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Abstract: A problem of wave identification is formulated. We propose a diagnostic analysis of
medium disturbances based on distinguishing of components of a wave vector that is specific for
each kind of the wave mode. Mathematically it is realized by projection operator technique. An
example is considered in conditions of a one-dimensional Cauchy problem for a conventional
wave equation in the matrix form and its version with weakly x-dependent coefficients as
a demonstration of the method application for the simplest adiabatic theory of one-dimensional
acoustics. The case of acoustics in a gas with a dissipation account is also discussed from the
point of view of the wave and entropy mode diagnostics.
Keywords: wave disturbances, acoustics

1. Introduction
The problem of wave mode identification is of an interdisciplinary nature,

it is important, for example in physics of atmosphere, where superposition of
acoustic, gravity and planetary waves occurs [1]. In the planetary range the periods
of Rossby and Poincare waves are of the same scale, hence their separation and
estimation of contributions is complicated. The situation is even more complicated
in plasma physics where additional specific branches of waves coexist with ones
for neutral gas. An important problem of the specific mode source localization is
also a typical inverse problem that is generally ill-posed [2, 3].

In geophysics the wave field diagnostics generally needs many observations
that cover the space sufficient for wave length estimation. It is rather expensive
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and not very feasible. Thinking about the novel alternative approach [4] we suggest
to use measurements restricted by the vicinity of a point which however need
many-component observations with the aid of the projection operator technique
built in this article, fitting the subspaces of specific waves.

We would start with an instructive example of a 1D wave equation and
a correspondent Cauchy problem (Section 2), see e.g. [5, 6]. Naturally dispersion
or dissipation complicate the situation but may be overcome [7, 8]. Weak inho-
mogeneities of the propagation media may be also effectively included a in similar
manner [9].

There are lot of important problems of theoretical physics with the same
level of description: for electrodynamics, see [10–12] for acoustic [13, 14], and
Tollmienn-Schlichting waves [15]. that may be directly formulated as a system of
equations, so the vector description (in electrodynamics it is (𝐸,𝐵)) has a direct
physical sense. It should be nonetheless mentioned that directed waves correspond
to the so-called hybrid variables with appropriate initial or boundary conditions.

More complicated 3D problems need more advanced construction and the
geometry (ring or sphere in geophysics [4] – e.g.) impact may lead to very
non-trivial generalization of the technique and algorithm as well as a norm for
appropriate construction of spaces.

Our present study is focused on the simplest 1+1 case that includes one
space and one time coordinate. We restrict ourselves mainly by a uniform medium,
nevertheless, we would like to touch the base of the projection operator technique
and the estimation of the quality of diagnostics in a finite number of measurements
in terms of a physically reasonable Banach space. Hence, we could estimate the
diagnostics errors and, therefore, the quality of the position of the wave source
estimation. We focus our attention on the minimal version of the theory to show
that the main idea of wave diagnostics may be most characteristic for the opposite
propagating waves. In this 1+1 case the wave type (polarization) is linked to the
direction of propagation that allows us to formulate the whole algorithm of some
inverse problem solution in the following form:

1) Reformulate a problem that fixes eigen subspaces of an evolution operator;
2) Project the subspaces and their weight evaluation in an appropriate physical

norm for functional and finite-dimensional spaces;
3) Estimate the time arrival and wave form for a given number of measure-

ments and choose the spline order;
4) Estimate the distance to the area of initialization within the prescribed

error limits;
5) Investigate the stability in terms of explicit solution form, reconstructed by

the finite points number data. It should be mentioned that the last task
relates to the analytical continuation problem [2, 3].

Such an algorithm is realized in Section 2 for the Cauchy problem for the
homogeneous string equation example and developed in Section 3 for a more
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general system and weak inhomogeneity account. A development of the theory
with dissipation and entropy mode account in Section 4.

2. String equation in vector form. Cauchy problem
in terms of projectors

The conventional Cauchy problem for the wave equation contains two initial
conditions, including the time derivative, needs measurement of the derivative,
hence its physical version includes several points in the vicinity of the point of
observation and estimation of the diagnostics error in an appropriate space. The
conventional Cauchy problem for the 1+1 wave equation

𝑢u�u� −𝑐2𝑢u�u� = 0 (1)

with the initial data

𝑢(𝑥,0) = 𝜙(𝑥) 𝑣(𝑥,0) = 𝜓(𝑥) (2)

has the matrix representation in terms of a vector

𝜓u� = (𝑐𝑢u� = 𝑣,𝑢u� = 𝑤) 𝐷 = 𝜕
𝜕𝑥 (3)

for the components (3) reads
𝑣u� −𝑐𝑤u� =0
𝑤u� −𝑐𝑣u� =0

(4)

and has the evolution matrix operator 𝐿 that appears in the system

𝜓u� = 𝑐𝐷(𝑤
𝑣 ) = 𝑐𝐷(0 1

1 0)𝜓 = 𝐿𝜓 (5)

It is convenient to solve Equation (5) by means of the projection operator [7, 8]
technique. The projectors for the system (4) (see again [7, 8]) are almost obvious

𝑃± = 1
2 ( 1 ±1

±1 1 ). (6)

The identity
(𝑃+ +𝑃−)𝜓 = 𝜓 (7)

in terms of
𝑃+𝜓 = (Π

Π) (8)

and
𝑃−𝜓 = ( Λ

−Λ) (9)

reads
Π =1

2(𝑣+𝑤)

Λ =1
2(𝑣−𝑤)

(10)

For details and generalization see [9].
Even in this simplest case the physical content is nontrivial because the

right (left) wave is of a hybrid form (see [7, 8, 10]), recall the definition of
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the variables 𝑣, 𝑤 constant derivatives (3), therefore Π = 1
2 (𝑐𝑢u� + 𝑢u�). As it is

known, the derivative evaluation in a finite-difference context is ill-posed and
needs regularization [2, 3].

The projection separates the space Ψ into a direct sum of subspaces

Ψ = Ψ+ ⊕Ψ− (Π
Π) ∈ Ψ+ ( Λ

−Λ) ∈ Ψ− (11)

Applying the projectors directly to (5) yields

(𝑃±𝜓)u� = 𝑐𝐷𝑃± (0 1
1 0)𝜓 (12)

or
Πu� +𝑐Πu� = 0
Λu� −𝑐Λu� = 0

(13)

The technique is convenient for analysis of a general problem of diagnostics
and its quality estimation because the solution space splits into spaces with
simpler evolution. For a one-dimensional string case it is right and left waves
only that are taken into account.

Let a right wave Π arrive at a point of observation, say 𝑥 = 0, giving in
measurement the vector 𝜓 components value in a time sequence. The action of
the „left” projector 𝑃− to such a vector gives zero, if function Π is an exact solution
of the Equation (13).

Suppose the vector space of solutions is attributed by a norm, 𝜓 ∈ 𝐵, hence
𝐵 is a Banach space. In a general diagnostic exposition introduce a normalized
solutions 𝜆, 𝜋 of more complicated situation when the disturbance of the string
𝛼𝜋 +𝛽𝜆 may arrive at 𝑥 = 0 from both sides simultaneously, then the action of
the projectors 𝑃± cuts one of the waves with the result, for example

𝑃+𝜓 = 𝑃+ [𝛼(𝜋
𝜋)+𝛽( 𝜆

−𝜆)] = 𝛼(𝜋
𝜋) (14)

Unfortunately real measurement gives information about 𝜓 components with
errors and only in a finite number of time points. So we should estimate the
distance between the representative observation and the space of, say, „exact”
right waves.

Let us introduce a norm in the vector space of solutions, decaying at
infinities exponentially. It is directly verified by (13)

[∫
∞

−∞
(Λ2 +Π2)𝑑𝑥]

u�

= 0 (15)

therefore it is convenient to introduce the norm via this conservation law (15)

‖𝜓‖2 = ∫
∞

−∞
(Λ2 +Π2)𝑑𝑥 (16)

or in terms of original components

‖𝜓‖2 = ∫
∞

−∞
(1

2 (𝑣2 +𝑤2))𝑑𝑥, (17)
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because Λ2 +Π2 = 1
4 [(𝑣+𝑤)2 +(𝑣−𝑤)2] The integral is proportional to energy of

a string.
In such a way a Banach space Ψ is introduced to estimate the distances in

the space of 𝜓 ∈ Ψ, with normalized ‖𝜆‖ = ‖𝜋‖ = 1.
Given a sequence of times 𝑡u�, 𝑖 = 1, … 𝑛 generates a set of vectors 𝜙(0,𝑡u�),

by measurements, which form the 2n-dimensional vector 𝜙 ∈ 𝑅2u� with a norm

‖𝜙‖2
u� =

u�
∑
u�=1

(𝜙2
1(0,𝑡u�)+𝜙2

2(0,𝑡u�)) (18)

that should determine a closest vector solution 𝜓+(𝑥 − 𝑐𝑡) via the functional
minimum

𝐼 = ∥𝜓+ −𝑃+𝜙(0,𝑡u�)∥u�
(19)

where 𝜓u�+ = 𝜓+(0−𝑐𝑡u�). We treat this condition as variational principle

minu�+∈Ψ+
𝐼 (20)

in a 2n-dimensional space with the norm (18) correspondent to 𝐿2 (16) with the
Euler equations

𝜕𝐼
𝜕𝜓u�+

= 0 (21)

Let us recall (see (3)) that the vector of observation data has the components
𝜙1 = 𝑐 Δu�

Δu� ≈ 𝑐𝑢u�, 𝑐 Δu�
Δu� ≈ 𝑐𝑢u�) that are obtained by measurements of the string

function 𝑢(𝑥,𝑡) in adjacent points of time and in 𝑥 = 0 and in 𝑥 = Δ𝑥, that belong
to the point 𝑥 = 0 vicinity. For example, if components in a sequence coincide
(𝜙1(𝑡u�) = 𝜙2(𝑡u�)) the action of the left projector 𝑃−

𝑃−𝜙 = 1
2 ( 1 −1

−1 1 )(𝜙1
𝜙1

) (22)

gives zero. In reality the errors of measurements do not give zero identically even
if the wave is purely right. The deviation of the real data from the ideal may be
characterized by

∥𝜙+ −𝑃+𝜙(0,𝑡u�)∥u�
= 𝛿 (23)

the correspondent calibration may be performed by a specially organized experi-
ment.

An admixture of a left wave in a superposition of the both may be noticed
if ‖𝜙−𝑃+𝜙‖u� exceeds the typical error. If noticed, the left wave reconstruction of
the second step is made by the second projector 𝑃−.

The final form of the reconstruction is a standard procedure of a spline
or another inverse problem in a physically reasonable space [2, 3] that is chosen
a priori. Note, that the arrival time needs a priori information about the „zero”
time event.

An instability from velocity value errors should also be taken into account,
error from the arrival time grows with it.



136 S. Leble and I. Vereshchagina

3. General hyperbolic problem. Inhomogeneity account
Here we admit an inhomogeneity of the medium of propagation in a more

natural frame of the system for a couple of directly measured variables 𝑢,𝑣. In
acoustics it would be hydrodynamic velocity and pressure [13], in electromagne-
tism – electric and magnetic fields [16]. The tsunami problem is studied in [5]
within a similar framework. Such a system and initial problem data for a vector
𝜓u� = (𝑢,𝑣) do not contain a derivative in space, so their diagnostics needs time
sequence measurements of both the vector components at the only point.

Consider the initial problem for the system
𝜕𝑢(𝑥,𝑡)

𝜕𝑡 −𝜖𝑏(𝑥)𝜕𝑣(𝑥,𝑡)
𝜕𝑥 = 0, (24)

𝜕𝑣(𝑥,𝑡)
𝜕𝑡 −𝜖𝑐(𝑥)𝜕𝑢(𝑥,𝑡)

𝜕𝑥 = 0. (25)

for 𝑢(𝑥,𝑡), 𝑣(𝑥,𝑡) ∈ 𝐶1, 𝑥 ∈ (−∞,∞), 𝑡 ≥ 0, 𝑢(𝑥,0) = 𝜙(𝑥), 𝑣(𝑥,0) = 𝜓(𝑥). We
introduce small parameter 𝜖, to characterize the initial conditions

max 𝜕𝜙(𝑥)
𝜕𝑥 = 𝜖 ≪ 1 max 𝜕𝜓(𝑥)

𝜕𝑥 = 𝜖 ≪ 1 (26)

The (weak) inhomogeneity is described by the dependence of system coefficients
𝑐, 𝑑 on 𝑥. The dependence on the small parameter 𝜖 is implied and skipped in
this text (see details in [9]).

The problem is reformulated in terms of directed waves. The projection
operators in this case are calculated via the basic relation for the projection
subspaces that are derived directly from Equations (24)–(25), in which evolution
is fixed by the pseudodifferential spectral operators as expansion in 𝜖 [9]). In the
first order, arriving at a supermatrix:

𝑃1,2 = 1
2 ( 1 ±𝑀−1

±𝑀 1 ) (27)

where 𝑓 = √ u�
u� , 𝐷 = u�

u�u� and the operator valued matrix elements are expressed in
terms of 𝑀 = 𝐷−1𝑓𝐷.

Now the evolution operator 𝐿, in the same notations, is also a supermatrix:

𝐿 = ( 0 𝜖𝑏(𝑥)𝐷
𝜖𝑐(𝑥)𝐷 0 ) (28)

To proceed in the theory we base on the commutation relation [𝑃1,2,𝐿] = 0 that is
valid automatically in the case of constant coefficients 𝑏, 𝑐. For the x-dependent
case of 𝑏(𝑥), 𝑐(𝑥) the commutator 𝐿 and 𝑃1 is equal to

[𝑃1,𝐿] = 𝜖
2 (

𝑀−1𝑐𝐷−𝑏𝐷𝑀 0
0 𝑀𝑏𝐷−𝑐𝐷𝑀−1 ) (29)

The condition that the commutator is zero can be written as

𝐷−1𝑓 ′𝑏𝑓 = 0 (30)
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or plugging the expression for 𝑓 gives:

𝑐′𝑏−𝑏′𝑐 = 0 (31)

It fixes the case of complete reduction (diagonalization) of the evolution operator.
As further development of the method we suggest an approximate procedure

(see e.g. [15]), generally treating the condition [𝑃1,2,𝐿] = 𝑂(𝜖).
Using the projection operators we reduce (24) to a couple of equations that,

in the previous section were traditionally named as equations for left and right
waves, splitting the problem of evolution. The approximate splitting is achieved
if the commutators of 𝑃1,2 and 𝐿 can be neglected. It is possible, if coefficients
𝑏, 𝑐 are of the zero order (≅ 𝑂(1)), while the order of the derivative ( u�

u� )
′

is of
a higher order, e.g. ≅ 𝑂(𝜖). It is guaranteed by the evolution operator dependence
on 𝜖 and conditions of the spectral operators expansion domain. Acting by 𝑃1,2
to the system (24)–(25)

(𝑃1,2Ψ)u� = 𝑃1,2𝐿Ψ (32)
or, approximately

(𝑃1,2Ψ)u� = 𝐿(𝑃1,2Ψ) (33)
where

𝑃1Ψ = 1
2 ( Π

𝑀Π) (34)

𝑃2Ψ = 1
2 ( Λ

−𝑀Λ) (35)

Reading the first lines of the relations yields

Π = 1
2 (𝑢+𝑀−1𝑣) (36)

and
Λ = 1

2 (𝑢−𝑀−1𝑣) (37)
This relation allows us to establish the Cauchy problems for directed waves.

Π(𝑥,0) = 1
2 (𝜙+𝑀−1𝜓) (38)

and
Λ(𝑥,0) = 1

2 (𝜙−𝑀−1𝜓) (39)
From the equations (36)–(39) one extracts:

𝑢 =Π+Λ
𝑣 =𝑀(Π−Λ)

(40)

Considering equations(28)–(32) and the relation for the commutator
𝑃1𝐿 = 𝐿𝑃1 −[𝑃1,𝐿] one obtains approximately:

Πu� = −
√

𝑏𝑐Πu� (41)

That could be interpreted as the equation for the right wave. Similarly the
equation for the left wave variable Λ looks as follows

Λu� =
√

𝑏𝑐Λu� (42)
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Solving the first order equations by a method of characteristics gives 𝑢, 𝑣 by
the relation (40); formally the system coincides with (13) but the velocity of
propagation and coefficients in (40) are functions depending on a coordinate.

The problem of diagnostics and reconstruction is formulated within the
scheme of the previous section, it is based on the algorithm described in the
introduction. The norm definition, as prescribed at the Banach space Ψ is based
on left/right waves variables representation (16) may be reformulated from the
conservation law

[∫
∞

−∞
(𝑏−1𝑢2 +𝑐−1𝑣2))𝑑𝑥]

u�

= 0 (43)

for an integrable integrand (e.g. 𝑏 > 0, 𝑐 > 0). The correspondent functional is
again invariant with respect to time shift. The functional (19) has the same form
but the projector in it is modified as in (27). A perturbation, again settled at time
𝑡 = 0 as localized perturbation, propagates along the characteristics for the given
inhomogeneities of the propagation medium.

We would note that the diagnostics may be performed using the approxi-
mate derivatives directly from equations (41)–(42) on each step of data including.

4. Acoustics. Entropy mode and dissipation account.
Projection technique development

In this section we develop the results of [9] in the direction of [13] for a 1D
homogeneous gas medium.

Basic systems for a viscous and thermo-conductive liquid are defined by
the momentum, energy and mass balance. It can be written in dimensionless
variables based on a characteristic length of the disturbance (𝜆), the linear speed
of sound and density, (𝑐0 and 𝜌0) such that the dimensionless value of the uniform
background density is equal to 1. It can also be viewed in matrix form as

𝜕
𝜕𝑡𝜓+𝐿𝜓 = 𝜓 (44)

where 𝐿 is the linear matrix operator

𝐿 =
⎛⎜⎜⎜
⎝

−𝛿1𝐷 1 0

1 − u�u�2
u�−1 𝐷 u�2

u�−1 𝐷
1 0 0

⎞⎟⎟⎟
⎠

𝐷 (45)

with 𝛿1 = 4u�
3u�0u�0u� , and 𝛿2 = u�

u�0u�0u� ( 1
u�u�

− 1
u�u�

). Here 𝜆 denotes a characteristic scale
perturbation along the 𝑥 variable. The constant parameters of the fluid 𝜇, 𝜅
are viscosity and thermal conductivity, respectively. The heat capacities 𝑐u�, 𝑐u�
are normalized per unit mass, 𝛾 = 𝑐u�/𝑐u�. Here the state vector is defined as
𝜓(𝑥,𝑡) = (𝑣(𝑥,𝑡) 𝑝(𝑥,𝑡) 𝜌(𝑥,𝑡))

u�
, where 𝑣 represents the 𝑥-component of the

non-dimensional unsteady velocity and 𝑝 and 𝜌 are non-dimensional perturbations
of the pressure and density.
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The formation of these projection operators for the given one-dimensional
flow system gives

𝑃1,2 =

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 ±( u�2

2 − u�
4 )𝐷 ± 1

2 − u�2
2(u�−1) 𝐷

u�2
2(u�−1) 𝐷

± 1
2

1
2 ±( u�

4 − u�u�2
2(u�−1) )𝐷 ± u�2

2(u�−1) 𝐷

± 1
2 + u�2

2 𝐷 1
2 ±( u�

4 − u�2
2(u�−1) )𝐷 ± u�2

2(u�−1) 𝐷

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(46)

defining the left and right waves Π,Λ. While the third (approximate) projector

𝑃3 =
⎛⎜⎜⎜
⎝

0 u�2
u�−1 𝐷 − u�2

u�−1 𝐷
0 0 0

−𝛿2𝐷 −1 1

⎞⎟⎟⎟
⎠

(47)

yields the so-called entropy mode 𝑠.
In an absorbing fluid, the total energy conservation law should be conside-

red, the governing equation of interest is thus [13, 17]

(𝜌𝑒+𝜌(𝐯⋅𝐯)/2)
u�
+∇⋅𝐉 = 0 (48)

where 𝐉 = 𝑝𝐯 + 𝑒𝐯 is the energy flux density vector, 𝑒, 𝜌, 𝐯 and 𝑝 are internal
energy per mass unit, mass density, velocity, and pressure, respectively. For ideal
gas 𝑒 = 𝑝/𝜌(𝛾 −1).

The division of the total perturbation field in accordance with the mode
content and its substitution into (48) results in [13]

𝜕𝐸u�
𝜕𝑡 = −div ⃗𝐽u� (49)

where 𝐸u� – the energy density of the entropy mode, 𝐽u� – the density of the energy
flux for the acoustic waves. Both these are the results of averaging by period. So,
we should take into account the energy losses when diagnostics is performed.

In the one-dimensional case the equation (48) reads

(𝜌𝑒+𝜌𝑣2/2)
u�
+𝐷𝐽 = 0 (50)

where 𝐽 = 𝑝𝑣+𝑒𝑣.
The action of operators splits the system of equations similarly as in pre-

vious sections. The norm and the whole analysis of measurements is more compli-
cated because of the dissipation originally presented in the problem formulation.
Formally, due to the mode evolution equations [13] for Π, Λ, 𝑠, the equality

[∫
∞

−∞
(𝐸u� +𝐸u�)𝑑𝑥]

u�

= 0 (51)

holds on rapidly decaying functions (localized perturbation), but the integrand
is the energy perturbation density including the entropy part (for an explicit
expression of 𝐸u�, 𝐸u�, see [18]). A measurement of the entropy part may be not
available, then the balance (49) should be taken into account.
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The energy losses of an acoustic wave are proportional to the dissipation
and nonlinearity product, it is weak for long period waves and without very large
amplitudes. Hence, the choice of norm may account only for the acoustic part,

‖𝜓‖2 = ∫
∞

−∞
𝐸u�𝑑𝑥 (52)

that may be used but with its non-conservation account. The resulting algorithm
of diagnostics in this case depends on the solution form and is similar to the one
described in Section 1.

5. Conclusion
We have presented a 1+1 version of the theory of wave diagnostics. As it is

demonstrated the key tools are non-trivially generalized, but the basic Banach
space and the functional (19) are lifted in the prescribed form. The account
of the weak inhomogeneity and dissipation is incorporated by modification of
correspondent projection operators, going to a non-Abelian algebraic approach
or including an extra (entropy) mode in the second case. The conservation law
modification is necessary to introduce the appropriate norm for an estimation of
the wave mode contribution.

6. Acknowledgements
The work is supported by the Ministry of Education and Science of the

Russian Federation (Contracts No N GZ 3.1127.2014K).

References
[1] Pedlosky J 2003 Waves in the Ocean and Atmosphere: Introdaction to Wave Dynamics,

Springer-Verlag
[2] Lavrent'ev M M 1967 Some Improperly Posed Problems in Mathematical Physics,

Springer
[3] Lavrent'ev M M and Savel'ev L Ya 1995 Linear Operators and Ill-Posed Problems,

Consultants Bureau, Division of Plenum Publishing Corporation
[4] Karpov I V, Bessarab F S and Leble S 2007 Vestnik BFU im. I. Kanta, a series of Sci.

Science 4 76 (in Russian)
[5] Romanov V G and Moshkalev P S 2011 Sibirskii Zhurnal Industrial'noi Matematiki,

mathnet.ru
[6] Lavrent'ev M M, Reznitskay K G and Yakhno V G 1986 AMS Trans. Ser. 2 130
[7] Leble S 1988 Propagation of Nonlinear Waves in Stratified Media, Leningrad University

Press (in Russian)
[8] 1991 Nonlinear Waves in Waveguides, Springer-Verlag
[9] Leble S and Vereshchagina I 2014, http://arxiv.org/abs/1403.7751

[10] Kinsler P 2010 Phys. Rev. A 81, 023808
[11] Kinsler P 2010 Phys. Rev. A 81, 013819
[12] Kuszner M and Leble S 2011, J. Phys. Soc. Jpn. 80, 024002
[13] Perelomova A 2006 Physics Letters A 357 42
[14] Perelomova A 2009 Archives of Acoustics 34 (2) 127
[15] Perelomova A and Leble S 2005 TMF 144 1030



Problem of Disturbance Identification by Measurement. . . 141

[16] Kinsler S B P and Radnor G H C 2005 Phys. Rev. A 72, 063807
[17] Pierce A D 2002 Nonlinear Acoustics at the Beginning of the 21st Century, Rudenko O V

and Sapozhnikov O A Eds., Faculty of Physics, MSU, 1 11
[18] Makarov S and Ochmann M 1997 Acta Acustica united with Acustica 83 (2) 197



142 TASK QUARTERLY vol. 20, No 2, 2016


