
TASK QUARTERLY vol. 25, No 3, 2021, pp. 329–353

WEIGHTED LAPLACIANS OF GRIDS
AND THEIR APPLICATION

FOR INSPECTION OF SPECTRAL GRAPH
CLUSTERING METHODS

MIECZYSŁAW KŁOPOTEK1, SŁAWOMIR WIERZCHOŃ1

AND ROBERT KŁOPOTEK2

1Institute of Computer Science,
Polish Academy of Sciences

ul. Jana Kazimierza 5, 01-248 Warsaw, Poland
2Faculty of Mathematics and Natural Sciences,

The Cardinal Stefan Wyszyński University,
ul. Wóycickiego 1/3, 01-938 Warsaw, Poland

(received: 27 June 2021; revised: 21 July 2021;
accepted: 14 August 2021; published online: 30 November 2021)

Abstract: This paper investigates the relationship between various types of spectral clustering
methods and their kinship to relaxed versions of graph cut methods. This predominantly
analytical study exploits the closed (or nearly closed) form of eigenvalues and eigenvectors
of unnormalized (combinatorial), normalized, and random walk Laplacians of multidimensional
weighted and unweighted grids. We demonstrate that spectral methods can be compared to
(normalized) graph cut clustering only if the cut is performed to minimize the sum of the weight
square roots (and not the sum of weights) of the removed edges. We demonstrate also that the
spectrogram of the regular grid graph can be derived from the composition of spectrograms of
path graphs into which such a graph can be decomposed, only for combinatorial Laplacians.
It is impossible to do so both for normalized and random-walk Laplacians. We investigate
the in-the-limit behavior of combinatorial and normalized Laplacians demonstrating that the
eigenvalues of both Laplacians converge to one another with an increase in the number of nodes
while their eigenvectors do not. Lastly, we show that the distribution of eigenvalues is not uniform
in the limit, violating a fundamental assumption of the compact spectral clustering method.

Keywords: grid grap, analytical form of graph Laplacians, spectral clustering versus graph
cuts
DOI: https://doi.org/10.34808/tq2021/25.3/d

https://doi.org/10.34808/tq2021/25.3/d

330 M. Kłopotek, S. Wierzchoń and R. Kłopotek

1. Introduction
A considerable number of practical clustering tasks can be viewed as special

cases of the general problem of graph clustering, and especially of weighted graph
clustering. Graph clustering is understood as finding a cut through the graph
removing edges of combined weight as low as possible, with additional restrictions
such as balancing the subgraph sizes or volumes. Cut or normalized cut methods
may be used for this purpose. With growing graph sizes, the application of cut or
normalized cut suffers from a combinatorial explosion, making one interested in
approximated and relaxed versions of the problem.

This has awaken interest in spectral clustering methods which exhibit
relatively low computational complexity and produce apparently splits of graphs
similar to those obtained by the original cut methods. In fact, there have been
numerous attempts to align the results of spectral clustering with some of its
specific brands, like clustering based on various forms of Laplacians (see e.g. [1]).
Von Luxburg [2] presents an overview of these concepts in her tutorial, pointing at
prior work demonstrating that the clustering target of spectral clustering is related
to various forms of graph-cuts: the ratio cut [3] (when based on combinatorial
Laplacians), normalized graph cuts [4], [5] (for normalized Laplacians) and
walks [6] (for random walk Laplacians), given that the mentioned fuzzy versions
of graph-cuts are considered.

In this paper, we look at these relationships more closely. However, instead
of considering the graphs in their generality, we concentrate on weighted regular
grids. Grid graphs are of special interest because they can be used for practical im-
plementation of parallel algorithms, as well as in efficient management of wireless
sensor networks, [7], [8]. Moreover, such graphs seem to be a useful test bed for
investigating the properties of graph clustering algorithms, because such graphs
can be constructed with a predefined clear cluster structure. Furthermore, they
have the advantage that their spectral properties (eigenvalues and eigenvectors of
various Laplacians) can be determined analytically, via closed-form or nearly clo-
sed form formulas so that they can be used for an analytical investigation of graph
algorithms. In particular, if all edges have the same weight, no cluster structure
is present, hence, the clustering algorithms can be tested on whether or not they
have a tendency of detecting non-existent clusters. On the other hand, weighted
graphs may represent quite a regular set of clusters, and hence, the algorithms can
be tested on their capability of detecting such clusters, again in an analytically
closed or nearly closed form.

An increasing interest is seen in unweighted and weighted graph Laplacians.
They are relevant e.g. for image segmentation [5], indoor space analysis [9], etc.
Thus, in the paper we recall the analytical forms of eigenvalues and eigenvectors of
combinatorial Laplacians (Sec. 3), signless Laplacians (Sec. 4, sometimes referred
to as ”unoriented”), normalized Laplacians (Sec. 5) and random-walk Laplacians
(Sec. 6) of weighted regular grids. We hope that it would be an interesting research

Weighted Laplacians of Grids … 331

topic to find also closed form solutions to Laplacians of weighted grid graphs with
other weighting schemata than those assumed in this work.

Thereafter, in Section 7, we discuss the implications of these analytical
properties for various aspects of spectral cluster analysis. In particular, we
investigate:

• the differences between various types of Laplacians, and hence, between
various spectral clustering methods that they underpin, (Sec. 7.1);

• whether or not the results of Spectral Clustering match those of graph-cut
and normalized graph-cut in case of clustering into two clusters using the
so-called Fiedler vector (Sec. 7.2);

• whether or not the results of Spectral Clustering match those of graph-cut
and normalized graph-cut in case of clustering into more than two clusters
using 𝑘-means algorithm (Sec. 7.3);

• we investigate the justifiability of the choice of 𝑘 eigenvectors for clustering
into 𝑘-clusters in spectral clustering (Sec. 8.1);

• we investigate whether or not the conclusions drawn may be extended if the
weights are not uniform (Sec. 8.2).

2. Notation
A neighborhood matrix 𝑆 of any graph shall be defined as a matrix with

entries 𝑠𝑗𝑘 > 0 if there is a link between nodes 𝑗,𝑘, and otherwise it is equal to 0. We
assume that 𝑠𝑗𝑗 = 0. 𝑠𝑗𝑘 is always considered as a weight of the link (edge) between
nodes 𝑗,𝑘, being deemed as a kind of similarity between the nodes. However, by
setting 𝑠𝑗𝑗 = 0, this is not strictly a similarity measure. If 𝑠𝑗𝑘 ∈ 0,1, we will talk
about an unweighted graph, otherwise about a weighted one. An unnormalized
(combinatorial) Laplacian 𝐿 of such a (weighted or unweighted) graph is defined as
𝐿 = 𝐷−𝑆, where 𝐷 is the diagonal matrix with 𝑑𝑗𝑗 = ∑𝑛

𝑘=1 𝑠𝑗𝑘 for each 𝑗 = 1,…𝑛.
The respective signless Laplacian 𝐾 of a graph is defined as: 𝐾 = 𝐷 +𝑆.

A normalized Laplacian 𝔏 of a graph is defined as 𝔏 = 𝐷−1/2𝐿𝐷−1/2 = 𝐼 −
𝐷−1/2𝑆𝐷−1/2, and a random walk Laplacian 𝕃 of a graph is 𝕃 = 𝐷−1𝐿 = 𝐼 −𝐷−1𝑆.
The matrix 𝐷−1𝑆 is interpreted as the transition matrix for the random walk on
the graph.

Note that while 𝔏 is a symmetric matrix, 𝕃 is not symmetric. However, the
two matrices are similar as 𝔏 = 𝐷1/2𝕃𝐷−1/2. It is easy to verify that if (𝜆,𝑢) is an
eigenpair of 𝔏 then (𝜆,𝑤) is the eigenpair of 𝕃 and 𝑤 = 𝐷−1/2𝑢). Alternatively, the
eigenpair (𝜆,𝑤) solves generalized eigen-problem 𝐿𝑤 = 𝜆𝐷𝑤. It should be stressed
that while eigenvectors of 𝔏 are orthogonal, these of 𝕃 are not.

The eigenvalues of 𝐿 and 𝐾 will differ unless we have to do with a bipartite
graph which is the case with a grid graph.

A two-dimensional (unweighted) grid graph [10], (called also a square grid
graph, or a rectangular grid graph, or 𝑚×𝑛 grid) is an 𝑚×𝑛 lattice graph 𝐺(𝑚,𝑛),
meaning the graph Cartesian product 𝑃𝑚 ×𝑃𝑛 of path graphs on 𝑚 and 𝑛 vertices,
respectively. In this paper we go beyond the concept of unweighted grid graphs.

332 M. Kłopotek, S. Wierzchoń and R. Kłopotek

Let us define a weighted generalized grid graph as 𝐺(𝑛1)(𝔴1) being a weighted
path graph of 𝑛1 vertices with weight 𝔴1 for any link in this graph, and
the 𝑑 dimensional weighted grid graph 𝐺(𝑛1,…,𝑛𝑑)(𝔴1,…,𝔴𝑑) being the weighted
graph Cartesian product 𝐺(𝑛1,…,𝑛𝑑−1)(𝔴1,…,𝔴𝑑−1) ×𝐺(𝑛𝑑)(𝔴𝑑). Thus a 𝑑-dimensional
weighted grid graph is uniquely defined by a grid graph identity vector pair
[𝑛1,…,𝑛𝑑][𝔴1,…,𝔴𝑑]. We can imagine that the grid graph is embedded into a
hyper-cuboid, as in Figure 1 (for two dimensions) where 𝑛𝑗 is the number of layers
of nodes in the 𝑗th dimension and 𝔴𝑗 is the weight of links between layers in the
𝑗th dimension. For example, in Figure 1, we have a two-dimensional hypercuboid
(rectangle) with an embedded grid in such a way that there are 3 layers in the
horizontal direction and 5 layers of nodes in the vertical direction. The links
parallel to the horizontal direction have weights 2, and the links in the vertical
direction have weight 7. By the notation 2:7 we will subsequently express the
proportion between the weights in the horizontal and vertical directions. In the
drawing, higher weights will be expressed by shorter edges.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0

0
.5

1
.0

1
.5

Grid graph (3,5) weights (2,7)

X axis

Y
 a

x
is

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1. A sample two-dimensional grid graph

Let us recall a special way of assigning (integer) identities to the weighted
grid graph 𝐺(𝑛1,…,𝑛𝑑)(𝔴1,…,𝔴𝑑) nodes, following the ideas of [11, 12]. The identity
numbers run consecutively from 1 to ∏𝑑

𝑗=1 𝑛𝑗. Each node identity number 𝑖 is
uniquely associated with a identity vector x = [𝑥1,…,𝑥𝑑] via the (invertible)
formula:

𝑖 = 1+
𝑑

∑
𝑗=1

(𝑥𝑗 −1)⋅
𝑑

∏
𝑘=𝑗+1

𝑛𝑘, (1)

Weighted Laplacians of Grids … 333

Let 𝑖(𝑖) be a function turning the node identity number 𝑖 to the correspon-
ding identity vector x.1

A node with identity vector [𝑥1,…,𝑥𝑑] is connected for each 𝑗 with the node
[𝑥1,…,𝑥𝑗 −1,𝑥𝑑] if 𝑥𝑗 > 1 and with node [𝑥1,…,𝑥𝑗 +1,𝑥𝑑] if 𝑥𝑗 < 𝑛𝑗 with weight
𝔴𝑗 and there are no other edges in the graph.

We will index the eigenvalues and the corresponding eigenvectors with an
identity vector of 𝑑 integers z = [𝑧1,…,𝑧𝑑]. Note that increasing/decreasing a 𝑧𝑗
by 2𝑛𝑗 will leave any eigenvalue and eigenvector unchanged. Also replacing 𝑧𝑗
with −𝑧𝑗 (occasionally together with replacing the corresponding shift 𝛿 with −𝛿
to be explained later) will leave the eigenvalue and the eigenvector unchanged.
Accordingly, the value range of 𝑧𝑗 can be smoothly reduced to the range [0,𝑛𝑗]. We
are subsequently interested only in the range [−𝑛𝑗 +1,2𝑛𝑗 −1] for 𝑧𝑗. In case that
eigenvalues/eigenvectors depend on the weights 𝔴 we will also use the weights
when identifying them.

The similarity matrix 𝑆 of the weighted grid graph 𝐺(𝑛1,…,𝑛𝑑)(𝔴1,…,𝔴𝑑) is a
(∏𝑑

𝑗=1 𝑛𝑗)×(∏𝑑
𝑗=1 𝑛𝑗) matrix with 𝑠𝑖𝑙 = 𝔴𝑗 if nodes with identities 𝑖,𝑙 are connected

and their connection is in dimension 𝑗 and 𝑠𝑖𝑙 = 0 otherwise.

3. Combinatorial Laplacians of Weighted Grid Graphs
Combinatorial Laplacians of weighted grid graphs are easily derived from

path graph Laplacians via combination proposed e.g. by Fiedler [13], and
others, [14, 15]. The form of eigenvectors is identical as in case of unweighted
graphs, while the eigenvalues differ and are susceptible to scale (they increase
when the weights of edges are proportionally increased). Let us define

𝜆[𝑧1,…,𝑧𝑑] =
𝑑

∑
𝑗=1

2𝔴𝑗 ⋅(1−cos(
𝜋𝑧𝑗

𝑛𝑗
)), (2)

where for each 𝑗 = 1,…,𝑑 𝑧𝑗 is an integer such that 0 ≤ 𝑧𝑗 ≤ 𝑛𝑗 −1.
Let us furthermore define

𝜈[𝑧1,…,𝑧𝑑],[𝑥1,…,𝑥𝑑] =
𝑑

∏
𝑗=1

cos(
𝜋𝑧𝑗

𝑛𝑗
(𝑥𝑗 −0.5)), (3)

where for each 𝑗 = 1,…,𝑑 𝑥𝑗 is an integer such that 1 ≤ 𝑥𝑗 ≤ 𝑛𝑗.
And finally let us define the 𝑛 dimensional vector 𝑣[𝑧1,…,𝑧𝑑] such that

𝑣[𝑧1,…,𝑧𝑑],𝑖 = 𝜈[𝑧1,…,𝑧𝑑],[𝑥1,…,𝑥𝑑], (4)

Note at this place that we are talking about two distinct multidimensional
spaces. The first one is the space in which we locate the drawing of the grid, like

1. The identity number of the node [4] in a graph 𝐺(7)(...) is computed as (4-1)*1+1=4. The
identity number of the node [2,4] in a graph 𝐺(7,6)(...) is computed as (2-1)*6+(4-1)*1+1=10.
The identity number of the node [2,4,5] in a graph 𝐺(7,6,8)(...) is computed as (2−1)∗48+(4−
1)∗8+(5−1)∗1+1 = 77.

334 M. Kłopotek, S. Wierzchoń and R. Kłopotek

the two-dimensional space in Figure 1. If a confusion may occur anywhere, we will
refer to the grid space, the grid dimension, etc. The grid space is 𝑑-dimensional.
When performing spectral analysis, each node is placed in a different space, called
hereafter the spectral space. This space is 𝑛-dimensional, where 𝑛 = ∏𝑑

𝑗=1 𝑛𝑗. We
will refer to spectral space and spectral dimensions in this space. So if a node has
coordinates [𝑥1,…,𝑥𝑑] in the grid space, that it belongs to the layer 𝑥1 in the grid
dimension 1, …, 𝑥𝑑 in the grid dimension 𝑑, then in the spectral space it will have
the coordinate 𝜈[0,…,0],[𝑥1,…,𝑥𝑑] in the spectral dimension [0,…,0], 𝜈[1,…,0],[𝑥1,…,𝑥𝑑]
in the spectral dimension [1,…,0], …𝜈[𝑛1−1,…,0],[𝑥1,…,𝑥𝑑] in the spectral dimension
[𝑛1 −1,…,0], …𝜈[𝑛1−1,…,𝑛𝑑−1],[𝑥1,…,𝑥𝑑] in the spectral dimension [𝑛1 −1,…,𝑛𝑑 −1].
Nevertheless, the spectral analysis does not make use of all these dimensions and
usually restricts itself to some 𝑘 spectral dimensions associated with 𝑘 lowest
eigenvalues.

Theorem 1 Given the combinatorial Laplacian 𝐿 of the weighted grid graph
𝐺(𝑛1,…,𝑛𝑑)(𝔴1,…,𝔴𝑑), for each vector of integers [𝑧1,…,𝑧𝑑] such that for each
𝑗 = 1,…,𝑑, 0 ≤ 𝑧𝑗 ≤ 𝑛𝑗 −1, the 𝜆[𝑧1,…,𝑧𝑑], as defined by (2), is an eigenvalue.2 of 𝐿
and 𝑣[𝑧1,…,𝑧𝑑], as defined by (4) is a corresponding eigenvector.3

This theorem is proven in [16]. The proof is rather technical and straight-
forward based on the paper of [13] and Fiedler’s results on the path graph com-
bination.

4. Unoriented Laplacian of a Weighted Grid Graph
Like in the case of unweighted grid graphs, there exists an elegant solution

to the eigen-problem of the unoriented Laplacian defined as 𝐾 = 𝐷+𝑆, [17].

Theorem 2 The unoriented Laplacian eigenvalues4 for a weighted grid graph are
of the same form as for the combinatorial Laplacian that is

𝜆[𝑧1,…,𝑧𝑑] =
𝑑

∑
𝑗=1

𝔴𝑗 (2sin(
𝜋𝑧𝑗

2𝑛𝑗
))

2

, (5)

2. For instance, the combinatorial Laplacian eigenvalue 𝜆[3,4] in a graph 𝐺(5,6)(0.7,2.8)
is computed as 2 ⋅ (1 − cos(𝜋 ⋅ 3/5)) ⋅ 0.7 + 2 ⋅ (1 − cos(𝜋 ⋅ 4/6)) ⋅ 2.8 = 10.2326. Similarly the
combinatorial Laplacian eigenvalue 𝜆[0,1] in a graph 𝐺(2,3)(0.7,2.8) is computed as 2 ⋅ (1−cos(𝜋 ⋅
0/2)) ⋅0.7+2⋅(1−cos(𝜋 ⋅1/3)) ⋅2.8 = 2.8.

3. The Combinatorial Laplacian eigenvector corresponding to the eigenvalue 𝜆[0,1] in a graph
𝐺(2,3)(...) is computed as [cos(1−0.5

2 ⋅0⋅𝜋)⋅cos(1−0.5
3 ⋅1⋅𝜋),cos(1−0.5

2 ⋅0⋅𝜋)⋅cos(2−0.5
3 ⋅1⋅𝜋),cos(1−0.5

2 ⋅
0 ⋅𝜋) ⋅cos(3−0.5

3 ⋅ 1 ⋅𝜋),cos(2−0.5
2 ⋅ 0 ⋅𝜋) ⋅cos(1−0.5

3 ⋅ 1 ⋅𝜋),cos(2−0.5
2 ⋅ 0 ⋅𝜋) ⋅cos(2−0.5

3 ⋅ 1 ⋅𝜋),cos(2−0.5
2 ⋅

0 ⋅𝜋) ⋅cos(3−0.5
3 ⋅1 ⋅𝜋)].

4. The Signless Laplacian eigenvalue 𝜆[0,1] in a graph 𝐺(2,3)(0.7,2.8) is computed as 2 ⋅ (1−
cos(𝜋 ⋅0/2)) ⋅0.7+2⋅(1−cos(𝜋 ⋅1/3)) ⋅2.8 = 2.8 .

Weighted Laplacians of Grids … 335

The corresponding eigenvectors5 have components of the form

𝜈[𝑧1,…,𝑧𝑑],[𝑥1,…,𝑥𝑑] =
𝑑

∏
𝑗=1

(−1)𝑥𝑗 cos(
𝜋𝑧𝑗

𝑛𝑗
(𝑥𝑗 −0.5)), (6)

The proof is a variation on the proof of theorem 1.

5. Normalized Laplacians of Weighted Grid Graphs

The approach to the eigen-problem of a normalized Laplacian differs stron-
gly from the approach used in the previous sections. The principal difference is
that the path combination of Fiedler does not work due to the normalization.

The solution does not have a completely closed-form. An iterative compo-
nent is needed when identifying an eigenvalue. Once the eigenvalue is identified,
the so-called shifts or 𝛿’s are also identified and then the eigenvalue and eigenvec-
tors are in a closed form with respect to these shifts 𝛿. The problem of only a
partial closed-from is strongly related to the fact that the eigen-problem for the
normalized Laplacian cannot be decomposed in a way that could be done for the
combinatorial Laplacians.

Normalization causes that the eigenvectors of weighted grid graph norma-
lized Laplacians, contrary to their combinatorial counterparts, depend also on
weights because the respective eigenvalues depend on them.

As in the previous sections, we shall index the eigenvalues and eigenvectors
with the vector z = [𝑧1,…,𝑧𝑑] such that 0 ≤ 𝑧𝑗 < 𝑛𝑗 for 𝑗 = 1,…,𝑑.

Theorem 3 The normalized Laplacian 𝔏 of a 𝑑-dimensional weighted grid graph
has the eigenvalues

𝜆𝑧 = 1+
𝑑

∑
𝑗=1

𝔴𝑗

∑𝑑
𝑗=1 𝔴𝑗

cos(1
𝑛𝑗 −1

(𝑧𝑗𝜋−2𝛿𝑧
𝑗)), (7)

with the 𝛿𝑧 vector, called shift vector, defined as a solution of the equation
system consisting of the subsequent equation (10) and the equations (11) for
each 𝑙 = 1,…,𝑑.

5. The Signless Laplacian eigenvector corresponding to the eigenvalue 𝜆[0,1] in a graph
𝐺(2,3)(...) is computed as [cos(1−0.5

2 ⋅ 0 ⋅ 𝜋) ⋅ cos(1−0.5
3 ⋅ 1 ⋅ 𝜋),−cos(1−0.5

2 ⋅ 0 ⋅ 𝜋) ⋅ cos(2−0.5
3 ⋅ 1 ⋅

𝜋),cos(1−0.5
2 ⋅ 0 ⋅𝜋) ⋅cos(3−0.5

3 ⋅ 1 ⋅𝜋),−cos(2−0.5
2 ⋅ 0 ⋅𝜋) ⋅cos(1−0.5

3 ⋅ 1 ⋅𝜋),cos(2−0.5
2 ⋅ 0 ⋅𝜋) ⋅cos(2−0.5

3 ⋅
1 ⋅𝜋),−cos(2−0.5

2 ⋅0 ⋅𝜋) ⋅cos(3−0.5
3 ⋅1 ⋅𝜋)].

336 M. Kłopotek, S. Wierzchoń and R. Kłopotek

The corresponding eigenvectors6 𝑣𝑧 have components of the form

𝜈𝑧,[𝑥1,…,𝑥𝑑] = 𝐷1/2
[𝑥1,…,𝑥𝑑],[𝑥1,…,𝑥𝑑] (8)

𝑑
∏
𝑗=1

(−1)𝑥𝑗 cos(
𝑥𝑗 −1
𝑛𝑗 −1

(𝑧𝑗𝜋−2𝛿𝑧
𝑗)+𝛿𝑧

𝑗) (9)

Proof Notwithstanding the fact that this theorem may bear a resemblance to the
theorem 1, it is different in nature. The known results of [13] on the path graph
products do not apply because of the nature of the normalized Laplacian. The
proof relies on distinguishing the inner and border nodes of the grid and showing
that the formulas are valid at the border points and inductively hold for inner
points too. A detailed proof can be found in [16]. Q.E.D.

The defining equations for 𝛿 (shifts) are:

2𝔴Σ𝜆𝑧 =
𝑑

∑
𝑗=1

𝔴𝑗 (2+2cos(1
𝑛𝑗 −1

(𝑧𝑗𝜋−2𝛿𝑧
𝑗))), (10)

𝜆𝑧 = 1+cos(1
𝑛𝑙 −1

(𝑧𝑙𝜋−2𝛿𝑧
𝑙))+tan(𝛿𝑧

𝑙)sin(1
𝑛𝑙 −1

(𝑧𝑙𝜋−2𝛿𝑧
𝑙)), (11)

Interestingly, the last equation (11) does not depend explicitly on weights. Hence,
it is formally identical with the very same equation for unweighted graphs.
Nonetheless, it should be kept in mind that 𝜆𝑧 depends on the weights and
therefore the impact of weighting is present also in this equation. The equation
(10), after dividing by 2𝔴Σ reduces to the formula (7).

By combining the equation (10) with equations (11) for each 𝑙 we get a
system of 𝑑+1 equations from which 𝜆 and 𝛿’s can be determined. The equation
(11) may be transformed to:

(𝜆𝑧 −1)cos(𝛿𝑧
𝑙) = cos(𝛿𝑧

𝑙)cos(1
𝑛𝑙 −1

(𝑧𝑙𝜋−2𝛿𝑧
𝑙))

+ sin(𝛿𝑧
𝑙)sin(1

𝑛𝑙 −1
(𝑧𝑙𝜋−2𝛿𝑧

𝑙)), (12)

that is

(𝜆𝑧 −1)cos(𝛿𝑧
𝑙) = cos(𝛿𝑧

𝑙 − 1
𝑛𝑙 −1

(𝑧𝑙𝜋−2𝛿𝑧
𝑙)), (13)

which is simpler to solve for 𝛿 knowing 𝜆. The solution can be obtained using the
bisectional method on 𝜆 using the above formula to obtain 𝛿s, and using (7) to

6. The Normalized Laplacian eigenvector corresponding to the eigenvalue 𝜆[0,1] in a graph
𝐺(2,3)(0.7,2.8) is computed as [cos(1−1

2−1 ⋅(0⋅𝜋−2𝛿𝑧
1)+𝛿𝑧

1)⋅cos(1−1
3−1 ⋅(1⋅𝜋−2𝛿𝑧

1)+𝛿𝑧
1)

√
3.5,−cos(1−1

2−1 ⋅
(0⋅𝜋−2𝛿𝑧

2)+𝛿𝑧
2)⋅cos(2−1

3−1 ⋅(1⋅𝜋−2𝛿𝑧
2)+𝛿𝑧

2)
√

6.3,cos(1−1
2−1 ⋅(0⋅𝜋−2𝛿𝑧

3)+𝛿𝑧
3)⋅cos(3−1

3−1 ⋅(1⋅𝜋−2𝛿𝑧
3)+

𝛿𝑧
3)

√
3.5 − cos(2−1

2−1 ⋅ (0 ⋅ 𝜋 − 2𝛿𝑧
4) + 𝛿𝑧

4) ⋅ cos(1−1
3−1 ⋅ (1 ⋅ 𝜋 − 2𝛿𝑧

4) + 𝛿𝑧
4)

√
3.5,cos(2−1

2−1 ⋅ (0 ⋅ 𝜋 − 2𝛿𝑧
5) + 𝛿𝑧

5) ⋅
cos(2−1

3−1 ⋅(1⋅𝜋−2𝛿𝑧
5)+𝛿𝑧

5)
√

6.3,−cos(2−1
2−1 ⋅(0⋅𝜋−2𝛿𝑧

6)+𝛿𝑧
6)⋅cos(3−1

3−1 ⋅(1⋅𝜋−2𝛿𝑧
6)+𝛿𝑧

6)
√

3.5] where
𝛿𝑧 is a vector of the form [−0.4636,0.1002].

Weighted Laplacians of Grids … 337

get the value of 𝜆′ and then reducing bisectionally the difference between 𝜆 and
𝜆′ down to zero.

6. Random Walk Laplacians of Weighted Grid Graph
As already mentioned in Section 2, the eigenvalues and eigenvectors for

Random Walk Laplacians could be conveniently derived from those for Normalized
Laplacians. Thus, as proved in [16]

Theorem 4 The random walk Laplacian 𝕃 of a weighted 𝑑-dimensional grid with
at least one inner node, has the eigenvalues7 of the form

𝜆𝑧 = 1+
𝑑

∑
𝑗=1

𝔴𝑗

𝔴Σ
cos(1

𝑛𝑗 −1
(𝑧𝑗𝜋−2𝛿𝑗)), (14)

with the 𝛿𝑧 vector defined as a solution of the equation system consisting of the
preceding equation (10) and the equations (11) for each 𝑙 = 1,…,𝑑.

The corresponding eigenvectors8 𝑣𝑧 have components of the form

𝜈𝑧,[𝑥1,…,𝑥𝑑] = 𝐷[𝑥1,…,𝑥𝑑],[𝑥1,…,𝑥𝑑] ×
𝑑

∏
𝑗=1

(−1)𝑥𝑗 cos(
𝑥𝑗 −1
𝑛𝑗 −1

(𝑧𝑗𝜋−2𝛿𝑧
𝑗)+𝛿𝑧

𝑗), (15)

7. Implications for Spectral Clustering
Spectral clustering encompasses the algorithms that cluster points using

eigenvectors of matrices derived from the data, see e.g. [1] for a deeper discussion.

7.1. Relations between Laplacian types
It is also worth having a look at the comparison of aligned eigenvalues of

combinatorial and normalized Laplacians, as visible in Figure 2. Though they
appear to be nearly placed on a straight line, they are not, they lie above it in
the middle.

In Figure 3, one eigenvector for combinatorial and normalized Laplacians is
compared for each weighting of edges. They exhibit similar patterns, with weights
being responsible for some spreading of the values.

Figure 4 illustrates the relationship between eigenvalues and the shifts of
normalized Laplacians in grid graphs. This relationship seems not to be simplistic

7. The Random Walk Laplacian eigenvalue 𝜆[0,1] in a graph 𝐺(2,3)(0.7,2.8) is computed as
1 + 0.7

3.5 cos(1
2−1 (𝜋 ⋅ 0 − 2𝛿𝑧

1)) + 2.8
3.5 cos(1

3−1 (𝜋 ⋅ 1 − 2𝛿𝑧
2)) = 1.2 where 𝛿𝑧 is a vector of the form

[-0.4636,0.1002] .
8. The Random Walk Laplacian eigenvector corresponding to the eigenvalue 𝜆[0,1] in a graph

𝐺(2,3)(0.7,2.8) is computed as [cos(1−1
2−1 ⋅(0⋅𝜋−2𝛿𝑧

1)+𝛿𝑧
1)⋅cos(1−1

3−1 ⋅(1⋅𝜋−2𝛿𝑧
1)+𝛿𝑧

1)⋅3.5,−cos(1−1
2−1 ⋅

(0 ⋅𝜋−2𝛿𝑧
2)+𝛿𝑧

2) ⋅cos(2−1
3−1 ⋅ (1 ⋅𝜋−2𝛿𝑧

2)+𝛿𝑧
2) ⋅6.3,cos(1−1

2−1 ⋅ (0 ⋅𝜋−2𝛿𝑧
3)+𝛿𝑧

3) ⋅cos(3−1
3−1 ⋅ (1 ⋅𝜋−2𝛿𝑧

3)+
𝛿𝑧

3) ⋅ 3.5,−cos(2−1
2−1 ⋅ (0 ⋅ 𝜋 − 2𝛿𝑧

4) + 𝛿𝑧
4) ⋅ cos(1−1

3−1 ⋅ (1 ⋅ 𝜋 − 2𝛿𝑧
4) + 𝛿𝑧

4) ⋅ 3.5,cos(2−1
2−1 ⋅ (0 ⋅ 𝜋 − 2𝛿𝑧

5) + 𝛿𝑧
5) ⋅

cos(2−1
3−1 ⋅ (1 ⋅𝜋 −2𝛿𝑧

5)+𝛿𝑧
5) ⋅6.3,−cos(2−1

2−1 ⋅ (0 ⋅𝜋 −2𝛿𝑧
6)+𝛿𝑧

6) ⋅cos(3−1
3−1 ⋅ (1 ⋅𝜋 −2𝛿𝑧

6)+𝛿𝑧
6) ⋅3.5] where

𝛿𝑧 is a vector of the form [−0.4636,0.1002].

338 M. Kłopotek, S. Wierzchoń and R. Kłopotek

●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●

0 20 40 60 80 100

0
.0

0
.5

1
.0

1
.5

2
.0

Eigenvalue comb vs normLap on grid graph 31,33 with weight proportions

 black − 1:1, blue − 1:2, green − 1:3, red − 1:4

combinatorial Laplacian

n
o

rm
a

liz
e

d
 L

a
p

la
c
ia

n

Figure 2. A comparison of eigenvalue distributions between combinatorial and normalized
Laplacians, for structurally the same grid graph, but with various proportions of weights in

both directions. The colors indicate: black - 1:1 (the unweighted case), blue - 1:2, green - 1:3,
red - 1:4.A sample two-dimensional grid graph

and may at least partially explain why we did not find a closed-form solution for
identifying eigenvalues and shifts. Nevertheless, we can see that the patterns are
similar for various proportions of weights of edges of the grid graph.

Finally, we shall pose the question how the cumulative distribution of
eigenvalues of a normalized Laplacian of a grid graph would look like in the limit
(when the number of nodes grows). Let us consider the unweighted case. If we
keep in mind that |𝛿𝑗| < 𝜋, then for sufficiently high 𝑛𝑗 and 𝑧𝑗 the contribution of
𝛿𝑗 in the equation (7) will vanish and

𝜆𝑧 ≈ 1+ 1
𝑑

𝑑
∑
𝑗=1

cos(
𝑧𝑗𝜋
𝑛𝑗

) = 1+ 1
𝑑

𝑑
∑
𝑗=1

(1−2sin2 (
𝑧𝑗𝜋
2𝑛𝑗

)) =

2−21
𝑑

𝑑
∑
𝑗=1

sin2 (
𝑧𝑗𝜋
2𝑛𝑗

), (16)

which, up to a scaling factor, resembles the defining equation of combinatorial
Laplacian eigenvalue (2). This means that the in-the-limit behavior of normalized
Laplacian eigenvalues will resemble that of combinatorial Laplacian eigenvalues,
i.e., uniformity can be assumed.

Weighted Laplacians of Grids … 339

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

Eigenvector comb vs normLap on grid graph 31,33 with weight proportions

 black − 1:1, blue − 1:2, green − 1:3, red − 1:4

combinatorial Laplacian

n
o
rm

a
liz

e
d
 L

a
p
la

c
ia

n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3. A comparison of sample eigenvectors of combinatorial and normalized Laplacians
of weighted two-dimensional grid graphs of approximately 1,000 nodes for z = [1,1] with

various proportions of weights in both directions The colors indicate: black - 1:1 (the
unweighted case), blue - 1:2, green - 1:3, red - 1:4.

Let us consider also the ”within-the-limit” behavior of the normalized
Laplacian eigenvectors, as described by the expression (9). For simplicity, let us
set the weights to 1. For sufficiently large z and x

𝜈z,x = 𝐷1/2
x,x

𝑑
∏
𝑗=1

(−1)𝑥𝑗 cos(
𝑥𝑗 −1
𝑛𝑗 −1

(𝑧𝑗𝜋−2𝛿𝑧
𝑗)+𝛿𝑧

𝑗) ≈

𝐷1/2
x,x

𝑑
∏
𝑗=1

(−1)𝑥𝑗 cos(
𝑧𝑗𝜋
𝑛𝑗

(𝑥𝑗 −1)+𝛿𝑧
𝑗), (17)

which nevertheless differs from the combinatorial Laplacian eigenvector compo-
nents (even in an unweighted case) (3),

𝜈z,x =
𝑑

∏
𝑗=1

cos(
𝜋𝑧𝑗

𝑛𝑗
(𝑥𝑗 −0.5)), (18)

in terms of the shift.

340 M. Kłopotek, S. Wierzchoń and R. Kłopotek

●●●●●●●●●●●●●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●
●●●●●●●●●●●●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●
●

●●●●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●

●

●

●

●

●

●

●
●

●
●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●
●

●
●

●

●

●

●

●

●

●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●
●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●●●●●●●●●●●●
●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●● ● ● ● ● ● ● ● ● ● ●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5
Deltas comparison for two dimensional grid with weight proportions

 black − 1:1, blue − 1:2, green − 1:3, red − 1:4

delta1

d
e

lt
a

2

●●●●●●●●●●●●●●
●●

●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●

●
●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●

●
●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●
●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●

●
●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●

●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●●
●●
●●

●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●
●●

●●
●●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●
●●

●●
●
●
●
●
●
●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●●

●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●

●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●

●●
●●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●
●●
●●
●●

●●●● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●
●●

●●
●●
●
●
●
●
●
●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●
●●

●●
●
●
●
●
●
●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●
●●

●
●
●
●
●
●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●
●

●
●
●
●
●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●
●

●
●
●
●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●
●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●
●
●
●

●
●●

●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●
●
●
●
●

●●
●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●

●●
●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●
●
●
●
●
●●

●●
●●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●
●
●
●
●
●●
●●
●●
●●●

●●●● ● ● ● ● ● ● ● ● ●

Figure 4. Relationships of normalized Laplacian eigenvalues 𝜆 and shifts 𝛿 of grid graphs of
approximately 1,000 nodes with various proportions of weights in both directions. The colors

indicate: black - 1:1 (the unweighted case), blue - 1:2, green - 1:3, red - 1:4.

7.2. Spectral Clustering versus Cut and Ncut clustering methods
Frequently, the Spectral Clustering is represented as a kind of relaxation

of graph cuts. A graph cut means removal of some edges in order to obtain
a disconnected graph. Graph clustering into two clusters may be deemed as
a graph cut task in which the total weight of removed edges is minimized, or
alternatively, to obtain balanced subgraphs, the cut value is normalized via the
sum of reciprocals of subgraph volumes (the latter is called a normalized cut).
Both the cut and the normalized cut are claimed to be related to the second
smallest eigenvalue eigenvector (Fiedler vector) of a combinatorial Laplacian or a
normalized Laplacian, respectively (if clustered into two clusters).

The argument goes as follows. Let 𝑓 be an indicator vector telling whether
a node belongs to cluster 1 or 2: if a node 𝑖 belongs to cluster 1, then 𝑓𝑖 = 1, and

Weighted Laplacians of Grids … 341

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4 6

2
4

6
8

Grid graph (3,9)

cut weight 3 , Ncut weight 0.144911 under 2 clusters

X axis

Y
 a

x
is

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

−
2

0
2

4
6

8

Grid graph (12,5)

cut weight 5 , Ncut weight 0.097087 under 2 clusters

X axis

Y
 a

x
is

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 5. The plots of clustering of unweighted two-dimensional grid graphs

if a node 𝑖 belongs to cluster 2, then 𝑓𝑖 = −1. Hence, if graph nodes are split into
sets 𝐵,𝐵, then the cut can be expressed as

𝑐𝑢𝑡(𝐵,𝐵) = ∑
𝑖∈𝐵

∑
𝑗∈𝐵

𝔴𝑖𝑗
(𝑓𝑖 −𝑓𝑗)2

4
, (19)

It turns out that, for the Laplacian 𝐿 of the connectivity matrix of such a graph,

𝑓𝑇𝐿𝑓 = 2∑
𝑖∈𝐵

∑
𝑗∈𝐵

𝔴𝑖𝑗(𝑓𝑖 −𝑓𝑗)2, (20)

The condition that 𝑓𝑖 ∈ {−1,1} is relaxed and instead it is allowed that 𝑓𝑖 ∈ [−1,1]
so that we can speak about a kind of fuzzy membership 𝑓 which may be defuzzified
later. Under such circumstances and by imposing the condition that both clusters
must be non-empty, and imposing the additional constraint that the scale of 𝑓
should not matter, minimizing the ”cut”

When we apply this procedure to an unweighted grid graph, then it is
obvious from the derived analytical formulas that the cut will run along the
dimension for which the number of nodes is the biggest, see Figure 5.

However, in the case of weighted grid graphs, the proportions between
weights of edges start to play a role. See Figure 6.

We observe some disturbing behavior. Higher edge weights lead to lower
weight cuts! More specifically, in the left part of Figure 6 cutting vertically would
lead to a cut weight of 27, while the Fiedler vector chooses a cut of 60, if we
perform the split into nodes with positive and negative values of this eigenvector
(following initial Fiedler proposal). Not to say that cutting out a corner point
would yield a cut weight of 23.

This means that the spectral clustering performs a different clustering from
the one that is claimed in the literature that is the optimization of 𝑐𝑢𝑡.

In order to understand the issue, let us consider the analytical forms of grid
graph eigenvalues and vectors.

342 M. Kłopotek, S. Wierzchoń and R. Kłopotek

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0

0
.5

1
.0

1
.5

2
.0

Grid graph (3,9) weights (3,20)

cut weight 60 , Ncut weight 0.228205 under 2 clusters

X axis

Y
 a

x
is

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0

0
.5

1
.0

1
.5

Grid graph (3,9) weights (3,25)

cut weight 27 , Ncut weight 0.093879 under 2 clusters

X axis

Y
 a

x
is

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6. The plots of clustering of weighted two-dimensional grid graphs. Edges are omitted
as their placement is obvious. The smaller the distances, the higher the weights

Let us look at the precise formula for the Fiedler eigenvalue. Let this
eigenvalue be in the dimension 𝑑1.

𝜆[0,…,1𝑑1,…,0] = 2𝔴𝑑1
⋅(1−cos(𝜋

𝑛𝑑1

)) (21)

Consider a competing dimension 𝑑0 in which we would like to have the Fieldler
eigenvalue.

𝜆[0,…,1𝑑0,…,0] = 2𝔴𝑑0
⋅(1−cos(𝜋

𝑛𝑑0

)), (22)

We can achieve the effect that 𝜆[0,…,1𝑑0,…,0] < 𝜆[0,…,1𝑑1,…,0] in two different ways.
Either we increase 𝑛𝑑0

or increase 𝔴𝑑0
. While the former is fixed, let us look what

we can do with the latter.

2𝔴𝑑0
⋅(1−cos(𝜋

𝑛𝑑0

)) < 2𝔴𝑑1
⋅(1−cos(𝜋

𝑛𝑑1

)), (23)

2𝔴𝑑0
⋅(2sin2 (𝜋/2

𝑛𝑑0

)) < 2𝔴𝑑1
⋅(2sin2 (𝜋/2

𝑛𝑑1

)), (24)

𝔴𝑑0

𝔴𝑑1

<
sin2 (𝜋/2

𝑛𝑑1
)

sin2 (𝜋/2
𝑛𝑑0

)
, (25)

Weighted Laplacians of Grids … 343

If both 𝑛𝑑0
and 𝑛𝑑1

are large,

𝔴𝑑0

𝔴𝑑1

<
𝜋2/4
𝑛2

𝑑1
𝜋2/4
𝑛2

𝑑0

⇒ √
𝔴𝑑0

𝔴𝑑1

<
𝑛𝑑0

𝑛𝑑1

, (26)

This means that the spectral clustering optimizes the sum of square roots of edge
weights

𝑠𝑟𝑐𝑢𝑡(𝐵,𝐵) = ∑
𝑖∈𝐵

∑
𝑗∈𝐵

√𝔴𝑖𝑗
(𝑓𝑖 −𝑓𝑗)2

4
(27)

and not the sum of cut edges for large grids, as suggested by (19) (There are some
subtleties for smaller ones).

This obviously provides only a partial explanation because not cutting out
a single corner point is not explained. We can speculate that the distance from
the ”cluster center” plays a role in calculating the edge weight.

One way to deal with the cutting of small node groups is to make a
correction for the volumes of the clusters (sums of weights of edges coinciding
with the nodes of a cluster)

𝑁𝑐𝑢𝑡(𝐵,𝐵) = 𝑐𝑢𝑡(𝐵,𝐵)(1
𝑣𝑜𝑙(𝐵)

+ 1
𝑣𝑜𝑙(𝐵)

), (28)

This is also transformed to a spectral clustering task with the following
argument, [5]. Let 𝑓 be an indicator vector telling whether a node belongs to
cluster 1 (B) or 2 (𝐵): if a node 𝑖 belongs to cluster 1, then 𝑓𝑖 =

𝑓𝑇𝐿𝑓 = 2∑
𝑖∈𝐵

∑
𝑗∈𝐵

𝔴𝑖𝑗(𝑓𝑖 −𝑓𝑗)2, (29)

= 2∑
𝑖∈𝐵

∑
𝑗∈𝐵

𝔴𝑖𝑗 (1
𝑣𝑜𝑙(𝐵)

+ 1
𝑣𝑜𝑙(𝐵)

)
2

, (30)

On the other hand

𝑓𝑇𝐷𝑓 = ∑
𝑖

𝑑𝑖𝑖𝑓2
𝑖 = ∑

𝑖∈𝐵

𝑑𝑖
𝑣𝑜𝑙(𝐵)2 +∑

𝑖∈𝐵

𝑑𝑖

𝑣𝑜𝑙(𝐵)2
=

= 𝑣𝑜𝑙(𝐵)
𝑣𝑜𝑙(𝐵)2 + 𝑣𝑜𝑙(𝐵)

𝑣𝑎𝑙(𝐵)2
= 1

𝑣𝑜𝑙(𝐵)
+ 1

𝑣𝑜𝑙(𝐵)
, (31)

344 M. Kłopotek, S. Wierzchoń and R. Kłopotek

This means that 𝑁𝑐𝑢𝑡 is proportional to

𝑓𝑇𝐿𝑓
𝑓𝑇𝐷𝑓

= 𝑔𝑇𝐷−1/2𝐿𝐷−1/2𝑔
𝑔𝑇𝑔

= 𝑔𝑇𝔏𝑔
𝑔𝑇𝑔

, (32)

The conditions imposed on 𝑔 are relaxed so that we can speak again
about a kind of fuzzy membership 𝑔 which may be defuzzified later. Under
such circumstances and by imposing the condition that both clusters must be
non-empty, and imposing the additional constraint that the scale of 𝑔 should not
matter, minimizing the ”cut”

By applying this procedure to grid graphs, we obtain clusterings identical
with those in the combinatorial Laplacian examples. Due to the shifts, there are
some differences when using concrete examples close to those with the change
of the cut dimension. Nonetheless, we can show by a similar argument that the
square roots of the weights matter in minimizing the normalized cut and not the
weights themselves. Let us recall that from the formula (7) we have

𝜆[𝑛1−1,…,𝑛𝑑0−2,…,𝑛𝑑−1] = 1+
𝔴𝑑0

∑𝑑
𝑗=1 𝔴𝑗

cos(𝜋(1− 1
𝑛𝑑0

−1
)−

2𝛿𝑗

𝑛𝑗 −1
), (33)

+
𝑑

∑
𝑗=1,𝑗≠𝑑0

𝔴𝑗

∑𝑑
𝑗=1 𝔴𝑗

cos(𝜋−
2𝛿𝑗

𝑛𝑗 −1
), (34)

The above formula approaches the formula (22) for large values of 𝑛𝑗 in all the
dimensions up to a scaling factor (the sum of weights). Hence, the argument can
be repeated.

7.3. Beyond Fiedler vector – multiple classes
The spectral clustering theory recommends to proceed as follows: If a split

in more than 2 clusters is to be produced, we take 𝑘 eigenvectors corresponding to
𝑘 smallest eigenvalues of the respective Laplacian (normalized or combinatorial),
form a matrix with columns being these eigenvectors and cluster rows of this
matrix using 𝑘-means. The cluster assignment of such data means the cluster
assignment for graph nodes. Figure 7 presents such clusterings of a 10 by 10 grid
into ten clusters.

If the graph is to be split along one dimension, a modified approach needs
to be used to determine the weights.

In the dimension 𝑑0, we want to have 𝑛𝑑0
clusters. Therefore, the maximum

eigenvalue along this dimension

𝜆[0,…,(𝑛𝑑0−1)𝑑0,…,0] = 2𝔴𝑑0
⋅(1−cos(

𝜋(𝑛𝑑0
−1)

𝑛𝑑0

)), (35)

needs to be smaller than the smallest one in any other dimension 𝑑1.

Weighted Laplacians of Grids … 345

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

1
0

Grid graph (10,10)

cut weight 48 , Ncut weight 2.612561 under 10 clusters

X axis

Y
 a

x
is

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

1 2 3 4 5

−
1

0
1

2
3

Grid graph (10,10) weights (3,90)

cut weight 270 , Ncut weight 0.322078 under 10 clusters

X axis

Y
 a

x
is

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7. The plots of clustering of unweighted and weighted two-dimensional grid graphs.
The smaller the distances, the higher the weights

𝜆[0,…,1𝑑1,…,0] = 2𝔴𝑑1
⋅(1−cos(𝜋

𝑛𝑑1

)), (36)

We can achieve the effect that

𝜆[0,…,(𝑛𝑑0−1)𝑑0,…,0] < 𝜆[0,…,1𝑑1,…,0], (37)

as follows: from

2𝔴𝑑0
⋅(1−cos(

𝜋(𝑛𝑑0
−1)

𝑛𝑑0

)) < 2𝔴𝑑1
⋅(1−cos(𝜋

𝑛𝑑1

)), (38)

2𝔴𝑑0
⋅(1+cos(𝜋

𝑛𝑑0

)) < 2𝔴𝑑1
⋅(1−cos(𝜋

𝑛𝑑1

)), (39)

2𝔴𝑑0
⋅(2−2sin2 (𝜋/2

𝑛𝑑0

)) < 2𝔴𝑑1
⋅(2sin2 (𝜋/2

𝑛𝑑1

)), (40)

2𝔴𝑑0
⋅(1−cos(

𝜋(𝑛𝑑0
−1)

𝑛𝑑0

)) < 2𝔴𝑑1
⋅(1−cos(𝜋

𝑛𝑑1

)), (41)

we conclude that

𝔴𝑑0
⋅(2−2sin2 (𝜋/2

𝑛𝑑0

)) < 2𝔴𝑑1
⋅(2sin2 (𝜋/2

𝑛𝑑1

)), (42)

For large graphs we obtain an approximation

346 M. Kłopotek, S. Wierzchoń and R. Kłopotek

2𝔴𝑑0
⋅(2−2(𝜋/22

𝑛2
𝑑0

)) < 2𝔴𝑑1
⋅(2(𝜋2/22

𝑛2
𝑑1

))
𝔴𝑑0

𝔴𝑑1

<
𝜋2/22

𝑛2
𝑑1

1−(𝜋/22

𝑛2
𝑑0

)
⇒

⇒
𝔴𝑑0

𝔴𝑑1

<

𝜋2/22𝑛2
𝑑0

𝑛2
𝑑1

𝑛2
𝑑0

−𝜋/22 , (43)

and for really large 𝑛𝑑0
we obtain

𝔴𝑑0

𝔴𝑑1

< 𝜋2/22

𝑛2
𝑑1

⇒ √
𝔴𝑑0

𝔴𝑑1

< 𝜋/2
𝑛𝑑1

, (44)

which means that the competing dimension size alone drives the weight propor-
tion. Again the square root cut and not the cut are really optimized.

8. Experiments
8.1. 𝑘-means and the number of eigenvectors to use in spectral

clustering
We shall still ask whether or not fulfilling the formula (37) enables the

𝑘-means algorithm to produce 𝑛𝑑0
clusters by cutting the graph along the

dimension 𝑑0. We analyze this with respect to combinatorial Laplacians. The
eigenvectors for the first 𝑛𝑑0

eigenvalues 𝜆[0,…,(𝑗−1)𝑑0,…,0] for 𝑗 = 1,…𝑛𝑑0
will be of

the form: the vector 𝑣[0,…,(𝑗−1)𝑑0,…,0] will consist of the components

𝜈[0,…,(𝑗−1)𝑑0,…,0],[𝑥1,…,𝑥𝑑] = cos(𝜋(𝑗−1)
𝑛𝑑0

(𝑥𝑑0
−0.5)), (45)

that is all data points [𝑥1,…,𝑥𝑑] with the same coordinate 𝑥𝑑0
, i.e. lying in the

same layer in the dimension 𝑑0 will have identical coordinates in the spectral
dimension [0,…,(𝑗 −1)𝑑0

,…,0] that is they will collapse to a single point in the
spectral space. Thus, we will have 𝑛𝑑0

clusters with zero variance each, i.e. it is
the clear case for a 𝑘-means algorithm.

But what will happen if we use more than 𝑘 eigenvectors in spectral
clustering, where 𝑘 is the intrinsic number of clusters? Let us assume a 2D setting
in which there are 𝑘 layers in the first direction (𝑛1 = 𝑘) and the weights of edges in
the other direction (with 𝑛2 layers) were too big for the eigenvalues to be included
in the first 𝑘 smallest eigenvalues. The next eigenvector would be of the form the
vector 𝑣[0,1] which will consist of the components

Weighted Laplacians of Grids … 347

𝜈[0,1],[𝑥1,𝑥2] = cos(𝜋
𝑛2

(𝑥2 −0.5)), (46)

An experiment on taking more than 𝑘 eigenvectors when clustering into 𝑘 clusters
was performed. The experiment had the following setup: three (two-dimensional)
grid network types (nettype) were considered, with approx. 150, 200 and 250
nodes that were clustered into 𝑘 = 5,…,25 clusters. The clusters were the layers
in one dimension. The weights of the connections within each cluster were set
to 1 and the weights between clusters were set so that the quotient of 𝑘 + 1st
eigenvalue to 𝑘th eigenvalue was 1.1. The exact size of the cluster was set to
the closest number bigger than 𝑛𝑒𝑡𝑡𝑦𝑝𝑒/𝑘 that had the GCD with 𝑘 equal to
1. 𝑘-means with 40-fold restart was used for groups of 𝑗 first eigenvectors with
𝑗 = 2,…,𝑛𝑒𝑡𝑡𝑦𝑝𝑒. The number of the partitions deviating from the partition into
exactly the predetermined 𝑘 layers was counted as errors. It should be stressed
that an error for 𝑗 = 𝑘 never occurred. Figure 8 summarizes the results. Up to 70%
of all the runs produced erroneous results. This means that adding eigenvectors
beyond the first 𝑘 produces noise only. This agrees with the general intuition that
the eigenvectors should not be used as is, but rather they should be weighted
inversely to the corresponding eigenvalue.

This problem is more general, applying to more general types of for was
noticed also in [18] their Fig. 4. The spectral clustering should be unable to detect
cuts with low isoperimetric ratios.

8.2. Impact of the distortion of edge weights
The question may be asked whether or not studying regular grid graphs with

fixed edge weights in each direction of the grid is not too rigid an assumption.
Hence, an experiment was performed the results of which are illustrated in Figures
9 and 10.

A regular grid with dimensions 𝑘 = 20 and 𝑛2 = 17 was constructed in such
a way that 𝜆𝑘+1/𝜆𝑘 = 1+𝜆𝑔𝑎𝑝, where 𝜆𝑔𝑎𝑝 = 0.1 in Fig. 9 and 𝜆𝑔𝑎𝑝 = 0.1 in Fig. 10.
Then edge weights were distorted by factors uniformly sampled (for each weight)
from the interval from 1−𝑑 to 1+𝑑, where 𝑑 = 0.1 in Fig. 9 and 𝑑 = 0.9 in Fig.
10.

As can be seen in the Figures, the first 𝑘 lowest eigenvalues do not deviate
significantly in the original grid and in the distorted one (images to the right),
though deviation can be observed for higher eigenvalues (images to the left) and
the bigger the distortion factor the bigger the deviation.

Hence, the question seemed to be justified whether or not the application of
𝑘-means would yield same results for the original and the distorted grid. It turned
out that under 16,000 fold restart of 𝑘-means in 𝑅 implementation produced the
same results when the recommended number of eigenvectors, i.e. 𝑘 was used.
However, if the number of eigenvectors was increased to 3𝑘, over 25% of nodes
were clustered differently for the distorted grid compared to the regular one.

348 M. Kłopotek, S. Wierzchoń and R. Kłopotek

5 10 15 20 25

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Mistakes for number of vectors differing from k

green − nettype=150, blue − nettype=200, red − nettype=250

k

P
e
rc

e
n
ta

g
e
 o

f
e
rr

o
rs

Figure 8. Errors committed by taking more than 𝑘 eigenvectors for the purposes of
clustering. X-axis: the number of clusters, Y-axis: the percentage of wrong partitions, net

type: the approximate number of nodes in the network

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●

0 1 2 3 4

0
1

2
3

4

All regular and distorted grid eigenvalues

 k= 20 no nodes= 340 lamdda gap= 0.1 distortion factor= 0.1

regular grid

d
is

to
rt

e
d

 g
ri

d

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

First k+1 regular and distorted grid eigenvalues

 k= 20 no nodes= 340 lamdda gap= 0.1 distortion factor= 0.1

regular grid

d
is

to
rt

e
d

 g
ri

d

Figure 9. Relationship between the eigenvalues of regular grids and eigenvalues of grids with
distorted edge weights. Distortion of up to 0.1. All eigenvalues to the left, 𝑘+1 lowest to the
right.The plots of clustering of unweighted and weighted two-dimensional grid graphs. The

smaller the distances, the higher the weights

Weighted Laplacians of Grids … 349

●●
●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●
●●●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●

●●

0 1 2 3 4

0
1

2
3

4
5

All regular and distorted grid eigenvalues

 k= 20 no nodes= 340 lamdda gap= 1 distortion factor= 0.9

regular grid

d
is

to
rt

e
d

 g
ri

d

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

First k+1 regular and distorted grid eigenvalues

 k= 20 no nodes= 340 lamdda gap= 1 distortion factor= 0.9

regular grid

d
is

to
rt

e
d

 g
ri

d
Figure 10. Relationship between the eigenvalues of regular grids and eigenvalues of grids

with distorted edge weights. Distortion of up to 0.9. All eigenvalues to the left, 𝑘+1 lowest to
the right

8.3. Ncut in other graphs
We performed also experiments checking how the Ncut would differ from

spectral cut for non-grid graphs. Especially we considered graphs consisting
of 4 components that were loosely coupled in pairs (1-2,3-4) and (1-3,2-4). It
turned out that depending on the inner structure and inner weights of the four
components, the split into two parts occurred at some threshold between weights
and square-rooted weights of the connecting edges. For this reason our findings
seem to be applicable predominantly to grid-like graphs.

9. Conclusions and Future Research
In this paper we presented a (closed- or nearly-closed form) method of

computation of all eigenvalues and eigenvectors of a multi-dimensional weighted
grid graph for unnormalized (or combinatorial), signless, normalized and random
walk Laplacians.While the combinatorial and signless Laplacians of multi-dimen-
sional weighted grid graph can be constructed from path graph Laplacians as a
combination of them, it is no longer the case with normalized and random walk
Laplacians.

The closed-form or nearly closed-form formulas for eigenvalues and eige-
nvectors for multidimensional weighted grid graphs may be of high interest for
researchers dealing with cluster analysis of graphs [19], especially with spectral
cluster analysis, and compressive spectral clustering (CSC) [20]. In particular,
the CSC is based on the assumption that the eigenvalues of normalized Laplacian
are uniformly distributed. However, when analyzing the cumulative distribution
function of these eigenvalues in grids with different weights proportions, we obse-
rve the violation of such an assumption. This violation increases with an increase

350 M. Kłopotek, S. Wierzchoń and R. Kłopotek

in the unbalancedness of weights, see Figure 11, where the distribution of the
eigenvalues of 2-dimensional weighted grid graphs is depicted.

Weighted grid graphs can be considered as types of graphs that have either
no intrinsic cluster structure (when the weights are equal) or the structure of
which can be twisted in various ways. Hence, the spectral clustering algorithms
should be checked against such structures getting advantage of the fact that the
eigenvectors and eigenvalues are quite easy to obtain even for large graphs. The
weights permit to simulate node clusters not perfectly separated from each other,
with various shades of this imperfection.

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF eigenvalues of normLap on gridgraph 31x33 with weight proportions

 black − 1:1, blue − 1:2, green − 1:3, red − 1:4

eigenvalue

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Figure 11. Cumulative distributions of eigenvalues of normalized Laplacians of grid graphs
of approximately 1,000 nodes with various proportions of weights in both directions. The

colors indicate: black - 1:1 (the unweighted case), blue - 1:2, green - 1:3, red - 1:4.

This fact opens new possibilities for exploitation of closed-form or nearly
closed form solution eigenvectors and eigenvalues of graphs while testing and/or
developing such algorithms and exploring their theoretical properties. Further-
more, in Sec. 7.1, we investigated the differences between various types of La-
placians, and hence, between various spectral clustering methods underpinned by
them. It should be noted that eigenvectors of combinatorial and signless Lapla-
cians of weighted graphs are identical with those for unweighted graphs. In the
case of normalized and random walk Laplacians, the eigenvectors for weighted

Weighted Laplacians of Grids … 351

graphs are superficially identical with those for unweighted ones, but nevertheless
they differ because the shifts are influenced by weights.

The study of differences between the weighted and unweighted cases allows
new insights into the nature of normalized and unnormalized Laplacians. Edge
weights have no impact on the eigenvectors of combinatorial and signless Lapla-
cians. It is only the presence or absence of an edge that impacts them. This is
not the case with normalized and random walk Laplacians. Here the relative edge
weights influence the shifts in the vector formulas. The weighting scheme opens
up the possibility of manipulating the magnitude of eigenvalues of combinatorial
and signless Laplacians, related to various grid dimensions. This has an intere-
sting impact, for example, on the concept of the Fiedler vector, associated with
the second lowest eigenvalue. The preferences which eigenvector to choose as the
Fiedler vector (from among those with the lowest components) can be modified
with the weight changes. The order of magnitude of eigenvectors associated with
some direction can be changed and the impact on 𝑘-means clustering in spectral
graph analysis can be observed. We have also the possibility to study the impact
of relative weights of various dimensions in a grid graph on the normalized and
random walk Laplacians, while, for example, the connection between various grid
layers is fading.

In Sec. 7.2 we investigated whether or not the results of Spectral Clustering
would match those of graph-cut and normalized graph-cut in the case of clustering
into two clusters using the Fiedler vector. This study pointed out to some
discrepancies between the common understanding of the relationship between
spectral clustering and the cut and 𝑁-cut methods of graph clustering. It was
demonstrated that spectral clustering would seek a cut with the smallest sum of
square roots of edge weights and not of the edge weights themselves as commonly
assumed.

In Sec. 7.3, we examined whether or not the results of Spectral Clustering
would match those of graph-cut and normalized graph-cut in the case of clustering
into more than two clusters using the 𝑘-means algorithm.

In Sec. 8.1, we probed the justifiability of the choice of 𝑘 eigenvectors for
clustering into 𝑘-clusters in spectral clustering. The paper provides supportive
evidence that spectral clustering into 𝑘 clusters should use (at most) 𝑘 eigenvec-
tors associated with the 𝑘 lowest eigenvalues as an increase in the number of
eigenvectors will introduce noise inducing blurring of the clusters.

In Sec. 8.2, we checked whether or not the conclusions drawn may be
extended, if the weights were not uniform. It was shown that the regular weighted
grid graphs quite accurately approximated the behavior of grids with distorted
weights, if the lowest 𝑘 eigenvalues with their eigenvectors were used in spectral
clustering.

These results constitute a significant conceptual expansion of [16], allowing
the weighing of edges in the grid graph. In order to be useful, all the theorems
presented in [16] were reconsidered and rendered to fit the weighting scheme and
the corresponding proofs were revised, wherever necessary.

352 M. Kłopotek, S. Wierzchoń and R. Kłopotek

Their properties may be of interest as generalizations of the results on
unweighted grid graphs.

It is worth noticing that the multidimensional weighted grid graphs are
bipartite graphs so that they may be exploited in the investigations of the
properties of Laplacians of weighted bipartite graphs.

Further research should investigate the relationship between unweighted
and weighted grid graphs and other analytical results in the domain of spectral
clustering. For example, there exist results relating the 𝑘th eigenvector to a very
special way of cutting a graph (the so-called Nodal Domain Theorem, [21], [1]).
Let us assume that each node is assigned the corresponding coordinate of the
mentioned eigenvector. Then, the edges connecting the nodes with different
coordinate signs (nodes with the zero value assigned to any neighboring graph)
are removed from the graph. In this case the graph will fall apart into 𝑘 parts
at the most. It would be worth investigating under what circumstances the
𝑘-means-based spectral clustering of a grid would agree or disagree with the
mentioned partition.

References
[1] Wierzchoń S T and Kłopotek M A 2018 Modern Clustering Algorithms, Studies in Big

Data, Springer Verlag, 34
[2] von Luxburg U 2007 A tutorial on spectral clustering., Statistics and Computing 17

(4) 395
[3] Dingo C H Q, He X, Zha H, Gu M, and Simon H D 2001 A min-max cut algorithm

for graph partitioning and data clustering., Proceedings of the 2001 IEEE International
Conference on Data Mining, IEEE Computer Society 107

[4] Dhillon I S, Guan Y and Kulis B 2005 A unified view of kernel k-means, spectral clustering
and graph cuts., Technical Report TR-04-25, University of Texas Dept. of Computer
Science

[5] Shi J and Malik J 2000 Normalized cuts and image segmentation., IEEE Trans. Pattern
Anal. Mach. Intell. 22 (8) 888

[6] Meila M and Shi J 2001 A random walks view of spectral segmentation, AI and
STATISTICS (AISTATS) 203

[7] Afsar M M and Tayarani-N M-H 2014 Clustering in sensor networks: A literature survey.,
Journal of Network and Computer Applications 46 198

[8] Shahraki A, Taherkordi A, Haugen O and Eliassen F 2020 Clustering objectives in
wireless sensor networks: A survey and research direction analysis., Computer Networks
180 107376

[9] Li X, Claramunt Ch and Ray C 2010 A grid graph-based model for the analysis of 2d
indoor spaces, Computers, Environment and Urban Systems 34 532

[10] Weisstein E W 2017 Grid graph., From MathWorld - A Wolfram Web Resource
[11] Edwards T 2013 The discrete laplacian of a rectangular grid.
[12] Bos A 2012 Index notation of grid graphs., https://sites.math.washington.edu/~reu/pa-

pers/2013/tom/Discrete(2013)
[13] Fiedler M 1973 Algebraic connectivity of graphs, Czech. Math. J. 23 (98) 298
[14] Pozrikidis C 2014 An Introduction to Grids, Graphs, and Networks, OUP USA
[15] Sorkine O 2005 Laplacian mesh processing., Eurographics 2005 – State of the Art Reports,

The Eurographics Association 53
[16] Kłopotek M A 2019 Spectral Analysis of Laplacian of a Multidimensional Grid Graph -

Combinatorial versus Normalized and Random Walk Laplacians, arXiv:1707.05210

Weighted Laplacians of Grids … 353

[17] Cvetković D, Rowlinson P, and Simić S 2007 Signless laplacians of finite graphs, Linear
Algebra and its Applications 423 (5) 155

[18] Grady L and Schwartz EL 2006 Isoperimetric graph partitioning for image segmentation,
IEEE Trans. on Pat. Anal. and Mach. Int 28 469

[19] Gallier J 2017 Spectral Theory of Unsigned and Signed Graphs. Applications to Graph
Clustering: a Survey, arXiv:1601.04692

[20] Tremblay N, Puy G, Gribonval R and Vandergheynst P 2016 Compressive spectral
clustering., Proc. of the 33rd Intl. Conf. on Machine Learning 48 1002

[21] Davies E, Gladwell G, Leydold J, and Stadler P 2001 Discrete nodal domain theorems,
Linear Algebra and its Applications

Mieczysław Kłopotek is a professor of Computer Science at Polish Aca-
demy of Sciences, Warsaw, Poland. He obtained his Ph.D. in Computer
Science in 1984 from the Faculty of Electrotechnics and Electronics Engi-
neering at Dresden University of Technology, Germany. He got Habilita-
tion Degree in 1999 from the Central Commission for Academic Degrees
in Warsaw and the Professor title from the President of Poland in 2009.
He previously held academic positions at Warsaw University of Technology
and at Siedlce University of Natural Sciences and Humanities. He wor-
ked on projects for Polish Air Force Academy at Dęblin, Foundation for
German-Polish Cooperation in Warsaw, European Union and for Polish
Ministry of Science. He has consulted for a number of private companies,
including Netezza, IBM, Semiconductor Research and Production Center
“CEMI”, iQor. His research interests include expert systems, machine lear-

ning, computer vision, intelligent search engines, text and web mining, highly parallel databases

Sławomir Wierzchoń is a professor of Computer Science at Polish
Academy of Sciences, Warsaw, Poland. He obtained his Ph.D. in Computer
Science and Engineering in 1979 from the Faculty of Electrical Engineering
at Warsaw University of Technology. He got Habilitation Degree in 1997
from the Central Commission for Academic Degrees in Warsaw and the
Professor title from the President of Poland in 2003. He previously held
academic positions at Białystok University of Technology, Polish-Japanese
Academy of Information Technology and Gdańsk University. In the past, he
worked on projects for Polish Air Force Academy at Dęblin, and Military
Institute of Health Services. His research interests include expert systems,

machine learning, data analysis, evolutionary computations, text and web mining

Robert Kłopotek works as assistant professor at the Faculty of Mathe-
matics and Natural Sciences, School of Exact Sciences of Cardinal Stefan
Wyszyński University in Warsaw and is the deputy director at the Institute
of Computer Science at Cardinal Stefan Wyszyński University in Warsaw,
Poland. He obtained his Ph.D. in Computer Science in 2015 from the In-
stitute of Computer Science of Polish Academy of Sciences in Warsaw. He
has consulted for the USA company iQor. His research interests include
graph visualization, social network analysis, text and web-mining, machine
learning, recommender systems, parallel and distributed data processing,
application of GPGPU in selected machine learning algorithms, solving po-

lynomial equation systems using CUDA architecture, data mining and data analysis and survival
analysis.

