresponding
dispersion equation. It in a sense “diagonalizes” the basic Maxwell system that
leads to a set of equations of the first order in time that naturally include
unidirectional equations. A natural construction is realized by a complete set
of projecting operators, each for a given dispersion relation, for a linearized
fundamental system [13, 17]. The method differs from those of [14, 15], as it
allows us to combine equations of the complex basic system in an algorithmic
way even with, after some development, nonlinearity taken into account, and
simultaneously, introduces combined fields named basic modes. It therefore allows
us to effectively formulate a corresponding mathematical problem: initial or
boundary conditions in an appropriate physical language in a mathematically
correct form. The method has many mutual features with the method of [18]

In this paper we apply the approach of projecting operators to the problem
of wave propagation in a 1D-metamaterial with general dispersion originated from
both material relations and nonlinearity. The main exposition of the work is very
similar to [19]: we want to derive a general evolution equation for the mentioned
conditions with minimal simplifications. The methodical differences and results
are highlighted and discussed.

The article consists of an introduction, three sections and conclusion.
In the introduction the currency of the problem and basic ideas of the

projection method are outlined.
In Section 2 we state the problem. We also show, how the material relations

change when dispersion is taken into account.
Section 3 is devoted to projecting the operator construction in 𝜔 and 𝑡

representations (domains).
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Section 4 realizes the main task of the solutions space separation.
In Section 5 we account for nonlinearity and realize the important example

of the Kerr nonlinearity, deriving a system of directed wave interaction.
Numbers 6 and 7 include realization of the program for Drude dispersion

(5) and Kerr nonlinearity (6) models, and hence, finalize the main result of the
paper: a general system of directed wave interaction for this model, popular
in investigations of metamaterials. Section 7 includes also a subsection about
stationary solutions that show the difference between conventional and Veselago
materials.

2. Statement of problem
Our starting point are the Maxwell equations for a simple case of linear

isotropic but dispersive dielectric media, in the SI unit system:

div ⃗⃗⃗ ⃗⃗𝐷( ⃗𝑟,𝑡) = 0 div ⃗⃗⃗ ⃗⃗𝐵( ⃗𝑟,𝑡) = 0 (2)

rot ⃗⃗⃗ ⃗⃗ ⃗𝐸( ⃗𝑟,𝑡) = −𝜕 ⃗⃗⃗ ⃗⃗𝐵( ⃗𝑟,𝑡)
𝜕𝑡 rot ⃗⃗⃗ ⃗⃗ ⃗⃗𝐻( ⃗𝑟,𝑡) = 𝜕 ⃗⃗⃗ ⃗⃗𝐷( ⃗𝑟,𝑡)

𝜕𝑡 (3)

Next we will write the derivatives as:

𝜕u� ≡ 𝜕
𝜕𝑡 , 𝜕u� ≡ 𝜕

𝜕𝑥 (4)

We restrict ourselves to a one-dimensional model, similarly to the publication [11],
developing the results of Kuszner, Leble [19]. We also choose 𝐷u� = 0 and 𝐵u� = 0,
taking into account the only polarization of electromagnetic waves. The simplified
Maxwell equations therefore look as:

𝜕u�𝐷u� = −𝜕u�𝐻u�

𝜕u�𝐵u� = −𝜕u�𝐸u�
(5)

Then, we omit indices for transparency of the formalism view. We introduce four
fields ℰ, ℬ, 𝒟, ℋ as the Fourier images of 𝐸, 𝐵, 𝐷 and 𝐻 that are connected by
inverse Fourier transformations:

𝐸(𝑥,𝑡) = 1√
2𝜋

∞

∫
−∞

ℰ(𝑥,𝜔)exp(𝑖𝜔𝑡)𝑑𝜔

𝐵(𝑥,𝑡) = 1√
2𝜋

∞

∫
−∞

ℬ(𝑥,𝜔)exp(𝑖𝜔𝑡)𝑑𝜔

𝐷(𝑥,𝑡) = 1√
2𝜋

∞

∫
−∞

𝒟(𝑥,𝜔)exp(𝑖𝜔𝑡)𝑑𝜔

𝐻(𝑥,𝑡) = 1√
2𝜋

∞

∫
−∞

ℋ(𝑥,𝜔)exp(𝑖𝜔𝑡)𝑑𝜔

(6)

The domain of Fourier images is called a frequency domain or, alternati-
vely, the 𝜔-representation. The original functions 𝐸(𝑥,𝑡), 𝐵(𝑥,𝑡), 𝐷(𝑥,𝑡), 𝐻(𝑥,𝑡)
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are named as 𝑡-representation or a time domain. Linear material equations in
the frequency domain is considered as originated from the quantum theory or
experiment:

𝒟 = 𝜀0𝜀(𝜔)ℰ (7)

ℬ = 𝜇0𝜇(𝜔)ℋ (8)

Here: 𝜀(𝜔) – the dielectric permittivity of a medium in the frequency domain,
𝜀0 – the dielectric permittivity of the vacuum; 𝜇(𝜔) – the correspondent magnetic
permeability of a medium and 𝜇0 – the magnetic permeability of the vacuum;
ℬ – the analogue of function 𝐵 in 𝜔-representation. For calculation purposes
we need to use 𝑡-representation. In this representation 𝜀 and 𝜇 become integral
operators of the convolution type:

̂𝜀𝜓(𝑥,𝑡) =
∞

∫
−∞

̃𝜀(𝑡−𝑠)𝜓(𝑥,𝑠)𝑑𝑠

̂𝜀−1𝜓(𝑥,𝑡) =
∞

∫
−∞

̃𝑒(𝑡−𝑠)𝜓(𝑥,𝑠)𝑑𝑠 (9)

̂𝜇𝜓(𝑥,𝑡) =
∞

∫
−∞

̃𝜇(𝑡−𝑠)𝜓(𝑥,𝑠)𝑑𝑠

̂𝜇−1𝜓(𝑥,𝑡) =
∞

∫
−∞

�̃�(𝑡−𝑠)ℬ(𝑥,𝑠)𝑑𝑠 (10)

with kernels

̃𝜀(𝑡−𝑠) = 1
2𝜋

∞

∫
−∞

𝜀(𝜔)exp(𝑖𝜔(𝑡−𝑠))𝑑𝜔

̃𝑒(𝑡−𝑠) = 1
2𝜋

∞

∫
−∞

𝜀−1(𝜔)exp(𝑖𝜔(𝑡−𝑠))𝑑𝜔

̃𝜇(𝑡−𝑠) = 𝜇0
2𝜋

∞

∫
−∞

𝜇(𝜔)exp(𝑖𝜔(𝑡−𝑠))𝑑𝜔

�̃�(𝑡−𝑠) = 1
2𝜋𝜇0

∞

∫
−∞

𝜇−1(𝜔)exp(𝑖𝜔(𝑡−𝑠))𝑑𝜔

(11)

Hence:
𝐷(𝑥,𝑡) = ̂𝜀𝐸(𝑥,𝑠)𝑑𝑠 𝐸(𝑥,𝑡) = ̂𝜀−1𝐷(𝑥,𝑡)
𝐵(𝑥,𝑡) = ̂𝜇𝐻(𝑥,𝑡) 𝐻(𝑥,𝑡) = ̂𝜇−1𝐵(𝑥,𝑡)

(12)

The transforms define the fields and the material dispersion relation in the time
domain, using the conventional continuation of the fields to the half space 𝑡 < 0
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and the causality condition [20]. To close the boundary regime problem, we add
the boundary regime conditions:

𝐸(0,𝑡) = 𝑗(𝑡) 𝐵(0,𝑡) = 𝑘(𝑡) (13)

prolonged to the 𝑡 ∈ (−∞,0) range in an appropriate way, that is adjusted to the
experiment.

3. Projecting operators for the boundary regime problem
There is a symmetry with respect to the interchange of the independent

variables 𝑥 and 𝑡. The equations for the electromagnetic field components 𝐸 and
𝐵 (5) are written with use of the dispersion operators as (10), introduced in the
previous sections:

𝜕u�( ̂𝜀𝐸) = −𝜕u�( ̂𝜇−1𝐵)
𝜕u�𝐵 = −𝜕u�𝐸

(14)

The action of operators ̂𝜀 and ̂𝜇 was defined by (9)–(10).
Using the Fourier transformation leads to the system:

𝜕u�ℬ = −𝑖𝜔𝑎2(𝜔)ℰ
𝜕u�ℰ = −𝑖𝜔ℬ

(15)

here:
𝑎2(𝜔) ≡ 𝜇0𝜀0𝜀(𝜔)𝜇(𝜔) ≡ 𝑐−2𝜀(𝜔)𝜇(𝜔) (16)

where 𝑐 is the velocity of light in vacuum:

𝑐2 = 1
𝜀0𝜇0

(17)

We write this system in matrix form:

𝜕u�Ψ̃ = ℒΨ̃ (18)

where matrices Ψ̃ and ℒ are:

Ψ̃ = (ℬ
ℰ ) (19)

ℒ = ( 0 −𝑖𝜔𝑎2(𝜔)
−𝑖𝜔 0 ) (20)

Equation (18) is a system of ordinary differential equations with constant coef-
ficients that have exponential-type solutions. Following the technique described
in [19], we arrive at a 2×2 eigenvalue problem. Let us look for such matrices 𝑃 (u�),
𝑖 = 1,2 that 𝑃 (u�)Ψ = Ψu� would be eigenvectors of the evolution matrix (20). The
standard properties of orthogonal projecting operators:

𝑃 (1)𝑃 (2) = 0
𝑃 (u�)𝑃 (u�) = 𝑃 (u�)

𝑃 (1) +𝑃 (2) = 𝐼
(21)



148 D. Ampilogov and S. Leble

are implied. The inverse Fourier transformation 𝑷 (u�) = ℱ𝑃 (u�)ℱ−1, where ℱ – ope-
rator of Fourier transformation:

ℱΨ = 1√
2𝜋

⎛⎜⎜⎜⎜
⎝

∞
∫

−∞
ℬexp(𝑖𝜔𝑡)𝑑𝜔

∞
∫

−∞
ℰexp(𝑖𝜔𝑡)𝑑𝜔

⎞⎟⎟⎟⎟
⎠

(22)

leads to projectors in 𝑡-representation:

𝑷 (1,2)(𝑡) = 1
2 ( 1 ∓ ̂𝑎

∓ ̂𝑎−1 1 ) (23)

where

̂𝑎𝜂(𝑥,𝑡) = 1
2𝜋

∞

∫
−∞

⎡
⎢
⎣

𝜂(𝑥,𝜏)
∞

∫
−∞

𝑎(𝜔)exp(𝑖𝜔(𝑡−𝜏))𝑑𝜔⎤
⎥
⎦

𝑑𝜏

̂𝑎−1𝜉(𝑥,𝑡) = 1
2𝜋

∞

∫
−∞

⎡
⎢
⎣

𝜉(𝑥,𝜏)
∞

∫
−∞

1
𝑎(𝜔) exp(𝑖𝜔(𝑡−𝜏))𝑑𝜔⎤

⎥
⎦

𝑑𝜏

(24)

4. Separated equations and definition of directed left
and right waves

In 𝑡-representation, matrix equation (18) takes the form:

𝜕u�Ψ = 𝐿Ψ (25)

where

Ψ = (𝐵
𝐸) (26)

𝐿 = ( 0 −𝜕u�𝑎2

−𝜕u� 0
) (27)

It can be checked that the operator 𝑎2, defined as:

𝑎2𝜓(𝑥,𝑡) = 1
2𝜋

∞

∫
−∞

𝑎2(𝜔)exp(𝑖𝜔𝑡−𝑖𝜔𝜏)𝜓(𝑥,𝜏)𝑑𝜔𝑑𝜏 (28)

acts as a square of ̂𝑎, defined by (24).
Making similar calculations, we can find, that ̂𝑎2 is expressed as the product

̂𝑎2 = ̂𝜀 ̂𝜇, that commutes
̂𝜀 ̂𝜇𝜓(𝑥,𝑡) = ̂𝜇 ̂𝜀𝜓(𝑥,𝑡) (29)

We note that this relation is true only if operators ̂𝜀 and ̂𝜇 are convolution type
integrals. For the further operations we also prove the commutation of operators
𝜕u� and ̂𝑎2.
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Acting by the operator 𝑷 (1) (23) on the equation (25) we can commute 𝑷 (1)

and 𝜕u�, because projectors do not depend on 𝑥. Using also the proven relations,
we write

𝜕u�𝑷 (1)(𝑡)Ψ =𝑷 (1)(𝑡)𝐿Ψ = 𝐿𝑷 (1)(𝑡)Ψ (30)
After substituting Ψ and 𝐿 (26)–(27) and 𝑷 (1) (23) we find:

𝜕u� (
1
2 𝐵+ 1

2 ̂𝑎𝐸
1
2 ̂𝑎−1𝐵+ 1

2 𝐸
) = (

− 1
2 ̂𝑎𝜕u�𝐵− 1

2 ̂𝑎2𝜕u�𝐸
− 1

2 𝜕u�𝐵− 1
2 ̂𝑎−1 ̂𝑎2𝜕u�𝐸

) (31)

Applying the projection operators to the vector Ψ (26), we can introduce new
variables Π and Λ as:

Λ ≡ 1
2(𝐵− ̂𝑎𝐸) (32)

Π ≡ 1
2(𝐵+ ̂𝑎𝐸) (33)

Those are left and right (hybrid) waves variables. From (31) and a correspondent
variable obtained by 𝑷 (2) we get two equations that determine evolution with
respect to x of the boundary regime (13):

𝜕u�Π(𝑥,𝑡) = − ̂𝑎𝜕u�Π
𝜕u�Λ(𝑥,𝑡) = ̂𝑎𝜕u�Λ

(34)

Using relations (33)–(32) from (13) we derive the boundary regime condi-
tions for left and right waves:

Λ(0,𝑡) = 1
2(𝐵(0,𝑡)− ̂𝑎𝐸(0,𝑡)) = 1

2(𝑘(𝑡)− ̂𝑎𝑗(𝑡))

Π(0,𝑡) = 1
2(𝐵(0,𝑡)+ ̂𝑎𝐸(0,𝑡)) = 1

2(𝑘(𝑡)+ ̂𝑎𝑗(𝑡))
(35)

This is a system of operator equations for a time-domain dispersion of left and
right waves in a linear case.

5. A general system of interaction of nonlinear
dispersive waves

Let us consider a nonlinear problem. We start again from the Maxwell's
equations (5) with generalized material relations:

𝐷 = ̂𝜀𝐸 +𝑃𝖭𝖫 𝐵 = ̂𝜇𝐻 +𝑀𝖭𝖫 (36)

where 𝑃𝖭𝖫 – the nonlinear part of polarization, 𝑀𝖭𝖫 – the part for magnetization.
For our purposes linear parts of polarisation and magnetization have already been
taken into account. In the time-domain, a closed nonlinear version of (14) is:

𝜕u�( ̂𝜀𝐸)+𝜕u�𝑃𝖭𝖫 = −𝜕u� ̂𝜇−1𝐵−𝜕u� ̂𝜇−1𝑀𝖭𝖫

𝜕u�𝐵 = −𝜕u�𝐸
(37)

The operator ̂𝜇 acting on the first equation of system (37) and using the same
notations Ψ and 𝐿 from (26)–(27) once more, we obtain a nonlinear analogue of
the matrix equation (25):

𝜕u�Ψ−𝐿Ψ = −(𝜕u�𝑀𝖭𝖫
0𝑐𝑟 )−( ̂𝜇𝜕u�𝑃𝖭𝖫

0 ) (38)
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We introduce a vector of nonlinearity:

ℕ(𝐸,𝐵) = (𝜕u�𝑀𝖭𝖫 +𝜕u� ̂𝜇𝑃𝖭𝖫
0 ) (39)

Then, we get a nonlinear analogue of the matrix equation (25):

𝜕u�Ψ−𝐿Ψ = −ℕ(𝐸,𝐵) (40)

Next, acting by operators 𝑷 (1) (23) and 𝑷 (2) on Equation (40) we find:
𝜕u�Π+ ̂𝑎𝜕u�Π = ℕ1( ̂𝑎−1(Π−Λ),Π+Λ)
𝜕u�Λ− ̂𝑎𝜕u�Λ = −ℕ1( ̂𝑎−1(Π−Λ),Π+Λ)

(41)

where
ℕ1(𝐸,𝐵) ≡ 1

2(𝜕u�𝑀𝖭𝖫 +𝜕u� ̂𝜇𝑃𝖭𝖫) (42)
Equation (42) is a system of equations of interaction of left and right waves due to
arbitrary nonlinearity with a general temporal dispersion account. It is a principal
result of this paper.

6. Equations of wave propagation in metamaterial
described by lossless Drude model

6.1. Approximations for Drude model for dispersion
To obtain negative values of the constitutive parameters 𝜀 and 𝜇, metama-

terials must be dispersive, i.e., their permittivity and permeability must be frequ-
ency dependent, otherwise they would not be causal [21]. As it is shown in [22],
if we have a frequency dispersion, the full energy density of the electromagnetic
field will be:

𝑊 =
𝑑(𝜔𝜀(𝜔))

𝑑𝜔 𝐸2 +
𝑑(𝜔𝜇(𝜔))

𝑑𝜔 𝐻2 (43)
𝑊 > 0 if:

𝑑(𝜔𝜀(𝜔))
𝑑𝜔 > 0

𝑑(𝜔𝜇(𝜔))
𝑑𝜔 > 0 (44)

This does not contradict with simultaneously negative 𝜀 < 0 and 𝜇 < 0 [4].
Materials with a typical plasma dispersion (the Drude formula of Lorentz

origin) for both 𝜀(𝜔) and 𝜇(𝜔) are often discussed. The Drude model is a limit case
of the classical Lorentz model and represents a situation of a main contribution of
free electrons that explains its use in the elementary conductivity theory, plasma
physic and metamaterials. For this case we use the relations from [12]:

𝜀(𝜔) = (1−
𝜔2

pe
𝜔2 ) 𝜇(𝜔) = (1−

𝜔2
pm

𝜔2 ) (45)

This model is used by many authors, [23, 24] et al., to describe the material
properties of a metamaterial. The energy density (43) is positive at the 𝜔 range
for which 𝜀(𝜔) and 𝜇(𝜔) (45) are valid:

𝑊 = (1+
𝜔2

pm
𝜔2 )𝐸2 +(

𝜔2
pm

𝜔2 +1)𝐻2 > 0 (46)
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where 𝜔pe and 𝜔pm – parameters, dependent on the density, charge, and mass of
the charge carrier. These parameters are commonly known as the electric and
magnetic plasma frequencies [12]. The kernel 𝑎(𝜔) of the operator ̂𝑎 is:

𝑎(𝜔) = 𝑐−1
√√√
⎷

(1−
𝜔2

pe

𝜔2 )(1−
𝜔2

pm

𝜔2 ) (47)

After expansion 𝑎(𝜔) in the Taylor series in conditions of 𝜔 ≪ 𝜔pe,𝜔pm, in a vicinity
of 𝜔 = 0, we get:

̂𝑎𝜂(𝑡) ≈ 𝑐−1[𝜔pe𝜔pm𝜕−2
u� − 1

2
𝜔2

pe+𝜔2
pm

𝜔pe𝜔pm
+( 1

2𝜔pe𝜔pm
+ 1

8
(−𝜔2

pe−𝜔2
pm)2

𝜔3
pe𝜔3

pm
)𝜕2

u� ]𝜂(𝑡) (48)

The operator 𝜕−1
u� is defined as the integral:

𝜕−1
u� 𝑓(𝛼) =

u�

∫
0

𝑓(𝛽)𝑑𝛽 (49)

As it is seen from the numerical analysis (see Figure 1a) in the range of frequencies
𝜔 < 0.5𝜔pe the relative error of the expansion is less than 0.005%. For this
frequency range the first term demonstrates the acceptable error of less than
25%. We can apply the mentioned case:

̂𝑎𝜂(𝑡) ≈ 𝑐−1𝜔pe𝜔pm𝜕−2
u� 𝜂(𝑡) (50)

Figure 1. Relative error (in percent) of Taylor expansion (48) at range [0.2, 0.5] 𝜔pe (a) and
one for the first terms of (48) at range [0.1, 0.5] 𝜔pe (b)

In the case of 𝜔pm = 𝜔pe we find:

𝑐𝑎(𝜔) =
√√√
⎷

(1−
𝜔2

pe

𝜔2 )(1−
𝜔2

pe

𝜔2 ) =
√√√

⎷
(1−

𝜔2
pe

𝜔2 )
2

= (1−
𝜔2

pe
𝜔2 ) (51)

that already have algebraic form.
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Taking into account all estimations, we leave the only term in the rela-
tion (48). Next, for compactness, we mark 𝜔pe as 𝑝, and 𝜔pm as 𝑞. Plugging this
minimal version of (48) in the system (34) we obtain:

𝜕u�Π = −𝑐−1𝑝𝑞𝜕−1
u� Π 𝜕u�Λ = 𝑐−1𝑝𝑞𝜕−1

u� Λ (52)

Differentiating this system on 𝑡 once more, we write the resulting system,
in which the right and left wave amplitudes are completely separated

𝜕u�u�Π = −𝑐−1𝑝𝑞Π 𝜕u�u�Λ = 𝑐−1𝑝𝑞Λ (53)

Both equations describe the wave dispersion, they are equivalent to the 1+1 Klein-
Gordon-Fock equation □𝜙± = 𝑚±𝜙± with the mass parameter 𝑚± = ±𝑐−1𝑝𝑞.

6.2. Kerr nonlinearity account for lossless Drude
metamaterials; interaction of left and right waves
For nonlinear Kerr materials [25], the third-order nonlinear part of polari-

zation [20, 19] has the form:
𝑃𝖭𝖫 = 𝜒(3)𝐸3 (54)

From (42) we find ℕ1:

ℕ1 ≡ 1
2 ̂𝜇( ̂𝜇−1𝜕u�𝑀𝖭𝖫 +𝜕u�𝑃𝖭𝖫) = 𝜒(3)

2 ̂𝜇𝜕u�𝐸3 (55)

The operator ̂𝜇 for the chosen model is just 𝜇0(1−𝑞2𝜕−2
u� ). Further, the effect of

negative permeability was demonstrated at the THz range [26]. Hence, the 𝑞2𝜕−2
u�

contribution prevails. Then, from (41) we obtain:

𝑐𝜕u�Π−𝑝𝑞𝜕−1
u� Π = −𝜒(3)

2 𝜇0𝑞2𝜕−1
u� [ ̂𝑎−1(Π−Λ)]3

𝑐𝜕u�Λ+𝑝𝑞𝜕−1
u� Λ = 𝜒(3)

2 𝜇0𝑞2𝜕−1
u� [ ̂𝑎−1(Π−Λ)]3

(56)

The same approximation for the operator ̂𝑎−1 reads as:

̂𝑎−1𝜂(𝑥,𝑡) ≈ 𝑐
𝑝𝑞 𝜕2

u� 𝜂(𝑥,𝑡) (57)

We substitute it to the system (56) and differentiate it, denoting derivatives by
indices for more compactness:

𝑐Πu�u� +𝑝𝑞Π = −𝜇0𝜒(3)𝑐3

2𝑝3𝑞 [(Π−Λ)u�u�]
3

𝑐Λu�u� −𝑝𝑞Λ = 𝜇0𝜒(3)𝑐3

2𝑝3𝑞 [(Π−Λ)u�u�]
3

(58)

We consider this system as the main result of our work. The equivalent system
is obtained by triple differentiation of both equations of the system with respect
to time and rescaling Πu�u� = 𝛼𝜋, Λu�u� = 𝛼𝜆, 𝑥 = 𝛽𝜁 with the choice 𝛼 = √ 2u�4u�2

u�0u�3u�3 ,
𝛽 = u�

u�u� . Then
𝜋u�u� +𝜋 = −[(𝜋−𝜆)3]

u�u�

𝜆u�u� −𝜆 = [(𝜋−𝜆)3]
u�u�

(59)

with extra boundary conditions.



General Equation for Directed Electromagnetic Wave Propagation. . . 153

Consider the unidirectional case of (58) with Λ = 0, that corresponds to
special initial conditions from (35): (𝑘(𝑡)− ̂𝑎𝑗(𝑡)) = 0 and is valid till the effect of
the left wave generation is noticeable.

𝑐Πu�u� +𝑝𝑞Π = −𝜇0𝜒(3)𝑐3

2𝑝3𝑞 [Πu�u�]
3 (60)

7. Stationary solution in a moving reference frame
7.1. Linear case

We introduce a change of variables

𝑥 = 𝜂 𝜉 = 𝑥−𝑣𝑡 (61)

𝑣 has the dimension of speed. We declare the independence of 𝖱 and 𝖫 from 𝜂 as
a definition of the stationary state:

𝜕u�𝖱 = 𝜕u�𝖫 = 0 (62)

−𝑣𝜕2
u� 𝖱 = −𝑝𝑞𝑐−1𝖱

−𝑣𝜕2
u� 𝖫 = 𝑝𝑞𝑐−1𝖫

(63)

The dimension of r.h.s. is a dimension of 𝗄𝜔:

𝗄𝜔 = 𝑝𝑞
𝑐 (64)

Also we find 𝑣:

𝑣 = 𝜔
𝗄 . (65)

We start with the 𝖱 wave only. We rewrite it taking into account (64)–(65):

𝜕2
u� 𝖱−𝗄2𝖱 = 0 (66)

We solve the boundary problem by means of the solution domain specified by
𝑥 > 0, 𝑡 > 0. For a decaying boundary regime for 𝑣 > 0 the solution is:

𝖱 = 𝐴exp(𝗄(𝑥−𝑣𝑡)) (67)

For the L-wave the equation differs only by a sign from (66):

𝜕2
u� 𝖫+𝗄2𝖫 = 0 (68)

that gives the oscillating solution:

𝖫 = 𝐵sin(𝗄(𝑥−𝑣𝑡)) (69)

As we can see, the negative value for 𝜇 drastically changes the character of
propagation of the waves 𝖱 and 𝖫, the definition of which is given by (32)–(33).
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Figure 2. Solution of nonlinear equation (70) for auxiliary function 𝑓Π(𝜏),
where 𝑓2 = u�0u�(3)

𝗄u� , 𝜉 = 𝗄𝜏 , for 𝑝 = 109 Hz, 𝑞 = 0.8𝑝, 𝜔 = 0.5𝑝

7.2. On nonlinear case
Equation (60) after transition to variables (61) and the use of stationary

condition is as follows:

𝑐Πu�u� +𝑝𝑞Π = −𝜇0𝜒(3)𝑐3𝑣6

2𝑝3𝑞 [Πu�u�]3 (70)

Solving the cubic equation with respect to Πu�u� by the Cardano formula, one arrives
at a rather complicated nonlinear oscillator

Πu�u� = 𝐹(Π) (71)

the expansion of which with respect to Π up to Π3 term yields equations that
may be directly integrated in terms of elliptic functions [27]. The limit case of the
singular solitary wave solution is presented in Figure 2.

8. Conclusion
Using the projection operator approach we have derived a general system

of equations (41) that describes the interaction between opposite directed waves
propagating in a 1D-metamaterial with an arbitrary dispersion and nonlinearity.
The system is specified for a lossless Drude dispersion and the Kerr nonlinearity
model as (58). A stationary solution derivation is outlined within the weak
nonlinearity approximation.

The manipulations by means of the projecting technique are a part of the
symbolic-numerical computation program. The resulting equations are prepared
for an effective numerical solution because the direction of finite difference
integration is determined by the definition of new (left/right) dynamical variables.
An investigation and a numerical solution of the obtained system of equations are
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planned to be published in the nearest future. There is a promising approach to
the SW equation by the so-called polysimplectic integration in [28]

The results may be used in experiments that investigate the amplitude
dependence of the reflected wave on a metamaterial layer.
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