
TASK QUARTERLY vol. 25, No 3, 2021, pp. 315–328

DIGITAL AUDIO BROADCASTING
JAN VAN KATWIJK

Lazy Chair Computing
F. W. van Stoetwegensingel 9

2642 BX Pijnacker, The Netherlands

(received: 5 June 2021; revised: 22 August 2021;
accepted: 18 August 2021; published online: 30 November 2021)

Abstract: Processing digital radio - either on the transmitter or the receiver side - requires a 
significant amount of digital processing. A receiver for digital radio usually consists of two parts, 
a ”hardware” part, handling the conversion from an analog antenna signal to a stream samples, 
and a ”software part”, a decoder, decoding the samples and generating audio, text, images and 
video. In this paper some aspects of the design and implementation of Qt-DAB, a software 
decoder for Digital Audio Broadcasting (DAB and DAB+), is discussed. The Qt-DAB decoder 
runs on a variety of hardware platforms, hardware as small as creditcard sized computers as 
the Raspberry PI 2, and home computers. In the design performance and flexibility were key. 
The design is such that it is easy to interface to different h ardware S DR d evices a nd e asy to 
add new features. While the core of the Qt-DAB software is formed by the signal processing 
part, interpreting the incoming sample stream and generating audio, text and images, by far 
the largest part of the software is handling user interaction and user comfort. Qt-DAB provides 
a large amount of options, options to select a device, to inspect the signal, to store signals, and 
options to set the configuration. All in all, i t shows that about three quarters of the amount of 
code is involved is the non-signal processing part.

Keywords: DAB, C++, Software Defined Radio, DAB, DAB+, Qt
DOI: https://doi.org/10.34808/tq2021/25.3/c

1. Introduction
Whether we like it or not, digital communication is the future. We all use

computers to zoom, our smartphone uses digital communication, and our TV is 
digital. The (almost nostalgic) era of AM radio transmissions with home-built ra-
dios with glooming tubes are gone, and within years most of the FM transmissions 
will disappear as well and be replaced by digital radio.

In Europe and Australia (Digital Audio Broadcasting (DAB, DAB+) [1] is
the system of choice, other countries and other continents use other systems. Some
countries use Digital Radio Mondiale (DRM) [2] for transmissions in shortwave, 
and some are experimenting with DRM+, similar to DRM, but for transmissions

https://doi.org/10.34808/tq2021/25.3/c


316 J. van Katwijk

in the FM band. The US has its own system of digital radio, a hybrid form with
possibilities for digital and analog signals in the same transmission.

DAB transmissions are in the old TV Band III (app 170 - 230 MHz), DRM
is mainly transmitted in shortwave, and DRM+ in the FM band.

In this paper some elements of Qt-DAB, an open source software DAB
(DAB+) decoder1 are discussed. In section 2 a brief introduction to DAB (DAB+)
and the underlying OFDM technique is given, in section 3 we present briefly the
Qt-DAB decoder, in section 4 we briefly discuss some aspects of its design, in
section 5 we discuss synchronization of a DAB transmission in the DAB decoder,
using well known techniques, and in section 6 we discuss aspects of the project.

2. OFDM, DAB and DAB+
DAB, Digital Audio Broadcasting, and DAB+ is a form of digital2 radio

developed in the late 90-ies and revised in the first decade of this century. DAB+
differs from DAB by the way the audio is encoded, the term DAB will be used
for both.

Other than AM or FM, where a transmission ususally is restricted to
deliver a single audio stream, a DAB transmission may contain a number of
audio and data services. As an example, the NPO (Dutch public radio) delivers a
transmission with 13 services, 12 services of which are audio, one is a data service,
transmitting the radio guide.

2.1. OFDM
The underlying technique for transferring bits is OFDM, Orthogonal Fre-

quency Division Multiplexing. OFDM is a technique with which large amounts of
digital data can be encoded and transmitted over a radio signal. Anything that
can be expresses using bits can be transmitted, either audio, video, or whatever
data. A DAB audio service often carries - next the the digitized audio content -
one or more pictures, Unfortunately, for understanding DAB decoding, a glimpse
of OFDM understanding is required.

With OFDM based techniques [4] data is modulated on 𝑁 carriers, carriers
with a minimal distance between their frequencies. The minimal distance is
determined by the modulation speed on these carriers. For DAB, carrier distance
is 1 kHz.

We consider modulated carriers as a sequence of complex samples, rather
than as an analog signal. An Inverse Fast Fourier Transform (IFFT) operation
maps a group of values from consecutive carriers from the frequency domain
onto the time domain. Feeding these time domain samples subsequently into a
Digital-Analog (DA) converter and shifting the frequency of the signal will give
the analog DAB signal.

1. For this and other software, see [3]
2. Of course the term ”digital” is easily misunderstood, the actual signal that is being

transmitted and entering the radio device is analog.



Digital Audio Broadcasting 317

In practice, there are two extensions to this scheme. First of all, the group of
carrier values that is input to the IFFT operation is extended at both sides with
dummies, null carriers before applying the IFFT operation, second, the resulting
segment in the time domain is prefixed with a segment, conisting op copies of the
last 𝑀 values in the segment.

Figure 1. ODFM scheme

2.2. DAB
In DAB the data is encoded in segments of 1536 complex carrier values.

Prior to applying an IFFT operation, each segment is extended with 512 null
carriers, 256 at each side.

Applying an IFFT operation on such segments, each with 2048 carrier
values, leads to segments of 2048 complex samples in the time domain. In the
time domain, each such segment is prefixed with a cyclic prefix of 504 samples
copied from the end of the segment, the guard. So, the 1536 complex carrier values
used as input in the transmission end up as 2552 complex samples in the time
domain.

In DAB these samples are sent through a DA converter - with a rate of
2048000 samples per second - resulting in a signal with an IF of 0 Hz and
a bandwidth of app 1536 kHz (the inserted carriers with null values do not
contribute to the bandwidth). The signal is mixed with a complex oscillator signal
in the range 170 .. 230 MHz, the result is amplified and send to an antenna system.

On the receiver side the process is reversed. First the analog signal arriving
through the antenna is mixed using some oscillator and shifted to an IF of 0
Hz, after which an Analog-Digital (AD) converter transforms the analog signal
into a sequence of samples - with a rate of 2048000 samples/second - in the time
domain. The receiver collects groups of 2552 samples, removes the 504 samples
from the cyclic prefix, and feeds the resulting 2048 samples through a Fast Fourier



318 J. van Katwijk

Figure 2. Spectrum and signal constellation

Transform (FFT) processor. From the resulting 2048 carriers values, 1536 carrier
values with useful data are extracted.

A DAB transmission is organized in frames. In the transmission, a DAB
frame takes 199608 samples (again, with a rate of 2048000 samples per second),
just over 10 frames per second.

Such a DAB frame starts with 2656 samples with almost no amplitude, a
so-called null period. Then 76 data blocks follow, each consisting of 2552 samples
(504 + 2048). The null period makes it easy to get an idea of where the data of
a DAB frame starts. The first data block of the DAB frame contains predefined
data, correlating the data found in the incoming samplestream with the predefined
values gives the exact position of the first sample of the first data block of a DAB
frame.

The next 3 data blocks from which carriers are extracted in the frequency
domain contain so-called FIC data (Fast Information Channel). With the decoded
FIC data, directory information can be built up describing the content of the
decoded data of the remaining blocks (the MSC, Master Service Channel).

In DAB the complex values in the carriers are used to encode the bits. The
carrier values in the first data block of a DAB frame are used as reference for
the bits encoded in the second data block. In general, decoding is in two steps. If
𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑖,𝑗 represents the value of carrier 𝑗 in data block 𝑖, we extract two bits (𝑏𝑗,
𝑏1536+𝑗) from first computing 𝑝ℎ𝑎𝑠𝑒 = 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑖,𝑗 ∗𝑐𝑜𝑛𝑗(𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑖−1,𝑗) and defining
𝑏𝑗 = 𝑟𝑒𝑎𝑙(𝑝ℎ𝑎𝑠𝑒) and 𝑏1536+𝑗 = 𝑖𝑚𝑎𝑔(𝑝ℎ𝑎𝑠𝑒). In reality the values for the bits are
scaled in the range -127 … 127, just for practical reasons. In Figure 2 the spectrum
and the constellation of a synthetic DAB signal is shown.

Furthermore, at the transmitter side, the carriers were interleaved, to in-
crease the possibility of recovering from spurious frequency errors during trans-
mission. Of course, the de-interleaving takes place before extracting the bits.

The OFDM technique used by DAB makes it possible for a receiver
to distinguish between interfering data streams with the same content from
different transmitters (and of course due to reflection). This makes it possible
to transmit DAB through a so-called SFN [5] a single frequency network, a group
of transmitters transmitting the same signal. The obvious advantage is that rather



Digital Audio Broadcasting 319

than a single high power transmitter a number of transmitters with a much lower
transmission power can be used.

Each of the transmitters in such an SFN can add some data to the
null period, and encoding identifying the transmitter, the so-called Transmitter
Identicaiton Information (TII) data.

Most current transmissions use DAB+ rather than DAB. While the un-
derlying transmission technique is the same, DAB+ uses a different approach to
store the (audio) data in the MSC. While in DAB audio is encoded in MP23,
audio in DAB+ services is encoded in He-AAC, in Qt-DAB decoded by libfaad
[7]. A modern DAB receiver is therefore able to decode DAB and DAB+ audio,
a first generation receiver cannot decode DAB+ services.

To add redundancy, at the transmitter side, the bits were fed through a
convolutional encoder before being combined into a complex number used as input
for the transmission process.

Due to channel effects, the phases of the carriers resulting from the FFT
operation in the decoding process most likely differ from the phases that were
presented as input. The resulting values were therefore decoded to soft bits, i.e.
values in the range -127 .. 127. These soft bits are fed into a convolutional decoder
(a Viterby decoder [8]) to obtain the final bits whenever needed. These resulting
bits are then used for building the directory structure if coming from the first
few blocks, or used for data or audio. CRC checks are executed to validate the
resulting data.

2.3. DAB+
Often the term DAB is used when DAB+ is meant. DAB itself dates from

the late 90-ies, DAB+, a revised version from the first decade of this century.
While the underlying mechanisms for DAB and DAB+ are the same, there are
fundamental differences in the encoding of the audio data.

In DAB the MP2 encoded audio segments were stored directly in subsequent
blocks in DAB frames, one segment per frame. The audio handling was simple,
extract the right segments from the frame and feed them into the MP2 decoder.

In DAB+ audio is encoded in He-AAC. Multiple AAC franes are stored
in so-called superframes, where a superframe was built from 5 segments in
consecutive DAB frames. The data for building up a superframe is - in segments
of 120 bytes - passed through a Reed-Solomon decoder [9], that could detect and
repair up tp 5 errors and delivers - if the number of errors not greater than 5 -
110 error free bytes4.

The superframe, when built, contains a description of where to find the -
other than the MP2 segments - differently sized HE-AAC segments.

3. The MP2 decoder used was written by [6]
4. This is of course not completely true, the parity bytes themselves could contain errors,

therefore an additional CRC check is performed on the HE-AAC segments



320 J. van Katwijk

3. Qt-DAB
Qt-DAB is a program for decoding terrestrial DAB signals. The software is

written in C++ and uses the Qt framework [10], hence the name. The program
takes samples from an SDR input device or a file, and generates PCM samples
for the computer’s soundcard or for a small server, for sound over IP.

Common devices that are supported are DABsticks, AIRspy devices, SDR-
play devices HACKrf devices, LIME devices and Adalm Pluto devices. In a few
experiments, support software was written for some old devices only supporting
frequencies up to 30 or 60 Mhz, using subsampling.

The software is developed under Linux and cross compiled for Windows.
It runs on a PC under Linux, under Windows and on some ARM based boards,
such as the Raspberry Pi 2, 3 and 4.

Qt-DAB is developed with the idea that the user is in full control, i.e. the
GUI of Qt-DAB has an abundant amount of controls and displays. The sourcetree
for Qt-DAB contains a second version, dabMini, a version with an minimal GUI,
used for just for listening to a service.

Further family members are a so-called DAB library, a library providing all
functionality for decoding DAB, and Terminal-DAB, a DAB decoder for running
DAB without a GUI and a few scanner programs, for scanning the channels in
the band.

Most members of the family support the same variety of input devices,
varying from a simple DABstick to the more elaborate SDRplay devices.

Figure 3. Two DAB decoders

Qt-DAB always shows a main widget (Figure 3) and - under user control
- up to 7 additional widgets for control and for displaying information can be
made visible. The main widget contains general information, obviously the list of
services in the transmission, buttons for making additional displays and widgets
visible and buttons for device and audio selection. It also contains number displays



Digital Audio Broadcasting 321

for showing the frequency of the selected DAB channel, the total CPU load, the
SNR of the signal and the detected frequency offset of the incoming signal.

The widget further shows a label, showing whether or not time synchroniza-
tion is successfull (dark green), and a progress indicator (green) telling the quality
of the decoding. Below these indicators, the ensemble is shown, together with the
transmitter identification, the name of the selected service and the so-called dy-
namic label, the text transmitted with the audio.

An esthetical extension was coloring of buttons and displays. Based on
user requests an extremely flexible scheme was chosen, after all, color selection is
personal. The solution was that a user can dynamically set the colors of buttons
and displays with a few simple mouse clicks to his or hers likings. These settings
are - obviously - maintained between program invocations.

Figure 4. Qt-DAB: some other widgets

Some of the other widgets are shown in Figure 4.
• at the top left, the spectrum of the null period is shown. The null period

contains the encoding of the transmitter identification information, the TII.
Apparently, data from transmitters (1, 4) and (1, 3) is received, which makes
sense, since these two transmitters are within 20 Km of my home.

• at the top right, the correlation is shown. Correlation is used to synchronize
the receiver with the strongest signal. The picture shows 4 peaks, the
two strongest ones show apparently the correlation with the signals of the
transmitters (1, 4) and (1, 3).

• at the bottom left, the spectrum is shown, it is easy to see that the width
is app 1.5 MHz. Furthermore, the constellation of the received data is
displayed in that widget. It is clear from the picture that the signal is
affected by interference from the other transmitters. The two numbers on
the widget give a quality indication (the 6.2...) on a scale to 10, resp an
indication of the clock error (0), i.e. the number of samples off in 10 frames
of 199608 samples.

• at the bottom right, the development of the SNR over time is shown.



322 J. van Katwijk

Other widgets that can be made visible are (a) a widget for device control,
(b) a widget showing technical data of the selected audio service (if any), and (c)
a configuration widget for some additional settings.

4. Qt-DAB architecture and design issues
4.1. Qt-DAB architecture

Processing DAB is basically transforming an inputstream of 2048000 sam-
ples per second into an outputstream (PCM samples) of 48000 samples per second.
Processing involves (a.o.) executing over 800 FFT operations per second on seg-
ments of 2048 complex samples, and performing Viterbi decoding on the data in
the FIC blocks and on selected services, as well as Reed-Solomon decoding on
selected DAB+ services, all operations that are quite resource intensive.

While modern PC’s and laptops have more than enough CPU power to run a
decoder (see Figure 3, the picture shows a processor load of a few percent), running
the software in a single thread on something like a Raspberry Pi 2 overloads the
processor core that is being used.

The different program elements are therefore mapped on different objects,
objects that can run each on its own thread. In configuring the software a choice
can be made to have each such object run as task in its own thread or not.
Maximal concurrency in the Qt-DAB implementation shows an average load of
50 to 60 percent on the 4 cores of an Raspberry Pi 2 and well below 50 percent
on an Raspberry Pi 3.

Elements to be considered are:
• Input handling. In order to handle different input devices, a simple interface

had to be defined, support for a device requires developing a driver program
implementing the interface. The interface is implemented as a class with
a handful of virtual functions. Only three functions are essential for the
decoder: startChannel on a given frequency, stopChannel and getSamples.
Setting or altering gain is done through the device control widget. In
configuring a user can select which devices to include.

• OFDM handling takes the input samples from the interface, takes care
of time and frequency synchronization (see section 5) and passes on the
datablocks from the DAB frame to either the FIC handler or the backend
handler. What should be realized is that the final check whether or not
the synchronization is OK, is that the FIC handling can decipher the FIC
blocks and show names and attributes of services. FIC handling therefore
is intimately coupled to OFDM handling and forms, with other functions
with OFDM handling a single object.

• backend controller is the interface between the OFDM handling and the
actual backends. Partitioning FFT operations over more than a single
thread was the objective, therefore the backend controller collects the
time domain samples for the datablocks in the MSC, applies the FFT



Digital Audio Broadcasting 323

transformation and stores the result into a buffer. The backend controller
provides interface functions, to be used by the GUI handler, for creating
and stopping a service by allocating (or deallocating) a backend. The
backend controller maintains a set of allocated (i.e. active) backends, its
implementation does not limit the number of active backends. After reading
the data of a DAB frame, the backend controller passes selected segments
of the MSC data to the appropriate backend.

• backends For the processing of the data for each selected service, a sepa-
rate backend object will be allocated. Two category backends are the audio
and the data backends. The first category has two members, a backend
for MP2 (classical DAB) and a backend for He-AAC (DAB+). The second
category supports Multimedia Object Transfer (MOT), Internet Protocol
(IP) handling, Electronix Program Guide (EPG) and Transport Protocol
Expert Group (TPEG) handling and (untested) journaline handling. Whe-
ther a backend is implemented as running in its own thread or in the caller’s
thread is element of the configuration.

• GUI and controller. The GUI handling is implemented using Qt. It is
responsible for handling the user interaction and - thereby - displaying
information on a variety of widgets.

4.2. Flexibility of the design, some examples
The current version of Qt-DAB differs - especially wrt the GUI - conside-

rably from earlier versions, and - most likely - future versions will differ from
the current one. From the very start, the design has been such that changes and
extensions could be made easily. Two extensions are mentioned here.

4.2.1. Presets
One of the additions in a rather late stage of the project was the addition

of presets. In an earlier light-weight variant the choice was made to scan - on
start-up - a (user-indicated) subset of channels for building a list of reachable
services. Most users do not want such a long list but want to be able to specify
some services as presets for easy access. While selecting a preset service within
the currently selected channel is fairly trivial, it is slightly more complex if the
service is located in a different channel. Then a whole sequence of operations has
to be performed, stopping the channel, changing the frequency, waiting to get
data from that channel, and finally, when the descriptive data for the requested
service is available, selecting the service. Having defined some basic operations in
the control part, such as stopService, stopChannel, startChannel, etc, made that
a relatively simple addition.

4.2.2. Continuous scanning
One option - not mentioned so far - is that Qt-DAB provides a scanning

function. People - especially DX-ers - like to continuously scan through the band
and see what they can receive on the different channels. The result of the scan,



324 J. van Katwijk

the description of what is detected in the different channels, the time and the
SNR, is stored as text file, readable by a spreadsheet program such as LibreCalc.
Of course, it is often known beforehand that some channels will definitely not
contain any form of DAB signal, so an option was created to create so-called skip
files, files with a description which channels to use and which to skip. A second
point, noted by some users, was that during such a scan, different channels needed
different gain settings, also dependent on the connected device, so an extension
was made to maintain for each channel, for each device, the gain settings between
program invocations.

5. Synchronization issues
Looking at the structure of a DAB decoder such as Qt-DAB, it becomes

obvious that as soon as the incoming samples are mapped upon (soft) bits,
further processing requires computing the ”hard” bits using Viterbi decoding and
applying consistency checks, but is basically just playing with bits.

The interesting part in the software is the OFDM handling and synchroni-
zation. Synchronization implies knowing which sample in the input stream fits in
which position in the DAB frame that is being read, but synchronization also has
to deal also with correcting a frequency offset, if any. Recall that in the decoding
process a translation from samples in the time domain to samples in the frequency
domain takes place. An offset in the ocillator frequency of the SDR device may
have a disastrous result, a carrier value in the result of the FFT, seen at position
i should have appeared on position j. Of course, decoding then is impossible.

Note that for simple devices, such as a DABstick, the frequency offset of the
oscillator in the device can be tens of kHz (note we are talking about frequencies
around 200 MHz), while for more advanced ones, e.g. the various SDRplay devices,
offsets of only a few Hz are measured.

5.1. Time synchronization
DAB provides us with a null period of 2656 samples as start of a DAB

frame, the null period is helpful in detecting the start of the data blocks of the
DABframe.

On starting up a channel, we just look at the incoming samples for the null
period. Once found, the data in the first data block is correlated with predefined
data to identify the sample in the inputstream that is the first sample in the DAB
frame.

The time synchronization takes the following steps:
• Compute some moving average amplitude value for all incoming samples,

i.e. 𝐿𝑔 = 0.00001∗𝑎𝑏𝑠(𝑠𝑎𝑚𝑝𝑙𝑒)+0.99999∗𝐿𝑔, and ensure that prior to taking
the next steps, at least 100000 samples were read.

• Compute for each incoming sample 𝑆𝑖 for a value 𝑁 of app 50 𝐿𝑙 =
(∑𝑖

𝑗=𝑖−𝑁+1 𝑎𝑏𝑠(𝑆𝑗))/𝑁, i.e. the average value over the last N incoming
samples.



Digital Audio Broadcasting 325

• As soon as 𝐿𝑙 < 0.5∗𝐿𝑔 it is reasonable to assume that we have the start
of the null period detected (of course, if for a long time this relation is not
seen, it is most likely not a DAB data stream);

• Continue to compute 𝐿𝑙 and 𝐿𝑔 until either

- we had well more than 2656 samples (i.e. the length of the null period),
in which case there was probably no DAB signal, or

- we found that 𝐿𝑙 >= 0.8∗𝐿𝑔, in which case it seems we reached the
end of the null period.

• In the second case we then collect 2048 samples in a vector 𝑉, i.e. data
of the first data block of the DAB frame, and we compute the correlation
vector 𝑉 = 𝐼𝐹𝐹𝑇 (𝐹𝐹𝑇 (𝑉 )∗𝑐𝑜𝑛𝑗(𝑃 )) where P is a vector with predefined
values, given by the DAB standard. We look for 𝑚𝑎𝑥(𝑉 [𝑖]) as the index in
the vector V of the start of the first data block.

Of course, computing a moving average for each subsequent DAB frame,
while we know we are synced, is not needed. We just process the data in the DAB
frame, set the input pointer 199608 samples further and restart for the next round
with the correlation, and skip the detection of the null period.

5.2. Frequency correction
Offsets in the oscillator frequency that are small, up to half the carrier

distance, i.e., for DAB 500 Hz, can be corrected while decoding continues. For
larger offsets there is a serious problem, the output value at is actually data that
should be the output value for a different carrier. The result is disastrous, no
decoding is possible.

Therefore we distinguish between coarse correction and fine correction. Note
that - as mentioned earlier - simple devices like RT2832 based DABsticks show
frequency offsets of tens of kHz, so a decent approach to coarse correction is
required.

5.2.1. Determining coarse frequency offset
Note that in many OFDM based applications datablocks in the frequency

domain contain pilot carriers with predefined phases and increased amplitudes.
These pilots can be used to reconstruct the originally transmitted data, and are
very useful as markers to detect and compute frequency offsets. In DAB, the first
datablock contains predefined data, used - as mentioned earlier - to synchronize
and as a basis for decoding the next block.

The best results with detecting a coarse frequency offset were onbtained by
looking at the correlation of the phase differences between successive carriers over
a region of - in our case app 40 carriers -

𝑏
∑
𝑖=𝑎

𝑑
∑
𝑗=𝑐

(𝑟𝑒𝑓𝐶𝑖 ∗𝑐𝑜𝑛𝑗(𝑟𝑒𝑓𝐶𝑖+1)∗𝑐𝑜𝑛𝑗(𝑡𝑒𝑠𝑡𝐶𝑖+𝑗 ∗𝑐𝑜𝑛𝑗(𝑡𝑒𝑠𝑡𝐶𝑖+1+𝑗) (1)



326 J. van Katwijk

is maximal where 𝑟𝑒𝑓𝐶 denotes the (complex) carrier values as defined in the
DAB standard, and 𝑡𝑒𝑠𝑡𝐶 the value in the first data block after transforming it
into the frequency domain.

The ultimate test is of course seeing that decoding is possible, which
obviously shows whenever a list of services in the transmission is detected.

5.2.2. Determining fine frequency offset
The fine frequency offset, i.e. for DAB between -500 and 500 Hz, may be the

result of channel conditions and may very over time. The offset can be computed
and - together with the value for the coarse frequency offset, used in correcting
the tuned frequency.

Recall that a guard was introduced in the time domain samples. The guard,
with a length Tg, is a replica of the last Tg samples of the time domain symbol.
As well known (see e.g. [11]), a frequency offset causes the phases of the elements
in the original time domain symbol to differ from the corresponding elements in
the guard. The difference can be used to estimate the frequency offset. So, if we
assume that the original time domain symbol has a length Tu, we can compute
for datablock 𝑗

𝑋𝑗 =
𝑇 𝑔

∑
𝑖=0

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑗,𝑖 ∗𝑐𝑜𝑛𝑗(𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑗,𝑇 𝑢+𝑖) (2)

and estimate the offset by computing

𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑎𝑟𝑔(𝑋𝑗)/(2∗𝜋)∗𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑎𝑡𝑒/𝑇 𝑢 (3)

where 𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑎𝑡𝑒/𝑇 𝑢 indicates the frequency difference between successive caar-
riers.

Of course, it is better to just average over more than one time domain data
block:

𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑎𝑟𝑔(
𝐾

∑
𝑗=0

𝑇 𝑔

∑
𝑖=0

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑗,𝑖 ∗𝑐𝑜𝑛𝑗(𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑗,𝑇 𝑢+𝑖))∗𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑎𝑡𝑒/𝑇 𝑢 (4)

5.2.3. Applying correction
Having computed a frequency error offset, a correction can be made. While

it seems obvious to signal the radio device to alter the frequency, in Qt-DAB
another approach is taken.

Qt-DAB abstracts from the attached device by providing an interface, and
pulling samples from the interface when needed. It is therefore - for Qt-DAB -
not clear how many samples there are already in the buffer whenever a signal for
a frequency update arrives.

The approach chosen for Qt-DAB is to apply frequency corrections per DAB
frame, using a software local oscillator, as soon as a sample is entering the OFDM
handling, it is shifted with the frequency offset computed. One advantage is of
course that samples being read from a file also can be corrected in frequency.



Digital Audio Broadcasting 327

6. In lieu of conclusion
Qt-DAB is an open source project, one of the advantages is that there

are absolutely no deadlines, and parts can be - and are - rewritten many times,
applying newer ideas and better algorithms or just for experimenting. Most of the
experiments had to do with the synchronization and efficiency. As an example,
an alternative way of computing the fine frequency offset is by looking at phase
differences in the FFT output [11] rather than computing the phase differences
between samples in the time domain, just to verify that the two approaches gave
(roughly) the same results.

Other experiments dealt with looking for a reasonable partitioning of
functionality over objects. Running these objects in their own thread ensures
that - even with almost continuously expanding functionality - the software runs
smoothly on a simple device such as an Raspberry Pi 2.

One of the recent experiments that ended as a configuration option is with
the Adalm Pluto device. The Pluto has - next to a receiver - also transmit
capabilities. Qt-DAB was extended such that the audio output of a selected audio
service, augmented with the text shown with the audio (the dynamic label), is
transformed into an FM stereo signal with RDS and transmitted on a user selected
frequency.

Having made the software publicly available resulted in quite some feedback.
Some feedback was as can be expected: ”it does not work” or ”it does not compile”.
There was, however, also a lot of really helpful technical feedback, instructions
for simple things like making widgets resizeable, interpreting MP2 data, proper
handling of AAC segments (the encoding of the DAB+ audio), introduction of
presets, even recently the suggestion the use of an address sanitizer, all these
things led to improving the Qt-DAB software.

The resulting program has a reasonable size, app 40000 lines of code. Of
course, within these 40000 lines, functional blocks can be identified as was mentio-
ned in section 4. The OFDM handling deals with reading samples, synchronzing,
building op DAB frames and generating (soft) bits. The FIC handler then is re-
sponsible for setting up and maintaining a structure that contains the descriptions
of the services in the current transmission but for technical reasons should be com-
bined with OFDM handling in a single object. The backend dispatcher collects
the MSC data from the OFDM handler and passes the appropriate segments on
to the various selected backends. Backends themselves are backends for audio de-
coding (MP2 and AAC), and backends for data decoding, e.g. MOT, EPG, IP,
TPG handling etc. The approximate sizes are given in Table 1.

The large size of device support follows from supporting about 8 different
device types, and three different programs for (different types of) file input.

Of course, Qt libraries, libraries for FFT handling, AAC decoding, support
libraries for devices, and libsndfile and libsamplerate are not included in these



328 J. van Katwijk

Table 1. Size of components

component size
device support 13500

ofdm and FIC handling 5500
backend dispatching 1000

audio decoding 2500
data decoding 9000

control and display 6000
various support 2500

figures since libraries are used in their binary form and their sizes not includes in
the figures given here.

References
[1] Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile, portable and

fixed receivers, ETSI EN 300 401
[2] Digital Radio Mondiale (DRM); System Specification, ETSI ES 201 980
[3] Katwijk van J The Qt-DAB decoder, URL: https://github.com/JvanKatwijk/qt-dab
[4] Orthogonal frequency-division multiplexing,

URL: https://en.wikipedia.org/wiki/
Orthogonal frequency-division multiplexing

[5] Single Frequency Network,
URL: https://en.wikipedia.org/wiki/Single-frequency network

[6] Fiedler J M, KJMP2 – a minimal MPEG-1/2 Audio Layer II decoder library, Copyright
2006 - 2013

[7] Freeware Advanced Audio (AAC) Decoder, FAAD2, URL: https://ecsoft.org/faad2
[8] Viterbi algorithm, URL: https://en.wikipedia.org/wiki/Viterbi algorithm
[9] Clarke P K C July 2002 Reed-Solomon error correction, BBC R & D White Paper, WHP

031
[10] Qt Software Development Platform, URL: https://www.qt.io/
[11] Tzi-Dar Chiueh and Pei-Yun Tsai 2007 OFDM baseband Receiver Design for Wireless

Communications, John Wiley & Sons (Asia) Pte Ltd
[12] Open source Spiral System, URL: www.spiral.net/codegenerator.html
[13] Linux apps that run everywhere, URL: https://appimage.org

Jan van Katwijk is a retired professor in Software Engineering at
Delft University of Technology. He received his MSc in Mathematics
in 1971 and a PhD in Computer Science in 1987 from Delft Uni-
versity of Technology. He worked at Delft University from 1971 till
2009 as assistent, associate resp. full professor. From 1998 till 2007
he acted as dean of the faculty of Electrical Engineering, Mathe-
matics and Computer Science at the Delft University. His research
interests shifted from compiler design and construction to software
specification, construction, engineering and software quality. He was
a member of IFIP WG 2.4 and served on ISO/TC97/SC22. After
his retirement he got interested in software aspects and software en-
gineering issues for Software Defined Radio and he developed soft-
ware for a variety of SDR programs.


