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Abstract: Characterinsing the nature of cybephysical systems is not easy task. What are core 
aspects and what are not? This is especially tricky in systems-of-systems aggregates. Some 
EU-funded cyberphysical systems projects have performed a roadmapping exercise over the 
domain of Cyber-Physical Systems-of-Systems. In particlular, the EU-CPSoS project roadmap 
has identified t hree m ajor c hallenges a nd e leven r esearch a nd i nnovation p olicies t hat shall 
be addressed to solve the three challenges. The third core challenge addresses Cognitive 
Cyber-physical Systems of Systems. In this article we address the role that knowledge and 
cognition are to play in future cyber-physical systems of systems from a life-cycle perspective of 
high autonomy systems.
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1. Introduction
This article focuses on the role of knowledge in Cyber-Physical Sys-

tems-of-Systems (CPSoS)1 construction and operation. Knowledge is widely re-
cognised a valuable asset for performant people and organisations [1]. In fact, 
it has recently gained the status of critical asset for the competitive success for 
social groups, enterprises and countries. As we will see, it is even more critical 
for the success of autonomous systems —esp. in CPSoS— where their adequate 
operation, both as constituent systems and as whole systems-of-systems, depends 
on it.

1. CPSoS are Systems-of-Systems (SoS) where their constituent systems are cyberphysical 
systems (CPS).

https://doi.org/10.34808/tq2021/25.3/e
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It is commonly thought that knowledge is an exclusive affair of the human
mind. However, as systems have grown in complexity, intelligence and autonomy,
the knowledge they exercise to drive their activities becomes the core critical reso-
urce that can sustain long-term, adaptive and resilient autonomous operation [2].
System-embedded knowledge is the main enabler for SoS persistence and adap-
tivity, enabling meaningfully system-wide integration and interoperation [3]. In
essence, knowledge constitutes a critical component in future CPSoS.

The EU-funded CPSOS project did identify three core long-term research
challenges —management of CPSoS; engineering for the design-operation conti-
nuum; and cognition in CPSoS— that have strongly knowledge-dependent acti-
vities.

In this article we will analyse the role that knowledge plays in addressing
these three challenges. Section 2 will clarify the interpretation of the terms CPS,
SoS and CPSoS as used in this article. Section 3 will address the concept of
knowledge in the intelligent autonomous systems engineering domain and its
meaning in the scope of the EU-CPSOS challenges. Section 4 will introduce the
role of knowledge as a sustaining element of the whole SoS life-cycle, as well as
defining the knowledge and needs in this context. Section 5 focuses on the role
played by knowledge within the four key subtopics defined in the third challenge
of the EU-CPSOS roadmap — cognition in CPSoS. Finally, Section 6 points out
some concluding remarks.

2. CPS, SoS and CPSoS
Some of the roadmapping projects funded by the EC in the system-of-sys-

tems domain, addressed the convergence points between cyber-physical systems
(CPS) and systems-of-systems (SoS). These Cyber-Physical Systems of Systems
(CPSoS) are complex systems that have two fundamental aspects that are intrin-
sically related:

• physical elements interact with and are controlled by a large number of
distributed and networked computing elements and human users (the CPS
aspect) and

• component subsystems may have independent purposes, authorities and life
cycles (the SoS aspect).
The term Cyber-Physical System (CPS) is a modern fad to refer to what in

the past were called distributed real-time embedded systems (DRES). Apparently,
the CPS concept adds the idea of networked computing systems having a physical
aspect. In this vein, The US NIST defines Cyber-Physical Systems as “smart”
systems that are co-engineered interacting networks of physical and computational
components. This physical aspect was also part of the DRES domain, where the
term “embedded” implied the existence of a larger reality where the computers
were situated. However, neither DRES research in the past, nor CPS research
today have paid sufficient attention to the physical part of systems, being mostly
restricted to the computation and communication problems (see for example the
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CPS concept map available at cyberphysicalsystems.org). The larger picture is
better captured, however, in the domain of distributed control systems (DCS),
that fully adress the issues realted to physical dynamics, real-time computation
and networking.

In contrast to the weak CPS term, the term ‘SoS’ aptly conveys a specific,
concrete meaning not captured in other endeavours of systems engineering.
Systems-of-systems [4] are aggregations of component systems (CSs) that provide
some functionality at the system level. One central aspect of SoS is the relative
idependence of component systems (they have their own, separate life-cycles).
Maier [5] and the US DoD [6] identified four classes of systems considering their
independent life-cycles and structures of control (see Table 1).

Table 1. Types of Systems of Systems identified by Maier and the US DoD

Virtual Lack both an agreed-upon-purpose and a central
management authority for the SoS. Large-scale behaviour

emerges – and maybe desirable or not – but this type of SoS
must rely on implicit control to keep it working

Collaborative The component systems accept interaction to fulfil
agreed-upon-purposes. The commonly used example is the Internet.
The IETF sets out standards but has no real power to enforce them

Acknowledged Have recognized objectives as SoS, dedicated management,
and resources. However, constituent systems retain their independent

ownership, objectives, funding, development, and sustainment approaches.
Changes in the systems are based on good-will collaboration

Directed The SoS is built and managed to fulfil specific purposes.
It is centrally managed during long-term operation to fulfil those purposes.

Component systems may keep the capacity of operating independently,
but their normal operational mode is subordinated to the SoS purpose

It seems that the term “System of Systems” (SoS) —used since the 1950s—
describes systems as they are (i.e. composed of independent constituent systems,
that act jointly towards a common goal) but it essentially captures not what the
system is but how and why it came to be and is used. In a very precise sense, it
is an epistemological term related to the life-cycles of the systems involved —as
seen by their builders and users. It is not an ontological term concerning the
co-existence of the CSs and the SoS. As Leveson [7] says, “almost all systems are
made up of existing subsystems”. Leveson indeed manifests herself against the use
of the term SoS because it may lead to weaking safety analyses:

“Safety is a system property. It must always be analysed top-down and for
the system as a whole. When putting two or more existing components (‘systems’)
together, the emergent properties must be analysed for the integrated system.
Calling that larger system a ‘system of systems’ may be misleading by implying that
emergent properties can be treated differently than any other system or different
system engineering techniques can be used.”
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Emergence is key in SoS, but no more than in any other kind of system.
Systems are always built in search of their emergent properties. The deep meaning
of the SoS concept shall not be found in terms of what the systems are in
mereological terms but in terms of the relations of their structures and functions
with the engineering goals of the CSs and the SoS. The meaning of SoS shall be
found in the higher connections of the systems engineering Vee models of both
CSs and SoS [8]: the connection between requirements and the provision of value
to system stakeholders.

We cannot forget that real-world CPSoS will always have humans involved
(users, engineers, operators, etc.). The human-system relation will be always
shaped by what the human knows about the system and also by what the
system knows about the human. This mutual understanding shall necessarily
go much deeper than what the mere HMI provides. When humans act as
system components —i.e. humans acting as CSs—, there is a critical functional
dependence that relies on the operational semantics behind the interface.

Semantic interoperability is necessary for both CPS and SoS as a corner-
stone for their integration [9] and system knowledge is what sustains it. Knowledge
is the critical asset that deeply glues all CSs together -cyber, physical and human.

3. On Knowledge and Cyber-Technology
In a sense, knowledge is a quite overloaded word. Being a core topic of

philosophy —the whole discipline of epistemology orbits around it— knowledge
has also become the central issue in artificial cognitive systems.

3.1. What is Knowledge?
A good, old fashioned philosopher would say that knowledge is justified

true belief (even if considering the criticisms that this definition has received). In
the domain of cognitive psychology, knowledge is seen as cognitive agent mental
content. Newell defined knowledge as “Whatever can be ascribed to an agent, such
that its behaviour can be computed according to the principle of rationality” [10].

In the cognitive CPSoS domain, the main interpretations of the concept
come from artificial intelligence, where a fully pragmatic position towards know-
ledge is taken. In the domain of knowledge engineering, it is thought that know-
ledge must have a functional value for a program. For example, Schreiber at al.
defined knowledge as the “Whole body of data and information that people bring
to bear to practical use in action, in order to carry out tasks and create new
information” [11].

From a cyber-physical, cognitive systems perspective, we consider that the
nature of knowledge stands in the relation of the mental content of an epistemic
agent with a part of the universe it relates to. Thus, knowledge is a model that
an entity has of some other entity [12]. Knowledege is models and models are
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knowledge2. The main value of knowledge sits in its explanatory and predictive
capabilities, that are helpful to improve agent behaviour. In this sense, Halladay
and Milligan defined knowledge as “Conceptual models of systems and principles
[that explain] functioning, causes and effects, form, features and may have a
predictive nature. [...] As with any model, the more closely the model correlates to
its target, the more capable the model is of explaining and projecting the behaviors
of the model’s target” [13]. Cognitive behaviour is model-driven behaviour.

These models/knowledge can be created from first principles, analysis and
specification —as when we model the physics of a reactor or extract human
knowledge using expert systems technology — or can be learnt from data. The
dichotomy designed vs. learnt has shaped the whole field of artificial intelligence
since its beginnings with strong defenders and harsh attacks from both sides.
As it happens with most systems engineering decisions, there are trade-offs to
make when choosing an specific approach to solve a system problem. Design-based
approaches are usual when there is strong certainty about the problem and its
solution and/or a need for system assurance. Learning-based approaches are
preferred for uncertainty-laden tasks but they suffer from lack of explanability
and non-statistical guarantees concerning the reliability of their learnt model
predictions.

3.2. Technological Knowledge
Engineering, Systems engineering, CPS engineering and SoS engineering

are all knowledge-intensive activities. Engineering is both a knowledge-consuming
and a knowledge-generating activity [14]. The two main sources of knowledge for
engineering are general science and previous experience (i.e. engineering itself).
The production of engineering knowledge has indeed a virtuous circle effect,
where previous success stories can be leveraged in the design and construction
of new systems (see for example the productivity effect of the software patterns
movement [15]).

Engineering as activity produces two types of main products: systems and
knowledge. This knowledge may refer to the systems themselves but also to the
engineering processes used to build such systems [16]. From the “knowledge is mo-
dels” perspective this means that engineering produces “models of systems” and
“models of processes to build systems”. Models, considered as system knowledge,
are of particular importance for engineering.

The last years global drive towards model-driven engineering or model-ba-
sed systems engineering (MDE, MBSE) is just the recognition of this dual model
fact: that engineering activities shall be organised following “models of processes
to build systems using models”. The SysML profile for UML is an example of this

2. Note that knowledge can be internal to the agent but it can also be externalised. In this
sense, we may wonder to what extent blackbox models can be considered knowledge. They have
predictive capabilities but they cannot be externalised nor used to explain causes and effects.
Maybe we shall restrict this coception of knowledge to white box models.
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recognition, e.g. incorporating mechanisms for modelling requirements to expand
the life-cycle coverage of models.

Systems’ models typically use domain-specific modelling languages (DSML)
and models of processes have been usually captured in text (e.g. [8]), but more
formal languages have also been used in different domains [17]. These models of
engineering processes can be found in all classes of disciplines, not only in software
systems construction where they are a common trade. For example, the PISTEP
Process Plant Engineering Activity Model [18] is a class of model that captures
the life-cycle of the engineering process to build a continuous process plant (e.g.
a refinery)3. In the context of CPS modelling and simulation, the TAMS4CPS
project [19] separates system’s models in two big categories: descriptive models,
where the system is represented in abstracted form for purposes of communication;
and experimental models, that are used for enquiry, to conduct experiments about
the system.

It is worth noting that regardless of the kind of model or the language
the model is implemented in, models are useless unless the agent owns cognitive
mechanisms to exploit them. Models and model exercisers are the two essential
components of a cognitive agent. As Merrill suggests, “Cognitive psychology sug-
gests that a mental model consists of two major components: knowledge structures
(schema) and processes for using this knowledge (mental operations).” [20]. Both
aspects of models —descriptive and experimental— shall cohere in the domains
of CPSoS: there will be multiple stakeholders —users, engineers, owners, opera-
tors, artificial intelligences, etc.— that shall exercise the models that they share
by communication. Model coherence — the fact that different aspects/constitu-
ents/views of a model (like descriptive/experimental) must be coherent— is thus
necessary to produce cognitive agreement in the actions and perceptions of the
system as a whole.

Figure 1 later, will summarily depict the different forms that this knowledge
(and its associated exercisers) takes in engineering processes and CPSoS life-cyc-
les. It is not surprising to see that this role analysis matches those done in the
domain of the philosophy of technology. Mitcham [21] points out that technology
can be approached from four basic perspectives: i) as a certain type of objects
(artefacts), ii) as a specific class of knowledge (technological knowledge), iii) as
a set of activities (producing and using artefacts) and, iv) as manifestation of a
determined human will in relation to the world (technology as volition) [21].

This last aspect mentioned by Mitcham —volition— is of special importance
in the case of CPSoS because it is human will —i.e. as captured in stakeholder’s
requirements— what specifically characterises the SoS aspect of these systems4

—at both the CSs and the SoS levels. All these aspects of technology match

3. See also the standardised Plant Life-cycle Activity Model (ISO 15926 - the Lingua Franca
of global interoperability).

4. And of any (designed) system in fact.
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specific processes, assets and roles in the CPSoS life-cycle (See Figure 1). In
particular the capture of human intentions at runtime —in the form of exercisable
and verifiable requirement models— will be a cornerstone of solid CPSoS.

3.3. Knowledge and SoS Emergence
An important issue in CPSoS engineering is emergence [22]. Emergence

is a complex, somewhat philosophical concept, that has several interpretations
around a central common understanding of “appearing as a result of interactions
of subsystems”. This appearance can be done purposefully, because this “systemic
emergence” is frequently the raison d’étre for the existence of such systems.
Another common use of emergent behaviour of a system is behaviour that arises
out of the interactions between parts of a system and which cannot easily be
predicted or extrapolated from the behavior of those individual parts. Obviously,
unexpectedness may be a major problem for CPSoS if the emergent system
behaviour happens to be detrimental [23]; but it is obviously not necessarily so,
because systems are built because of what they emergently provide.

Behavioural emergence is just an epistemological issue, not an ontological
one; it is strictly related to what is known about the system, i.e. with the available
system models and exercisers. From the perspective of the CPSoS, ‘emergent’
means ‘systemic’, i.e. phenomena at the level of the higher SoS. It is only from
the perspective of the knowledge about the system —as components, as a whole—
that the term ‘emergent’ means ‘unexpected’ or ‘unpredictable’. It is the model
and the model exerciser what fails in this situation; hence the unexpectedness.
Emergence is the beneficial and/or detrimental5 effect of both a) the lack of
knowledge at the CS and SoS levels, b) an insufficient knowledge flow, or c) the
lack of cognitive capability —of model exercisers— to exploit the knowledge when
available.

Scientific engineering strives for better knowledge of the CPSoS because
“perfect” knowledge would entail the possibility of elimination of unexpected,
detrimental emergence6. However, models may be useful even when they are
not perfect. Tolerating modelling mismatches —uncertainty, vagueness, partiality,
locality, etc— are critical capabilities for cognitive CPSoS. Conventional MBSE is
not good at tolerating vagueness and uncertainty in its models; addressing them
at the model level is a necessary capability for robust CPSoS construction.

5. Note that in complex systems there are always multiple goals that may de differently
affected by emergence.

6. In fact, we can think that no model can indeed be perfect as we cannot have complete
(infinite) knowledge; and also because, if perfect, models (and thus knowledge) would be the
reality itself. Perfection, however, may be achievable on two gounds: i) when targeting a higher
abstraction level without entering low level physical details; and ii) when the system modelled
is in informational system and hence a model can be truly isomorphic to it.
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4. Knowledge in Cyber-Physical Systems-of-systems
4.1. Knowledge in the CPSoS life-cycle

The system life-cycle spans from the identification of a need for some specific
stakeholders to system decommission and life-cycle closure. In this life-cycle
a major event is the transition from the system engineering phase to system
operation phase. However, in many situations the deployment of the system does
not end the engineering activities. Examples abound: long-lived systems, adaptive
systems, systems of systems, etc. The existence of a design-operation continuum
—as described by the EU-CPSOS roadmap [24]— is the normal situation in
CPSoS.

Wide-spectrum knowledge —multifacetted knowledge that addresses both
the systems’ and the systems engineering processes’ aspects— becomes the critical
asset that enables both system construction and system operation. In the case
of CPSs, this knowledge shall necessarily include aspects of the physical side
of the system. This has been partially addressed in the domains of embedded
systems (that model the computing and networking platform), control systems
(that model the plant under control) and user interfaces (that model the human
behind the interface). In the case of SoS there are both models at the CS level and
at the SoS level. However, the constituent system knowledge is usually available
at the system-of-system level only as agreed-upon interfaces. This is in general
not enough for certain classes of analyses at the SoS level; deeper behavioural
knowledge about the CSs is needed.

There is also a need to extend the modelling of teleological aspects —the
ConOps, the requirements— from the engineering to the operation stages. Te-
leological knowledge shall flow from the CS level to the SoS level to be able to
address SoS goals without sacrificing CS goals (e.g. in acknowledged SoS). For
SoS, there are stakeholders for both the SoS and for the CSs themselves. The
stakeholders of the SoS may have limited knowledge of the constraints, develop-
ment activities, and capabilities of the CSs. This will depend on the profile of the
stakeholders and the type of the SoS (see Table 1).

The main depositaries of system knowledge are on one side systems and
speciality engineers, and, on the other side, system participants. The main
barrier for system knowledge integration and flow are the disciplinary profiles and
cognitive capabilities of all these different stakeholders[25]. In autonomous CPSoS
the system runtime artefacts are a third class of cognitive agents —besides builders
and participants— that exploit knowledge about the system. Systems engineers of
SoS find that they need to focus on those areas that are critical to the SoS success,
usually leaving CS-level issues to their respective systems or domain engineers.
The systems engineers at the CS level own the necessary expertise, the cognitive
capability and the responsibility to exert the knowledge because they are in the
best position —close to CS implementation details.

The heterogeneity of these classes of knowledge is only apparent and related
to the model exercisers more that to the system itself. The integrated models
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Figure 1. The CPSoS life-cycle knowledge entities and relations. Knowledge intensive
approaches to CPSoS construction and operation recognise the vertebrating and dynamising

roles that this knowledge has. It is knowledge —in human heads, in externalised models,
realised in entities— what underlies the design-operation continuum that enables the runtime

adaptation of the cyber-physical system and its seamless incorporation into
systems-of-systems. Unified metaknowledge bridges the construction-exploitation gap,

enabling runtime knowledge loops that sustain system adaptation. The system includes
humans that manipulate models -thought-, transform models -tool- and physically act -part

postulated by the MBSE doctrine point in this direction. Note however that we
must change the focus of the model from the CPSoS as such, to the larger view
of modelling the CPSoS + its lifecycle. MBSE models become “live” models in
the sense that they do not represent an static CPSoS but also its evolution, so
an initial static model would not be sufficient; it is needed to have a model that
adapts to how the CPSoS evolve and to the new knowledge that can be acquired
during its lifetime.

Vincenti [26] proposed a six part taxonomy of the knowledge that aeronau-
tical engineers did use: 1) fundamental system design concepts (e.g. what are the
components of an airplane), 2) design criteria and specifications (e.g. limits on
temperature in the fuel tank), 3) theoretical tools (e.g. Navier-Stokes equations
for fluid dynamics calculations), 4) quantitative data (e.g. drag coefficients of a
wing), 5) practical considerations (e.g. doing tradeoffs between cost and quality)
and 6) design instrumentalities (e.g. knowing how to trace the root requirements
for an engine). All these are aspects of engineering knowledge that will appear in
the life-cycle perspective succinctly shown in Figure 4.1.

The knowledge that sustains this process models both the CPSoS and
the goals, requirements and methods that directed its construction. System
configuration management includes also intentional items that are necessary to
properly manage the SoS at runtime. “Once rolled out, operating and maintaining
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a system of systems requires a good knowledge of the ‘as-deployed-and-configured’
system’s physical, functional and behavioural configuration”[27]. Here the aviation
industry has great experience, but needs to be extended in relation to cognitive
aspects7.

The CPS+SoS focus of the EU-CPSOS project implies that the deep models
of the systems (computation+physics) shall be shared across constituent system
boundaries. A particular case of this situation is when humans play a role as
components of a larger system. Obviously humans should have life-cycles that are
independent of the SoS life-cycle. Human-in-the-loop CPS (HiLCPS) or Socio-cy-
ber-physical systems (SCPS) are terms used to refer to these classes of SoS. In the
general case, there will be a collection of heterogeneous knowledge-based agents
that share knowledge about themselves —as components and as CSs— to produce
a synergetic effect at the SoS level. The needed transition is a move from informa-
tion-based integration to knowledge-based integration. CSs shall interchange not
just information about their state —e.g. through CORBA or REST interfaces—
but deep knowledge —i.e. models— about themselves. For example, [28] shows a
prototype collaborative maintenance planning system for a machine tool -a core
component of Industry 4.0 environments. This system links machine provider and
machine exploiter knowledge management systems, including operating machine
tools —constituting a CPSoS. This knowledge flow provides advantages over the
integration of traditional engineering information systems —e.g. CAD, PLM and
ERP8— in managing machine tool maintenance and service information including
dynamic and unstructured knowledge.

To achieve this objective, however, we need a common mental infrastructure
in all the CSs of the CPSoS. Agents shall share a common ontology to be able
to exercise the models they interchange. This could become a daunting task,
because in many cases such referential framework is implicit (e.g. in relation
to the knowledge of physical aspects in a CPS system). Partial knowledge
needs context to be properly interpreted. In this vein, Hayes and Walsham [29]
address the problem of knowledge management from a dual content/relational
perspective. The content perspective —the vision of knowledge as representation
of facts— implies both clear semantics and an interpretational context, hence
simplifying the problem of knowledge codification and retrieval. On the opposite
side, the relational perspective highlights that the contextual and relational
aspects of knowledge pose enormous problems for interpretation unless the factual
relations and the interpretational context are stored and retrieved with it. This
amounts to enormous difficulties for knowledge sharing and exercising in scopes
differing from where it was created. This implies a serious problem of SoS, where
interpretation agents may not have a shared architecture and ontology, and where

7. Artificial intelligence AI has found no comfortable accommodation in aerospace due to
the inherent difficulties in certifying AI behaviour.

8. Computer aided engineering, product data and lifecycle management, and enterprise
resource planning systems.



The Role of Knowledge … 365

their evolutions follow the paths set by the peculiar evolution of the requirements
of each CS and not the SoS at large.

4.2. Knowledge Needs in CPSoS
Models at different levels of abstraction will help to formalize the CPSoSs

requirements, allowing their traceability from design to implementation [30]. Mo-
del-based design or development is a key enabler to cope with the complexity of
CPSs, as it allows both to early validate requirements and to detect integration
issues based on the models of the subsystems and the defined system architec-
ture [31], [32]. Ontologies and domain-specific languages are useful mechanisms
to obtain machine-processable models of relevant application domains. Ontologies
are shared specifications of a conceptualisation. They could be used to obtain CPS
domain models, as they define the fundamental concepts and their relationships
in such particular domain. Domain-specific languages, based on ontologies, would
provide a consistent grammar to specify the CPS [33], [34]. The underlying idea is
to obtain a consistent and formal description of CPS, easing the interaction among
different components, subsystems or domains by sharing a common terminology
and description.

A model of a CPS constituent system will include models of the different
elements belonging to the CPS, such as the physical processes, the software, the
computation platforms, the networks (and in last instance of the humans inte-
racting with it). Modelling these systems is challenging as a multi- and interdi-
sciplinary approach to consider their inherent heterogeneity will be needed [35].
Creating models of the domain, the participants, the objectives, the requirements,
the available services as well as the tasks will allow addressing the adaptive be-
haviour required for these systems (esp. when integrated into a SoS).

To obtain these models, it would be needed some kind of semantic founda-
tions to integrate different heterogeneous models and modelling languages. This
is specially important when merging CSs into heterogeneous SoS. The lack of a
common definition and languages to describe large and complex CPSoS makes
it difficult to deal with their heterogeneity. Tasks such as defining an ontology
of model types, developing a CPS model paradigm to construct CPS reference
models will result in obtaining CPS modelling ontologies or a standard set of
modelling practices to obtain model-designed CPSs [36].

Due to the inherent heterogeneity in a SoS, its modelling process would
require an interdisciplinary approach to consider the different components in
the CSs (computational processes, networking, and human actors). Multi-domain
modelling, understood as the necessity to establish a body of knowledge to model
all relevant features of CPS, would be a key element to engineering CPS [37].
In practice, abstract models about data and knowledge need to be combined
with those from the physical elements in the CPS, and the human stakeholders
interacting with the system. For the latter, new disciplines such as cognitive
psychology and sociology will be needed to develop models of human perception,
interaction, knowledge, thought processes and problem solving [38]. At the end
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the model has to have three dimensions: i) Vertical: Top - down or abstract to
specific; ii) Horizontal: Multi-domain aspects; and iii) Circular: Life-cycle (from
requirements to decomission). All the three need to have a common —or at least
integrated and coherent— representation (core model) that guarantees model
consistency and seamless flow of knowledge.

As CPS work on the physical world, they are subject to environment changes
and unexpected conditions. However, they are asked to be robust and react to
system failures. A possible approach is to design at each level within the overall
system, components predictable and reliable, as long as it is possible. There is a
need to address how small changes do not dramatically change the CPS expected
outcome. Hence, aspects such as uncertainty at the cyber level, uncertain data
or reconfigurations should be considered as part of CPS design [39]. However,
current methods to characterise and evaluate uncertainty during the design and
development phases are limited and inadequate [40].

4.3. Knowledge Flow in CPSoS
Cyber-physical systems-of-systems are characterised by the flow of matter,

energy and information. At the cyber layer, we must make a distinction between
flow of data vs. flow of knowledge[41]. Flow of data is what we have today in our
CPSs and it is not enough9 for the long term objectives identified by EU-CPSOS.
Within a robust, adaptive CPSoS there is a need of integration at the knowledge
level [10] to be able to attain SoS and CSs objectives dynamically.

In knowledge-based cyber-physical systems there are three core processes
that deal with knowledge: perception, the generation of knowledge from sensor
data; manipulation, the transformation of knowledge; and action, the generation
of actuator data from models. In essence the instantiation and federation of these
processes at the CS and SoS levels is what defines the DoD taxonomy of SoS (See
Table 2).

Table 2. Knowledge and control flows in Systems of Systems

Virtual Virtual SoS do not have knowledge flows
Collaborative In collaborative SoS, there are flows of knowledge

but there are no action mechanisms at the SoS level
Acknowledged Acknowledged SoS have flows of knowledge and heterarchical

action mechanisms at the SoS and CSs level
Directed Directed SoS have flows of knowledge and hierarchical

action mechanisms at the SoS and CSs level

We must acknowledge the need of making these flows reflect the needs co-
ming from the merging of engineering and operation workflows. In the design-ope-
ration continuum, the flow of models between all cognitive entities in the CPSoS
—both humans and AIs— will enable the realization of the necessary advances.

9. See for example that the DoD uses the term net-centricity to refer to flow of data [6].
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Note that the questions of property, authority and control that specifically iden-
tify SoS aspects will be also part of the models themselves. This is a crucial step
concerning the second challenge proposed by EU-CPSOS.

5. Knowledge in the EU-CPSOS Roadmap
The EU-CPSoS has identified three core challenges [24]:

• Core Challenge 1: Distributed, Reliable and Efficient Management of Cy-
ber-physical Systems of Systems

• Core Challenge 2: Engineering Support for the Design-operation Continuum
of Cyber-physical Systems of Systems

• Core Challenge 3: Towards Cognitive Cyber-physical Systems of Systems
All these three challenges have been examined in the previous sections in

relation with the role of system knowledge in the construction and operation of
CPSoS. In this final section we will comment on some issues concerning cognitive
aspects of CPSoS that have not always been explored. We will specifically focus
on four key subtopics of challenge 3 that the EU-CPSOS roadmap has identified.

5.1. Situational awareness
There is a perceivable need of improving situational awareness in large-scale

and complex cyber-physical systems. The pervasive use of low power distributed
sensing seems to be the key to this possibility. Obviously the availability of suitable
infrastructure —sensors, networks, formats, etc.— is a necessary step to achieve
situational awareness, but it is not enough.

CPSoS need also architectural advances in the integration and evaluation
of these data across the SoS hierarchy. There is a growing need of creating
mechanisms for the engineering of emergent perception, i.e. the perception of
emergent phenomena at higher layers of the cognitive pyramid that governs a
CPSoS.

In this sense, the use of the so-called “cognitive”10 technologies [42] may
be of help but will not be enough. There will always be a need of merging the
data-driven approaches of these technologies with the model-driven techniques of
more assurable engineering approaches, as it is the model-driven the modeling
that will provide an explanation of the data-driven in order to “discover” and
“assimilate” any emergent knowledge.

5.2. Handling large amounts of data
The plethora of sensing systems described before will produce a huge

amount of data that will require new mechanisms. Real-time parallel information
processing at the exascale may be necessary in some circumstances. The previously
mentioned “cognitive” technologies will be useful in the extraction of information

10. We use quotation marks to signal the misuse of the term “cognitive” to refer to a
particular class of IT approaches used in the management of big data. Cognitive technology
is a much broader field than these technologies seem to suggest.



368 R. Sanz, J. Bermejo, M. Rodríguez and E. Aguado

and knowledge —i.e. models— from such a stream of data but there will be new
needs for attention and forgetting.

As Kuipers aptly described, the sensing system of highly cognitive systems
will have so much bandwidth that trying to read it all will be like trying to drink
from a firehose [43]. Making sense of this caudal of information will require the use
of sound mechanisms of filtering meaningful information. This is relatively easy
when system objectives are simple, but CPSoS will have different requirements
in the different CSs and at the SoS level, thus requiring protocol for the flow of
dynamic attention mechanisms across the system.

In the same direction, the amount of petabytes of information to be stored
for dynamic analysis and learning from past events will be a challenge. Systems
will have a need for meaningful forgetting; and, as it was for attention, this shall
be done in a distributed fashion and across layers of emergence.

5.3. Learning good operational patterns
These systems will be able to help operators by using learning capabilities

over these shared data to generate good operational patterns to support decision
making process. While this will be helpful, there are two issues that shall be solved
to make it operational.

The first one is about what can be learnt. Systems will be most of the time at
their nominal settings or close to them, thus limiting the possibilities of learning.
The introduction of perturbations to perform identification will not be generally
accepted because they may upset the users or produce detrimental emergent
effects (as it happened in Chernobyl) especially in CPSoS environments. Use of
simulators may be a possibility, but the problem is similar: simulators are not
always good at simulating abnormal situations. The integration of first-principles
models from engineering and data-driven models from runtime may improve the
quality of these simulators.

The second issue is related to the possibility of explanation. Artificial
intelligence systems may not be good enough at explaining why they reached
some conclusion. This may be necessary in some situations of shared autonomy
—humans and artefacts making collaborative decisions— and may be impossible
if the decision-making mechanism is fully data-driven.

5.4. Analysis of user behaviour
The analysis of user behaviour will be of major utility to prevent misuse of

the system. This has already been demonstrated in many socio-technical systems
(e.g. in car driving). Note however that this may unnecessarily overconstrain the
behaviour of the human-in-the-loop, hence sacrificing one of the major values that
humans-as-components do have: resilience. Note that the issue here is one of deep
understanding as mentioned before: knowledge of the behaviour at the level of the
interface —the HMI in this case— is not enough to determine systemic properties
at the level of the SoS. Cognitive artificial agents shall extend their theory-of-mind
competences to reach a deep level of integration with humans.
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The human-machine interaction challenge has as objective a deep and seam-
less integration between humans and CPSs. This requires a better understanding
on the strengths and weaknesses of humans, in terms of situational awareness, to
manage risks and safety [36, 40]. Models of users, where their intentions, emotions,
plans, roles and objectives are defined, should be used during the engineering pro-
cess of CPSoSs. It would be necessary to investigate which models, methods, and
interdisciplinary research efforts are required to understand the discerning changes
in human-system interactions due to the data, communication technologies, and
networking capabilities of the CPSs at the CS an at the SoS levels [44]. However,
including humans in the system is not exempt of challenges: 1) to characterise
the entire range of human-in-the-loop control applications; 2) to capture and to
model human behaviour; and 3) to determine the methods to integrate human
models into the system [45].

6. Conclusions
In this article we have analysed the roles that knowledge plays in the

engineering and operation of cyber-physical systems of systems. However, no
matter how critical it is, knowledge has not received the unifying treatment
that the construction of robust and resilient cyber-physical systems-of-systems
requieres.

There are several reasons that justify the necessity for a more systemic,
knowledge-centric approach to the engineering of CPSoS. Firstly, the interdisci-
plinary features of these systems would require integrating knowledge from diffe-
rent domains (computer science, engineering, physical sciences, cognitive sciences,
etc) [38, 32]. The many aspects involved in CPSoS require establishing a multi-
disciplinary collaboration among disciplines to tackle research and development
with a comprehensive view [27]. Therefore, foundational theories should be de-
veloped bearing in mind the cross-domain and cross-discipline aspects in CPS,
which could only be achieved by integrating existing systems theories in a com-
mon one. Secondly, the socio-technical character that has been identified in these
systems. CPSoS should be developed with a systematic treatment on how human
actors are involved. Note that it is not only the case that humans use, interact and
influence the CPSoS —i.e. as users or operators, in a coupling affected by their
emotions, desires and intentions. It is also the case that humans are the primary
depositaries of the knowledge that defines, vertebrates and enables dynamic and
adaptive CPSoS operation. Engineering knowledge shall be seamlessly integrated
and operationalised into the runtime CPSoS.

Therefore, the engineering of CPSoSs requires a new way of thinking,
merging and integrating existing disciplines from computer science to cognitive
sciences to cater for the functionalities devised for this kind of systems. It is
necessary a systematic, transdisciplinary, scientific approach that integrates the
myriad of paradigms (ontologies, foundational theories, modelling approaches)
belonging to the different domains and disciplines covered by CPSoSs.
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The knowledge-centric CPSoS will be more adaptable and cognisant of its
very own capabilities and possibilities, opening a new world for adaptive, resilient
operation of robust autonomous cyber-physical systems-of-systems [46].
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